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Abstract— In a cache-coherent chip-multiprocessor, tracking 

coherence information of the privately cached blocks often 

involves a directory structure (CMP). The privately cached 

copies of the block that the evicted entry was monitoring are 

inextricably invalidated when a directory entry is removed. 

These victims of forced directory eviction present two significant 

difficulties. First, performance degrades due to a considerable 

increase in the amount of these victim blocks with decreasing 

directory size. Because of this, scaling the directory still presents 

a significant difficulty. Second, as recently shown, timing-based 

side-channel attacks can be launched by taking advantage of the 

close coupling between directory evictions and the private cache 

contents. The first issue's current solutions only let you reduce 

the directory capacity so far before performance starts to suffer. 

The existing mitigation technique for the security vulnerability 

avoids generation of only a certain specific subset of directory 

victims. 

In this paper, we present the Zero Directory Eviction Victim (Ze- 

roDEV) coherence protocol and accompanying novel mechanisms 

that guarantee freedom from invalidations arising from directory 

state and the location(s) of a block that is cached privately by 

at least one of the processor cores. The sparse directory entry 

corresponding to a block is freed when all private copies of the 

block are evicted from the processor cores. The eviction of a live 

sparse directory entry must invalidate all privately cached copies 

of the block the directory entry was tracking. We refer to these 

private cache blocks invalidated due to directory entry eviction 

as the directory eviction victims (DEVs). Figure 1 illustrates an 

example where two blocks B1 and B2 are tracked by sparse 

directory entries E1 and E2. B1 is cached in cores C0 and C1, 

while B2 is cached only in core C1. When new directory entries 

E3 and E4 are allocated in the sparse directory, they evict E1 

and E2 respectively. The eviction of E1 generates invalidations 

to the copies of B1 cached in C0 and C1, while the eviction of 

E2 generates an invalidation to the copy of B2 cached in C1. 

These invalidations, in turn, generate the DEVs which are the 

invalidated blocks i.e., two copies of B1 and one copy of B2. 

victims, thereby completely isolating the private core  caches 

from the coherence directory evictions. This is the first fully 

hardwired design proposal that enables a practically unbounded 

coherence directory which, to the core caches in a CMP, appears 

to never evict a live  entry.  Unlike  the  prior  proposals  that 

have completely eliminated the directory and the coherence 

information eviction victims in a multi-/many-core CMP, our 

proposal does not require any operating system or application 

software changes. Our proposal, instead, repurposes the on-die 

last-level cache (LLC) space for holding the evicted directory 
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entries and engineers a novel mechanism to handle directory 

entry eviction from the LLC without generating any invalidation 

to the private core caches. The ZeroDEV protocol evaluated on 

multi-threaded and multi-programmed workloads for inclusive 

and two popular non-inclusive CMP cache hierarchy designs 

performs within 1-2% of a well-provisioned traditional baseline. 

Importantly, as an additional benefit of eliminating directory 

eviction victims and utilizing the large on-die LLC for caching 

directory entries, we show that our proposal does not need any 

dedicated directory structure at all for certain classes of CMP 

cache hierarchy designs while maintaining the performance level 

and continuing to guarantee complete isolation of the core caches 

from directory entry eviction. 

Index Terms—chip-multiprocessor; cache coherence; sparse 

directory; directory eviction victim. 

 
I. INTRODUCTION 

The coherence directory structure is an integral part of 

the scalable cache coherence protocols. Within a chip-  
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Fig. 1. An example of directory eviction victims (DEVs). 

Appropriate sizing of the sparse directory plays a very im- 

portant role in determining the CMP performance as the volume 

of DEVs has an inverse relationship with the number of sparse 

directory entries. In this paper, we represent the number of 

entries in the sparse directory as R where R is the ratio of the 

number of sparse directory entries to the total number of blocks 

in the last-level private caches (e.g., L2 caches if each core has 

private L1 and L2 caches) aggregated over all processor cores. 

The traditional solution for keeping the volume of DEVs 

low is to have a sparse directory that is at least 1   large; 

usually it is much larger to avoid worst-case conflicts because 

the sparse directory associativity is far lower than the impractical 

aggregate associativity of all the private last-level core caches. 

As a result, the sparse directory can easily consume several 

megabytes of on-chip area for a high-end server CMP. 

In this paper, we propose novel techniques that, by design, 

guarantee complete freedom from DEVs irrespective of the 

sparse directory size, thereby enabling an unbounded sparse 

directory. Complete elimination of DEVs can bring multiple 

different benefits as discussed in the following. 
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A. Motivation: Benefits of Eliminating DEVs 

1) Interconnect Traffic, Core Cache Misses, Performance: 

Elimination of DEVs can improve performance if the DEVs are 

predominantly live; live DEVs increase core cache misses and 

interconnect traffic. The performance improvement arising from 

elimination of DEVs is likely to be significant for small directory 

sizes. In the following, we first empirically establish that a 1 
sparse directory performs close to a system with an unbounded 

sparse directory for our workload set and system configuration.1 

This result allows us to use the 1    sparse directory as a reason- 

able baseline throughout this paper and helps us avoid overstat- 

ing any results. Next, we show that the performance degrades 

gradually with decreasing sparse directory size underscoring the 

performance-criticality of DEVs. 

Figures 2 and 3 quantify the savings in interconnect traf- 

fic (total bytes communicated), core cache misses, and execu- 

tion cycles for multi-programmed and multi-threaded workloads 

respectively when going from a 1 sparse directory to an 

unlimited-capacity sparse directory. All results are collected on 

an 8-core CMP model with a non-inclusive cache hierarchy hav- 

ing an 8 MB 16-way shared LLC and per-core private 256 KB 8- 

way L2 cache and 32 KB 8-way data and instruction L1 caches. 

Each eight-way multi-programmed workload consists of eight 

copies of a SPEC CPU 2017 application (rate mode or homo- 

geneous multi-programming) shown on the x-axis in Figure 2. 

Figure 3 shows the results for ten PARSEC applications [3], 

and the average numbers for the PARSEC, SPLASH2X (derived 

from SPLASH-2 [42] and distributed with PARSEC), SPEC 

OMP, and FFTW [13] applications. From Figure 2 we see that 

the average speedup is under 1%, although 10% interconnect 

traffic and 15% core cache misses are saved on average. To 

explain this, on top of each group of bars, we show the core 

cache misses saved per kilo instructions. These savings are too 

small (except 3.2 in xalancbmk) to affect any noticeable perfor- 

mance improvement (xalancbmk speeds up by 4%). Figure 3 

shows that a 1 sparse directory is adequate for the PAR- 

SEC, SPLASH2X, SPEC OMP, FFTW applications. The 4% 

performance loss in freqmine arises from forwarded requests to 

owner cores when using an unlimited-capacity directory. These 

requests were getting served from the LLC when using a 1 
sparse directory because the dirty blocks were retrieved from the 

owner cores as DEVs due to directory entry eviction. 

The data in Figures 2 and 3 establish that our baseline 1 
directory performs close to the unbounded directory. Figure 4, 

however, shows that the performance declines gradually com- 
pared to the 1× directory as the sparse directory is sized 1 ×, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Normalized interconnect traffic, core cache misses, and speedup of 
multi-threaded applications. 
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Fig. 4. Performance impact of sparse directory size. 

 
model wherein a victim process and an active attacker process 

are scheduled within the same CMP sharing the sparse direc- 

tory. Such attacks can reveal information (such as part of the 

physical address [19]) about the victim’s accesses. The Secure 

Directory (SecDir) proposed to mitigate this attack divides the 

sparse directory into n private partitions and a shared partition 

for an n-core CMP [44]. A newly allocated directory entry starts 

its life in the shared partition. An entry E evicted from the shared 

partition gets allocated in the private partitions of the cores that 

are caching the block being tracked by E. Thus, a cross-core 

conflict in the shared partition can no longer directly generate 

a DEV, but can induce self-conflicts within a private partition 

due to migration of an entry from the shared partition to the 

1 1  
2 private partition. An eviction from the private partition of core 

8     , and 32     , thereby making the performance-criticality of the 
DEVs prominently visible. A solution that can eliminate DEVs 

must create the illusion of an unbounded virtual sparse directory. 

An important question that we seek to answer is whether such 

a solution can lower the requirement on the physical size of a 

dedicated on-chip sparse directory structure. 

2) Isolation of Core Caches from Directory Evictions: Re- 

cent research [43] has cast shadow on the traditional directory- 

based CMP systems by demonstrating that DEVs can be ex- 

ploited to launch Prime+Probe attacks [23], [28] under a threat 

1 All sparse directory organizations considered in this study are eight-way 
set associative (Table I of Section IV). 

C due to self-conflicts within the private partition generates an 
invalidation to C leading to a DEV. This solution does avoid 

direct generation of DEVs arising from cross-core directory con- 

flicts, but cross-core directory conflicts can indirectly generate 

DEVs by inducing self-conflicts within a core’s directory entries. 

Clearly, a solution that can eliminate DEVs altogether could 

have offered complete isolation between the core caches and the 

directory evictions. 

In summary, DEVs degrade performance, inflate interconnect 

traffic, and can be exploited to leak information through side- 

channels. The central contribution of this paper is the zero 

directory eviction victim (ZeroDEV) protocol that, by design, 

Fig. 2. Normalized interconnect traffic, core cache misses, and weighted 
speedup of eight-way rate (homogeneous) multi-programmed workloads. 
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guarantees freedom from DEVs and offers a practically un- 

bounded sparse directory interface to the core caches, which 

never receive any invalidation arising from directory entry evic- 

tion (Section III). In this paper, we squarely focus on the perfor- 

mance aspects of ZeroDEV and leave a thorough evaluation of 

the security aspects to future work. Our proposal, evaluated on 

inclusive and two popular non-inclusive cache hierarchy designs, 

performs within 1-2% of the baseline that uses a 1 sparse 

directory. Importantly, due to elimination of DEVs and use of the 

LLC for caching directory entries, our proposal maintains this 

performance level with a significantly smaller sparse directory 

or no sparse directory structure at all (Sections IV and V). 

II. RELATED WORK 

The volume of DEVs is closely related to the size and or- 

ganization of the sparse directory. As a result, the large body 

of research on optimization of the space invested to the sparse 

directory has also effectively restricted the volume of DEVs [2], 

[7], [9], [10], [12], [32], [36], [37], [45], [50]–[54]. None of 

these proposals, however, guarantee freedom from DEVs. Ours 

is the first proposal to offer a DEV-free protocol for on-chip 

directory-based coherence. The two-level directory architecture 

proposed in a prior study for cc-NUMA multiprocessors uses 

additional space in the home memory to store a second-level 

directory to back up entries evicted from the per-node first- 

level directory cache, thereby eliminating node-level DEVs [1]. 

Our proposal, in contrast, focuses on eliminating DEVs within 

a CMP and engineers a set of novel run-time techniques to 

dynamically synthesize a multi-level caching hierarchy of sparse 

directory entries spread across the LLC and home memory. Our 

solution for eliminating DEVs related to intra-socket directory 

entry evictions does not require any additional storage. In-Cache 

Coherence Information (ICCI) tracking is the first proposal to 

store coherence tracking information in the LLC blocks [14], but 

this proposal requires request forwarding for all shared blocks 

increasing the critical path latency of reads to these blocks. 

Also, this proposal generates DEVs when an LLC block holding 

coherence tracking information is evicted. The Tiny Directory 

proposal addresses the critical path-related shortcoming of ICCI 

by incorporating a custom-designed tiny directory to track a 

critical subset of the read-shared blocks [37]. This proposal, 

however, cannot guarantee freedom from DEVs as replacement 

of a tiny directory entry generates invalidations just like a tradi- 

tional directory entry eviction. 

Three different categories of designs have emerged over time 

that have eliminated the sparse directory altogether or simpli- 

fied coherence protocol/directory design. The first category of 

designs relies on timestamp-based leases for privately cached 

blocks and employs self-invalidation on lease expiry [25], [26], 

[34], [46]–[49]. These systems generate DEVs for privately 

cached exclusive/modified blocks when their copies are evicted 

from the LLC. The timestamp-based coherence idea has also 

been explored for GPUs [29], [38], [40]. The second category 

of designs takes help of operating system (OS)-controlled page 

mapping on private core caches and uses remote accesses to 

other cores’ private caches to avoid replication of data in the 

private caches [11]. Thread migration across cores can also 

be used to enable access to other cores’ private caches. As 

a result, run-time techniques that dynamically select between 

thread migration across cores and remote accesses to other 

cores’ private caches have also been explored based on the 

observed affinity toward data elements [35]. These proposals do 

not generate DEVs, but require custom OS support. The third 

category of proposals relies on data-race-free software or fully 

labeled programs for identifying the acquire/release boundaries 

so that the privately cached copies of the blocks can be self- 

invalidated at appropriate program points [4], [8], [20], [30], 

[39]. Among these, VIPS-M [30], DeNovo [4], DeNovoND [39], 

and Dir1-SISD [8] do not have DEVs, but require changes to 

the application software as well as OS kernels for correct self- 

invalidation. In contrast, our proposal eliminates DEVs while 

confining all design modifications to the uncore hardware and re- 

tains all benefits of a traditional directory-based cache coherence 

protocol; it can seamlessly run unmodified application binaries 

on top of stock operating system kernels. 

As already discussed, a recent study has pointed out that 

DEVs can be exploited to launch timing-based side-channel at- 

tacks [43]. The defense mechanism, SecDir [44], avoids genera- 

tion of DEVs arising directly from cross-core directory conflicts. 

In contrast, our ZeroDEV protocol eliminates DEVs altogether. 

 

III. DESIGN OF THE ZERODEV PROTOCOL 

In this section, we discuss the details of the ZeroDEV pro- 

posal for designing a DEV-free system. We first summarize 

the baseline cache hierarchy architecture (Section III-A). Next, 

we discuss the overview of our main idea and present a data- 

driven analysis that motivates our approach (Section III-B). 

Sections III-C and III-D discuss the two central mechanisms 

of our proposal. Sections III-E and III-F discuss application of 

ZeroDEV to different LLC designs. 

 

A. Baseline Cache Hierarchy 

The baseline CMP has private L1 and L2 caches per core. 

The LLC (L3 cache) is banked and shared among all cores. 

A demand fill from main memory is always allocated in the 

LLC as well as in the L2 and L1 caches of the requesting core. 

An eviction from the LLC does not generate any invalidation 

to the core caches, thereby making the LLC non-inclusive of 

the L2 and L1 caches. A slice of the sparse directory resides 

alongside each LLC bank. The directory slice is responsible 

for tracking all privately cached copies of the blocks mapped 

to that LLC bank. However, the organization of the LLC bank 

and the sparse directory slice can be completely different. On 

receiving a request from a core, the LLC bank and the adjacent 

sparse directory slice are looked up in parallel. The coherence 

actions are decided based on the state of the retrieved sparse 

directory entry. A write-invalidate MESI cache coherence pro- 

tocol keeps the private caches coherent. All evictions from the 

private cache hierarchy are notified to the sparse directory to 

keep the directory contents up-to-date and avoid unnecessary 

future invalidations [24]; the eviction notices for clean blocks (in 

E or S state) do not carry any data. To accelerate code sharing, 

a code block is always filled in the private caches in S state. A 

request forwarded to an owner core caching the requested block 

in M or E state is responded directly to the requester by the 

owner core making the critical path of such requests three-hop 

long [15], [22]; the owner core also sends a “busy clear” message 
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to the home sparse directory slice to clear the busy/pending state 

of the corresponding directory entry. 

B. Overview of the ZeroDEV Protocol 

The ZeroDEV protocol consists of two mechanisms. The first 

mechanism utilizes the LLC space for caching directory entries 

that cannot be accommodated in the sparse directory. The chal- 

lenge in this mechanism is to manage the increased LLC pressure 

so that the performance is not affected. Since this mechanism 

lengthens the life of a directory entry significantly, we expect 

most directory entries allocated in the LLC to get freed while in 

the LLC. However, the entries tracking hot blocks may survive 

their residency in the LLC and get evicted eventually. The second 

mechanism avoids generation of invalidations to the private 

caches at the time of such an eviction. In this mechanism, we 

exploit the important observation that a copy of the block (say, 

B) that the evicted directory entry was tracking is available in the 

private cache hierarchy of at least one of the cores. Therefore, the 

evicted directory entry can overwrite B in the main memory and 

store itself in the place of B not requiring any additional space. 

Caching directory entries in the LLC is likely to have perfor- 

mance implications if not done judiciously. So, before embark- 

ing on the ZeroDEV design, we seek answers to two important 

questions: (i) what is the projected increase in LLC pressure 

due to directory caching? (ii) what is the estimated performance 

loss due to increased LLC pressure? Figure 5 answers the first 

question by summarizing the number of additional directory en- 

tries required in the unlimited-capacity directory compared to the 

baseline 1 directory. This number is shown as a percentage of 

the number of LLC blocks assuming that one directory entry will 

be spilled in one full LLC block. Within each application suite, 

the left bar shows this percentage for the application requiring 

the maximum number of entries, while the right bar shows the 

average of the maximum counts across all applications of the 

suite. Overall, the maximum occupancy is around 12%, while 

the average is at most 10%. We note that 12% LLC occupancy 

corresponds to less than two ways of the baseline 16-way LLC. 
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Fig. 5. Projected LLC occupancy of spilled directory entries. 

Figure 6 offers an approximate answer to the second question 

by showing the performance as the associativity of all LLC sets 

is gradually reduced. The speedup numbers are normalized to 

the baseline 16-way LLC. On top of each bar in an application 

suite (except FFTW, which is a single-application suite), we 

show the speedup of the application that suffers from maximum 

slowdown within the suite. When only two ways are taken away 

from the LLC, the average performance loss is at most 3% (PAR- 

SEC). Within each suite, the following applications suffer most 

when two LLC ways are taken away: vips in PARSEC (14% 

loss in performance), lu ncb in SPLASH2X (9% loss), 330.art 

in SPEC OMP (6% loss), and gcc.ppO2 in SPEC CPU 2017 

rate (5% loss). An interesting related question is whether all 

directory entries can be housed in the LLC, thereby ridding the 

CMP of the sparse directory structure altogether. The number 

of entries in a 1 sparse directory corresponds to 25% of the 

number of LLC blocks (arising from a 4:1 capacity ratio between 

the LLC and the private L2 caches). Figure 6 shows that when 

four ways (which is 25% of the LLC) are taken away from the 

baseline LLC, the average performance loss (see the 12-way 

group) is about 4% for PARSEC and 2% for SPALSH2X, SPEC 

OMP, and SPEC CPU 2017 rate. However, the maximum slow- 

down within each group is significant: 22% for vips in PARSEC, 

17% for lu ncb in SPLASH2X, 14% for 330.art in SPEC OMP, 

and 9% for gcc.ppO2 in SPEC CPU 2017 rate. In summary, these 

results show that although the average performance loss due to 

directory caching in the LLC is not significant, the na¨ıve scheme 

of spilling directory entries into the LLC can lead to large worst- 

case performance losses. There is a need for designing smarter 

schemes of directory entry caching in the LLC. 
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Fig. 6. Performance with reduced LLC associativity. 

 

C. Caching Directory Entries in LLC 

In this section, we present three different policies for accom- 

modating directory entries in the LLC. We begin our discussion 

with the na¨ıve policy of spilling directory entries into the LLC. 

We assume that each LLC block has two state bits, namely 

valid (V) and dirty (D). The following three states are used in 

the baseline: invalid (V=0, D=0), clean valid (V=1, D=0), and 

dirty valid (V=1, D=1). 

1) SpillAll Policy: In the SpillAll policy, a valid entry evicted 

from the sparse directory is allocated in the LLC. Figure 7 

shows a directory entry E tracking the privately cached copies 

of a block B4  resident in the LLC. When E is evicted from 

the sparse directory, it is allocated in the same set as B4 by 

replacing B2. To keep the design simple, we allocate a full LLC 

block to a spilled directory entry. Also, we let a spilled directory 

entry exercise the same set index function as the regular LLC 

blocks. To distinguish between a block and its spilled directory 

entry (e.g., B4 and E) residing in the same LLC set, we mark 

the spilled directory entry with state (V=0, D=1). The tag match 

lines coming out of the tag comparators (or the tag CAM) are 

ANDed with V&D to generate a new set of match lines used to 

access the directory entry from the data array, while the original 

match lines ANDed with V are used to access the actual data 

block. If a tag lookup reveals two matching tags in the target set, 

the directory entry is looked up first in the data array. While the 

decoding of the directory entry progresses, the actual data block 

is accessed. 

This policy does not require any change to the coherence pro- 

tocol, but suffers from two important shortcomings: (i) spilled 

directory entries increase LLC pressure, and (ii) the requests to 

blocks in S state see an additional data array lookup latency on 

the critical path if the directory entry is spilled in the LLC. We 

Avg of max Max of max 

15 ways 14 ways 13 ways 12 ways 

P
e

rc
e

n
ta

g
e

 o
f 

L
L

C
 c

a
p

a
c
it
y
 

S
p

e
e

d
u

p
 

0
.9

4
 

0
.8

6
 

0
.8

1
 

0
.7

8
 

0
.9

7
 

0
.9

1
 

0
.8

7
 

0
.8

3
 

0
.9

7
 

0
.9

4
 

0
.9

0
 

0
.8

6
 

0
.9

7
 

0
.9

5
 

0
.9

4
 

0
.9

1
 



 

 

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 51, Issue 04, April : 2022 

 

 

UGC CARE Group-1,                                                                                     773 

  

[ | 

) ¶2 

× 

1 DIRECTORY ENTRY 

 

SPARSE 
DIRECTORY 

SLICE 
 

 
E 

 

 

 
LLC BANK 

bit (say, b0) of an LLC block in state (V=0, D=1) indicates 

whether it is a spilled or a fused entry. The rest of the bits (e.g., 

511 bits in a 64-byte LLC block) in a spilled entry store the 

directory entry. For a fused entry, the encoding of the remaining 

bits (b1 onward) of the LLC block is as follows (assuming N 
cores): LLC block dirty (b ), directory state busy (b ), owner 

1 2 
 

REPLACE 

Fig. 7. SpillAll policy. 

 
discuss ways to address these shortcomings in the next policy. 

We note that the updates to the spilled directory entries need 

additional LLC writes, but there is ample free LLC read/write 

bandwidth. 

2) FusePrivateSpillShared Policy: To bring down the LLC 
pressure of the SpillAll policy, we make one important obser- 

vation: to respond to a request R for an LLC block B that 

has coherence state M/E, the contents of B are not required. 

This is because R has to be forwarded to the core caching the 

encoding (b3 , . . . ,  b2+ log N ), and the remaining portion of the 

LLC data block. When a core evicts a block in E state, it needs 

to send back the least significant 3 + log2 N bits to the LLC 

along with the eviction notice message so that the fused LLC 
block can be reconstructed and can be returned to (V=1, D=1) or 

(V=1, D=0) state depending on whether the LLC block is dirty 

or not. These extra bits in the eviction notice message of a block 

in the E state introduce negligible interconnect traffic overheads 

compared to the baseline. The M state evictions generate full- 

block writeback messages, as in the baseline. 
 

latest copy of B in M/E state. Therefore, some part of an LLC 

block B that is in the coherence state M/E (i.e., temporarily 

private) can be used for storing its directory entry; this won’t 

have any impact on the critical path of the next request to B. 

(a) Spilled directory entry 

 

 

 

(b) Fused LLC block 

F/Sp 
 

 

 

F/Sp 

Such directory entries will be referred to as fused directory 

entries. The directory entries of the other blocks (i.e., blocks in 

S state) are spilled into the LLC space as in the SpillAll policy. 

Therefore, the percentage of directory entries that track shared 

blocks can offer an estimate of the increase in LLC pressure for 

this FusePrivateSpillShared policy. On average, this percentage 

is usually small: for PARSEC 10%, for SPLASH2x 19%, for 

SPEC OMP 0.5%, for FFTW nearly zero, and for SPEC CPU 

2017 rate 9% (arising from code blocks being cached in shared 

state). While this is only an empirical estimate, even in general, 

the footprint of actively shared blocks (i.e., copies present in 

private caches) is maximized when the sharing degree is two and 

this footprint corresponds to only half of the directory entries in a 

1 sparse directory. This directory entry population corresponds 

to only two LLC ways of a 16-way LLC (due to 4:1 capacity 
ratio between the LLC and the private L2 caches). Overall, this 
policy is expected to offer significant relief to the LLC pressure. 
Figure 8 depicts the operations of this policy. A sparse directory 

entry E is tracking the privately cached copies of a block B4 
resident in the LLC. When E gets evicted, it is spilled into the 

LLC set containing B4 if the coherence state of the block is S; 

otherwise E is fused with B4 by overwriting several bits of B4. 

 
SPARSE 

Fig. 9. Format of spilled and fused entries. F=fused, Sp=spilled, D=dirty, 
B=busy. 

 

Next, we turn to understand the impact of this policy on the 
critical path of requests coming from the core caches. To ensure 

that the critical path of a read request is not lengthened, this 
policy maintains the invariants that (i) if a directory entry is 
fused in the LLC, its coherence state must be M/E, and (ii) if 
a directory entry is spilled in the LLC, its coherence state must 
be S. Recall that the lengthened critical path scenario of read 
requests for the SpillAll policy was related to the case where an 

LLC lookup (done in parallel with the sparse directory lookup) 
returns two tag matches in the target LLC set. Now, two tag 
matches in an LLC set necessarily implies that one tag (in state 

V=1) corresponds to an LLC block B and the other corresponds 

to the block’s spilled directory entry EB. In this case, the 

aforementioned invariants imply that B must be in the S state. 

Therefore, if the request is a read, B  can be read out first and 

sent as response to the requester even before EB is read out. 

Subsequently, EB is read out and updated off the critical path. 

Thus, in this case, the baseline critical path latency of reads is 

preserved by this policy. For upgrade requests, only EB is read 

out and the count of expected invalidation acknowledgments is 
included in the dataless response. For read-exclusive requests, 

DIRECTORY 
SLICE 

 

 
E 

 

LLC BANK both B and EB are read out one by one and the count of expected 

invalidation acknowledgments is included in the response along 

with the data. 

If an LLC lookup returns just one tag match, the correspond- 

ing block is read out, as in the baseline. The (V, D) states along 

with the least significant bit of the block are examined (only if 

V=0 and D=1) and the appropriate coherence action is initiated. 

Fig. 8. FusePrivateSpillShared policy. 

Both fused and spilled entries use the state (V=0, D=1) to 

distinguish them from regular LLC blocks. Figure 9 shows the 

formats of the spilled and fused entries. The least significant 

Note that if the state of the block turns out to be (V=0, D=1), the 

request must be forwarded to an owner core (having the block in 

the M/E state) or to a sharer core, which will directly respond to 

the requester. This is similar to the baseline case where a request 

hits in the sparse directory, but misses in the LLC. 
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To maintain the two aforementioned invariants, whenever a 

block transitions from the S state to the M state and if its 

directory entry is spilled in the LLC, the directory entry is fused 

with the block and the spilled entry is freed. On the other hand, 

eviction notices for the E state blocks carry the least significant 

4 + [log2 N | bits, as already discussed in the previous policy. 

when a block transitions from the M/E state to the S state and 

if its directory entry is fused, the directory entry is spilled into 

the same set by invoking the LLC replacement policy. Also, at 

this time, the block is reconstructed by having the owner core 

 

(a) Spilled directory entry 
 

 
 

(M/E)/S 

F/Sp 

 
 

F/Sp 

send back the least significant 3 + log2 N bits of the block to 

the LLC along with the busy/pending clear message. These bits 

introduce negligible interconnect traffic overhead. In summary, 

the FusePrivateSpillShared policy effectively addresses both the 

shortcomings of the SpillAll policy. 

(b) Fused LLC block in coherence state M/E 

 
 

(M/E)/S 

(c) Fused LLC block in coherence state S 

 

 
F/Sp 

3) FuseAll Policy: To complete the design space of caching 

directory entries in the LLC, we consider a policy where an entry 

evicted from the sparse directory is fused with the corresponding 

LLC block provided the block is present in the LLC irrespective 

of the coherence state of the block; if the block is not present in 

the LLC, the directory entry is spilled into the LLC. This FuseAll 

policy is inspired by the In-Cache Coherence Information (ICCI) 

tracking proposal, which does not have a sparse directory and 

uses parts of an LLC block to store the block’s directory en- 

try [14]. We appropriately modify this proposal by augmenting 

it with a sparse directory to derive the FuseAll policy. Figure 10 

shows the operations of the FuseAll policy. When a sparse 

directory entry E is evicted, it is fused with the LLC block B4, 

the privately cached copies of which the entry E is tracking. 
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Fig. 10. FuseAll policy. 

The FuseAll policy requires three different formats for repre- 
senting a directory entry accommodated in the LLC. Figure 11 
shows these formats. The corrupted portion of a fused block 
encodes the following pieces of information starting from the 

least significant side: fused/spilled (bit b0), LLC block dirty (b1), 

busy state of directory entry (b2), M/E or S state of directory 

entry (b3)2, owner encoding if state is M/E (b4 , . . . ,  b3+)log N¶) 

or sharer vector if state is S (b 4 , . . . ,  b3+N ), and the remaining 

portion of the LLC block (N is assumed to be the number of 

cores). Overall, depending on the state of the block, a fused entry 

Fig. 11.   Format of spilled and fused entries in FuseAll policy. F=fused, 
Sp=spilled, D=dirty, B=busy. 

The FuseAll policy nearly nullifies the additional LLC pres- 

sure arising from directory entry caching. However, it intro- 

duces a significant performance problem for read requests to 

the shared blocks. All requests to the shared blocks now need 

to be forwarded to a sharer elected by the coherence controller 

because the corrupted LLC block cannot provide the requested 

data (except for upgrade requests which do not need a data re- 

sponse). For read-exclusive requests, this forwarded message can 

be combined with the invalidation request to the elected sharer, 

thereby keeping the critical path same as the baseline. However, 

for read requests, the critical path gets strictly increased to three 

hops compared to two hops in the baseline. 

Figure 12 summarizes the design space of directory caching 

policies considered in this study as a function of LLC space 

overhead and increase in the critical path of reads to shared 

blocks, the directory entries of which have been accommodated 

in the LLC. The SpillAll policy has the maximum LLC space 

overhead while the read critical path gets lengthened by the LLC 

data array lookup latency. The FusePrivateSpillShared (FPSS) 

policy has only LLC overhead and no critical path overhead 

for reads. The FuseAll policy has small LLC overhead due to a 

small number of spills for the directory entries the corresponding 

blocks of which have already been evicted from the LLC, but this 

policy lengthens the critical path of reads to shared blocks by one 

extra hop. 

 

 

 

 

 
E 

has 4 + [log2 N | or 4 + N  bits corrupted. In this policy, on BASE    FPSS 
OVERHEAD 

receiving the eviction notice from the last sharer core of a fused 

block, a special acknowledgment message is sent to this sharer 

to retrieve the least significant 4 + N bits of the block so that 

the fused LLC block can be reconstructed and returned to (V=1, 

D=1) or (V=1, D=0) state. A sharer needs to preserve an evicted 

block in its eviction buffer until the eviction is acknowledged by 

the home LLC bank. This additional interconnect traffic over- 

head is negligible because this is introduced only once during 

the entire sharing life time of some of the shared blocks. The 

2 The directory cannot distinguish between M and E states, as in the 
baseline [22]. 

Fig. 12. Design space for directory entry caching in the LLC. 

4) Replacement-disabled Sparse Directory: The ZeroDEV 

protocol has an option of having sparse directories that do not 

have any replacement policy, thereby simplifying the design. In 

such a design, a new directory entry first looks for an invalid 

way in the target sparse directory set and if none found, it gets 

accommodated in the LLC in fused or spilled form according 

to the directory entry caching policy of the LLC. Note that 

a valid entry residing in the sparse directory will eventually 

get freed (i.e., become invalid) when the block it is tracking 

becomes non-shared/unowned. Disabling replacement from the 
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sparse directory in ZeroDEV is a strictly better design option 

because in such a design, a directory entry victimizes only one 

sparse directory entry or LLC block (depending on where it gets 

allocated) during its entire life time. On the other hand, in a 

replacement-enabled sparse directory, a directory entry E can 

victimize one directory entry (when E first gets allocated in the 

sparse directory) and later one LLC block (when E is evicted 

from the directory and moved to the LLC), thereby causing 

disturbance in both structures. When our ZeroDEV protocol is 

equipped with a sparse directory, we always assume that the 

sparse directory is replacement-disabled and hence, simpler to 

design. 
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D. Directory Entry Eviction from LLC 

In this section, we discuss the second important component 

of our ZeroDEV proposal, namely handling eviction of fused or 

spilled directory entries from the LLC without generating any 

invalidations to the private caches. When a valid fused or spilled 

directory entry corresponding to a block B is evicted from the 

LLC, it is clear that at least one core C is caching a copy of 

B. Therefore, overwriting B in the physical memory to store 

the evicted directory entry does not lead to any data loss; B can 

be recovered from core C. ZeroDEV implements this idea. We 

assume the existence of a socket-level coherence directory for 

maintaining inter-socket coherence using a home-based MESI 

protocol similar to the intra-socket protocol. Each socket-level 

directory entry has three stable coherence states, namely M/E, S, 

and I, encoded using two state bits. The unused fourth state is 

used by ZeroDEV to encode whether the home memory block is 

Fig. 13. Housing live intra-socket directory entries in physical memory block. 

 
it is in a transient state. Once E returns to a stable state (M/E 

or S), the LLC controller prepares a 64-byte block W with 

E positioned in the segment reserved for the source socket S. 

W is sent with a directory entry writeback message (opcode 

WB DE) to the home socket H of B. If the state of the home 

socket directory entry E′ of B is not corrupted or corrupted 

with socket S marked as the only sharer/owner, W is written 

to home memory. The socket directory entry state switches to 
corrupted leaving the sharer vector unchanged (socket S remains 

marked as a sharer/owner). On the other hand, if the state of E′ 
is corrupted with at least one more socket other than S marked 

as a sharer, the coherence controller at H executes the following 

steps: (i) reads out B from home memory, (ii) extracts the evicted 

entry E from W and copies it into the appropriate position 

within B, and (iii) writes B back to home memory. 

in a corrupted state due to storage of a directory entry. To keep 

the socket-level directory entries up-to-date, a socket on evicting 

its last copy of a block notifies the home coherence controller. 
To understand the basic scheme of the proposal, let us con- 

sider a scenario depicted in Figure 13, where two sockets S0 
and S1 are caching a block B and the corresponding intra-socket 

sparse directory entries are E0 and E1, respectively. When E0 
or E1 is evicted from the corresponding socket’s sparse direc- 

tory, it is moved to the LLC of the respective socket; when it is 

evicted from the LLC, it is housed within B. ZeroDEV partitions 

the home memory block B into fixed segments and reserves each 
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SOCKET S 

 
SOCKET DIRECTORY 

AT HOME SOCKET OF B 
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segment for housing a directory entry from a socket. Therefore, 

E0 or E1 is housed in the portion of B that is reserved for 

the corresponding socket. If each socket has N cores, a valid 

intra-socket sparse directory entry in a stable state would require 

N + 1 bits of storage (N bits for sharing-vector/owner, one bit 

for two coherence states M/E and S). Assuming 64-byte memory 

blocks, this arrangement can support up to 512 sockets. For 

scaling beyond these socket counts for a given N , one can 

explore imprecise or compressed storage of the evicted intra- 

socket directory entries that are housed in the physical memory 

blocks. For example, a hybrid of limited-pointer and coarse- 

vector formats can dynamically choose between precise and 

imprecise representations depending on the sharer count of an 

evicted sparse directory entry. Our study in this paper maintains 

the full-map bitvector representation. 

Figure 14 depicts the flow of a directory entry (DE) write- 
back (WB DE) triggered when a fused or spilled directory entry 

E corresponding to a block B is evicted from the LLC of some 

socket S. The entry E is held up in a buffer inside socket S if 

(ii)(b) COPY DIRECTORY ENTRY INTO SLOT OF S 

 

Fig. 14. Flow of operations on a directory entry eviction from LLC. 

Overall, a directory entry eviction from the LLC is expensive 

because each eviction requires a DRAM write and in a multi- 

socket system, some of the evictions may require DRAM reads. 

In the following, we discuss simple extensions to the baseline 

LLC replacement policy to reduce the volume of directory entry 

eviction. We also present a few new extensions to the inter-socket 

coherence protocol. 

1) Extensions to LLC Replacement Policies: We discuss two 
simple modifications to the baseline LRU policy to reduce the 
eviction volume of fused and spilled entries. The first modifi- 
cation uses the observation that whenever an LLC block B is 

accessed, the corresponding directory entry EB is also accessed. 

In such situations, we update the LRU position of B first and 

then the LRU position of spilled EB (if any) putting EB in the 

MRU position. Since both B and spilled EB belong to the same 

LLC set, this update rule guarantees that B would be evicted 
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before spilled EB gets evicted. This policy further extends the 

LLC residency of the spilled directory entries. We will refer to 

this policy as spill protect LRU or spLRU. 

The spLRU policy fails to offer any additional protection to 

the fused entries, the eviction of which would also require a 

DRAM write to back up the fused directory entry even if the 

state of the fused block is not dirty. We propose an extension to 

the baseline LRU policy that evicts the ordinary LLC block (in 

state V=1) closest to the LRU position first before evicting any 

spilled or fused entries in an LLC set. This policy, referred to 

as dataLRU, evicts all ordinary data/code blocks in a set first 

before evicting any spilled or fused entries. We note that these 

policy extensions are simple and require minor modifications to 

the existing logic. Moreover, the replacement policy is not on the 

critical path. 

2) Handling Uncore Hits Within a Socket: A core cache 

miss request arriving at the home LLC bank may encounter one 

of four possible scenarios: (i) the requested block is present in 

the LLC and the corresponding directory entry is found inside 

the socket (in the sparse directory or in the LLC), (ii) the 

requested block is not present in the LLC, but the corresponding 

directory entry is found inside the socket, (iii) the requested 

block is present in the LLC, but the corresponding directory 

entry is not found inside the socket, and (iv) the requested block 

is not present in the LLC and the corresponding directory entry 

is not found inside the socket. The first three cases constitute 

uncore hits (LLC block hit or directory entry hit) within a 

socket. The protocol actions for the first two cases are similar 

to the corresponding cases in the intra-socket protocol. The third 

case requires considering two possible sub-cases: (iiia) there is 

no sharer/owner of the block in the socket, or (iiib) there are 

sharers/owner of the block in the socket, but the directory entry 

has been evicted and written back to home memory. Distin- 

guishing between these two sub-cases is expensive, as it requires 

querying the inter-socket coherence directory. Fortunately, our 

LLC replacement policy extensions guarantee that sub-case (iiib) 

cannot arise because an LLC block would be evicted before (or 

together with) its spilled (or fused) directory entry. Therefore, if 

the requested block is present in the LLC, but the corresponding 

directory entry is not found within the socket, we can conclude 

that the block has no sharer/owner within the socket (same as 

sub-case (iiia)). The protocol actions for handling this sub-case 

are same as those for case (iii) in the baseline. That leaves us with 

case (iv). This case constitutes a socket miss. In the following, 

we discuss the protocol extensions needed to handle a socket 

miss. 
3) Extensions for Handling Socket Misses: Figure 15 shows 

the salient steps after a miss request originating from socket S 
reaches home socket H. If the socket-level directory entry at 

H indicates a non-corrupted state (i.e., M/E, S, I), the protocol 

actions are same as baseline (step 2 in Figure 15). If the socket- 

level directory entry indicates a corrupted state with socket S 
being a sharer or the owner, the protocol actions at home are 
same as baseline (step   3 ). In this case, the memory block is 

read out and sent to the requesting socket S using a special 

message type indicating that the returned block is corrupted. 

Socket S incurs one cycle additional delay to extract its intra- 

socket sparse directory entry from the returned block. The rest 
of the actions are similar to the baseline intra-socket protocol 

case where the directory entry for the requested block is present 

within the socket, but the requested block is not present in the 

LLC. 
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Fig. 15. Flow of an LLC miss from socket S. H is the home socket and F 
is a socket where H may have to forward the request. 

If the socket directory entry indicates a corrupted state and 

the requesting socket S  is not a sharer or the owner, the only 

way to get the requested block is to forward the request to a 

socket F that is a sharer or the owner (step 4 ). F is selected 

by H from the socket-level directory entry. On receiving the 

forwarded request, F first tries to locate the intra-socket sparse 

directory entry of the requested block within its socket (step 5 ). 

If F can find the directory entry, it retrieves the requested block 

from a sharer core or the owner core within its socket and sends 

it to S (step 6 ). On the other hand, if F fails to find a directory 

entry, there are two possible reasons: (i) F still has copies of the 

requested block, but has evicted and written back the intra-socket 

directory entry, or (ii) F has evicted its last copy of the requested 

block and sent the block to H to find out if this is the last system- 

wide copy of the block. In the first case, F sends a “directory en- 

try not found negative acknowledgment” (DENF NACK) back 

to the home socket H (step 7 ). In the second case, a copy of the 

block would be found in the eviction buffer of LLC in F waiting 

for an acknowledgment from H. This copy is used by F to send 

a response to S (this corner case is not shown in Figure 15 for 

brevity). When H receives a DENF NACK message (step 8 ), it 

extracts the directory entry of F from the block in home memory 

and forwards the original request again to F along with the 

directory entry using a different message type (steps 9 to 11 ). 

A different message type prompts F to use the directory entry in 

the forwarded message and F concludes the request (step 6 ). 
Clearly, in the case discussed above (i.e., socket-level direc- 

tory entry indicating a corrupted state of the home memory block 

with the requester not being a sharer or the owner), the critical 

path of LLC misses can get lengthened significantly. Thanks to 

our LLC replacement policy extensions, this case is encountered 

rarely; less than 0.5% of DRAM writes arise from directory entry 

eviction indicating a tiny population of corrupted blocks in home 

memory. Further, a very small fraction (less than 0.05%) of LLC 

read misses access corrupted blocks. The majority of accesses to 

the corrupted blocks arise from core cache evictions that remove 

a sharer or the owner from the sparse directory entry segment 

belonging to the originating socket. We discuss this next. 
4) Handling Evictions from Core Caches: Having discussed 

how ZeroDEV handles all the cases of core cache miss requests, 

we turn to understand how core cache evictions are handled. Fig- 

ure 16 depicts the major steps involved in handling an eviction 
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coming from a core C within socket S. The eviction is fielded 

by the home LLC bank in socket S  (step   1 ). If the eviction 

fails to locate a sparse directory entry within the socket, but it is 

a writeback message carrying a full cache block, the inference 

is that the evicting core must be the system-wide owner of the 

block (in M state). The baseline protocol flow for writeback to 

home socket is executed (step 2 ). 
IN SOCKET S 

 

 
Fig. 16. Flow of a core cache eviction request that cannot find the sparse 
directory entry within the requesting socket S. 

If the sparse directory entry is not found within socket S 
and the eviction message does not carry the full cache block, 

an access to the intra-socket directory entry is required to un- 

derstand the situation. Therefore, a directory entry (DE) read 

request (GET DE) is sent to the home socket (step 3 ). In 

response, the home socket sends the (necessarily) corrupted 

block to S. The requesting socket extracts its intra-socket sparse 

directory entry from the response (step 4 ). Now, it executes the 

usual intra-socket protocol flow for handling the eviction e.g., 

removes the evicting core from the the directory entry (step 5 ). 

Finally, it sends the updated directory entry back to the home 

socket for writing back (step   6 ). During execution of steps   3 

to 6 , any core cache request to the same block is negatively 

acknowledged. 

As in the baseline, if the last sharer core or the owner core (in 

E state) within S has evicted the block and the block is not 

present in the LLC, an eviction notice is sent to the home socket 

to update the socket-level directory entry. Additionally, in the 

ZeroDEV protocol, if the socket-level directory entry indicates 

that the state of the home memory block is corrupted and this 

is the system-wide last copy of the block, the block is retrieved 

from the evicting core and sent to the home socket to overwrite 

the corrupted memory block. 

5) Handling Socket-level Directory Evictions: In the follow- 

ing discussion, we assume that a socket-level directory cache 

implements the socket-level directory. This can be either an 

SRAM cache [21] or a much larger DRAM cache [5], [18]. An 

eviction from this directory cache can generate DEVs throughout 

the system jeopardizing the isolation between core caches and 

directory evictions. We discuss two solutions to handle this issue. 

The first solution is to back up the socket-level directory in 

home memory. This solution has been used widely in large- 

scale distributed shared memory multiprocessors [21], [22]. On 

a directory cache miss, the home memory is looked up for the di- 

rectory entry. For a quad-socket system, the DRAM overhead of 

this solution is only 1.2% assuming 64-byte memory blocks. For 

a 32-socket system, the overhead is 6.6%, still within reasonable 

limits. Since this solution is simple and has low DRAM overhead 

for small socket-count systems, our multi-socket evaluation on 

four sockets uses this solution for both baseline and our proposal. 

Our second solution makes the DRAM overhead a constant. 

This solution extends ZeroDEV to socket-level directory entries 

as well. This is achieved by reserving a partition within each 

memory block for housing an evicted socket-level directory 

entry. In an M -socket system, this partition would require M +2 
bits (M bits for sharer vector and two state bits). Thus, a memory 

block would have M +1 partitions: M partitions for intra-socket 

directory entries and one for the socket-level directory entry. 

Given N cores per socket and 64-byte memory blocks, the upper 

bound on M is found by solving 512 M (N + 1) + (M + 2) 
i.e., M 510 . When an evicted socket-level directory entry 

is housed in the home memory block, a separate DirEvict bit per 

memory block records this status. Thus, instead of backing up 

a full directory entry in home memory, just a bit is maintained 

per block bringing down the DRAM overhead to 0.2%. This 

overhead does not depend on the socket-count. On a directory 

cache miss, the DirEvict bit of the block is consulted. If this bit 

is set, the socket-level directory entry is extracted from the home 

memory block (which is anyway looked up in parallel with the 

directory cache access). The protocol actions are same as what 

have been discussed for a block in the corrupted state. In general, 

requests to corrupted blocks need to be forwarded to a sharer 

socket or the owner socket to get the data unless the requester 
itself is marked as a sharer or the owner, in which case step 3 

from Figure 15 is invoked. To improve performance, the array of 

the DirEvict bits can be cached; an 8 KB cache can capture the 

DirEvict bits of 64K blocks and cover 4 MB of home memory 

footprint. Also, the volume of corrupted shared blocks should 

be minimized to reduce the impact on the critical path of reads 

to shared blocks. This can be achieved by associating a higher 

replacement priority to the owned blocks (in M/E state) in the 

directory cache. 

6) Discussion: Protocol Complexity: We have discussed in 

reasonable detail the life of an intra-socket directory entry as it 

moves from the on-chip sparse directory to the LLC and then 

to the home memory. While most of the extensions incorporated 

on top of the baseline protocol are quite routine, one specific 

protocol path is significantly more complex than others; this path 

is invoked when handling a socket miss to a corrupted block 

with the requester not marked as a sharer or the owner (see 

Section III-D3). Although this case has a lot of resemblance 

with the baseline protocol case when a request needs to be 

forwarded to another socket, the situation is complicated by 

the possibility of a racing sparse directory entry eviction in the 

forwarded socket as discussed in Section III-D3. Generating the 

rule-sets governing this protocol case and the related invariants 

requires careful consideration. Overall, the ZeroDEV protocol 

extensions require a few new message types and one new stable 

state (fused/spilled/corrupted) in the LLC and the socket-level 

directory entry. It also requires small additional storage in main 

memory to handle socket-level directory entry evictions. In ex- 

change, ZeroDEV rids the entire system of invalidations arising 

from directory entry evictions. 

E. LLC with Exclusive Private Data 

Our baseline design always fills a block in the LLC when 

fetching it from the main memory, thereby significantly improv- 
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ing the chances of fusing directory entries with the correspond- 

ing LLC blocks. However, an important class of non-inclusive 

non-exclusive LLC design does not fill a block into the LLC 

when fetching it from the main memory (similar to AMD Magny 

Cours [6]). In such designs, the fetched block is filled only in the 

private cache hierarchy of the requesting core in E or M state. A 

block gets allocated in the LLC if (i) the block is evicted from 

the private cache hierarchy of the owner core, or (ii) the block 

gets shared; allocating a shared block in the LLC can accelerate 

future sharing by making the subsequent shared-read requests 

conclude in two hops. Additionally, whenever a block transitions 

to M or E state (meaning that it becomes temporarily private), 

it is de-allocated from the LLC. In general, temporarily private 

data blocks (i.e., in M or E state) are not allocated in the LLC 

and can be found exclusively in private caches, thereby avoiding 

replication of such blocks in the LLC and improving cache space 

utilization. We will refer to such a design as exclusive private 

data (EPD) LLC. As in the baseline non-inclusive LLC, an LLC 

replacement does not invalidate the copies (if any) of the evicted 

block from the core caches. 

In an EPD LLC, the privately owned blocks in M/E state 

are not present in the LLC. So, directory entry fusion for these 

blocks is not possible in the LLC. The directory entries of these 

blocks must be spilled into the LLC when they are evicted from 

the sparse directory. Since these blocks occupy a major portion 

of the application working set, the ZeroDEV proposal needs 

assistance from a sparse directory to keep the directory caching 

pressure in the EPD LLC within reasonable limits. 

F. Inclusive LLC 

A cache hierarchy with an inclusive LLC also suffers from 

forced core cache invalidations due to sparse directory entry 

eviction. The ZeroDEV proposal applies seamlessly to an inclu- 

sive LLC and can help eliminate all DEVs. An important obser- 

vation is that an inclusive LLC does not experience any directory 

entry eviction from the LLC. This is because the ZeroDEV LLC 

replacement policies (see Section III-D) victimize the code/data 

blocks before (or together with) their spilled (or fused) directory 

entries. To maintain the inclusion property, the privately cached 

copies of these blocks must also be invalidated, thereby freeing 

the corresponding directory entries even before they are evicted. 

Therefore, the baseline inter-socket coherence protocol does not 

need any change in an inclusive LLC. 

IV. SIMULATION   ENVIRONMENT 

We use the Multi2Sim simulation infrastructure [41] to eval- 

uate our proposal. Table I lists the parameters of a simulated 

socket. We use CACTI [17] to determine the lookup latency of 

the cache arrays shown in Table I. It is important to note that 

the LLC tag and data lookup latency numbers mentioned in this 

table are only for the array lookup. The round-trip latency for 

LLC lookup includes, in addition to these array lookup latency 

numbers, the latency to traverse the interconnect, the lookup 

latency at the inner-level caches, and the waiting time at several 

interface queues up and down the cache hierarchy including 

the port queues in the interconnect switches. The multi-socket 

evaluations are done for four sockets with an inter-socket routing 

delay of 20 ns. To evaluate the scalability of our proposal, we 

also model a 128-core single-socket system having a 32 MB 

16-way shared LLC, per-core 128 KB 8-way L2 cache and 

32 KB 8-way L1 caches, and eight single-channel DDR3-2133 

controllers. 

TABLE I 
  BASELINE SIMULATION ENVIRONMENT (ONE SOCKET)  

 

CPU core (eight in number, dynamically scheduled, x86, 4 GHz) 

224-entry ROB, 128-entry LSQ, iL1 & dL1 cache: 32 KB/8-way, 
L2 cache: 256 KB/8-way, all caches: 64-byte block, LRU policy 

Shared LLC, sparse directory, interconnect 

LLC: 8 MB/16-way/8 banks/LRU/3-cycle tag lookup/ 
4-cycle data access/64-byte block. Sparse directory: 8-way, 1-bit NRU. 
Interconnect: 2D mesh, 1-cycle routing delay, 1-cycle link latency. 

Main memory (modeled using DRAMSim2 [31]) 

Two single-channel DDR3-2133 controllers, 64-bit channel, BL=8, 
two ranks per channel, x8 DRAM devices, eight banks, 
1 KB row buffer per bank, latency parameters: 14-14-14-35 

 
Table II shows the multi-threaded applications used in our 

evaluation. The PARSEC, SPLASH2X, SPEC OMPM 2001, 

and FFTW applications are executed for the entire region of 

interest (ROI). The throughput-oriented server workloads are 

evaluated on 128 cores by replaying a trace of instructions 

collected using PIN. 

TABLE II 
  MULTI-THREADED   APPLICATIONS  

PARSEC (input sizes within parentheses) 

blackscholes (large), canneal (large), dedup (medium), facesim (large), 
ferret (large), fluidanimate (large), freqmine (large), swaptions (large) 
streamcluster (medium), vips (large) 

SPLASH2X (inputs within parentheses) 

fft (16M points), lu cb (2048×2048 matrix), radix (64M keys), 
lu ncb (2048×2048 matrix), ocean cp (1026×1026 grid), 

  

radiosity (1.5e-2 BFepsilon), raytrace (anti-aliasing with 2 subpixels, 
balls4.env), water nsquared (medium size from SPLASH2X inputs), 
water spatial (medium size from SPLASH2X inputs) 

SPEC OMPM 2001 (inputs within parentheses) 

312.swim (ref with 3 iters), 314.mgrid (ref with 1 charge, 1 iter), 
316.applu (train with 6 pseudo-timesteps), 320.equake (ref with 
ARCHduration 0.01), 324.apsi (train with 1 timestep), 330.art (train 2) 

FFTW (inputs within parentheses) 

FFTW (256×256×256 points) 

SERVER (inputs, configuration, simulation length within parentheses) 

SPEC jbb (82 warehouses, single JVM instance, 6 billion instructions), 
Apache HTTP server (SPEC Web-Banking (B)/Ecommerce (E)/ 
Support (S), 128 simultaneous sessions, worker thread model, 
mod php, 5 billion instructions), MySQL TPC-C (10 GB DB, 
2 GB buffer, 100 warehouses, 100 clients, 500 transactions), 
MySQL TPC-E (10 GB DB, 2 GB buffer, 100 clients, 5 billion 
instructions), MySQL TPC-H (2 GB DB, 1 GB buffer, 100 clients, 
zero think time, even mix of Q6, Q8, Q11, Q13, Q16, Q20, 
5 billion instructions) 

 
We prepare 36 homogeneous (rate) and 36 heterogeneous 8- 

way multi-programmed workloads using the SPEC CPU 2017 

applications. These applications were shown in Figure 2 (all 

application-input pairs when using the ref inputs). We ensure that 

each application has equal representation in the heterogeneous 

workload mixes, thereby avoiding any bias. Each application in a 

multi-programmed workload retires a representative segment of 

500M dynamic instructions picked using the SimPoint tool [33]. 

Early finishing applications continue running until each applica- 

tion in the workload retires the representative instruction set. 
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V. SIMULATION RESULTS 

We begin our evaluation of the ZeroDEV proposal by select- 

ing the directory entry caching policy (from among SpillAll, 

FusePrivateSpillShared, and FuseAll) and the LLC replacement 

policy (from among spLRU and dataLRU). Next, we evaluate 

the sensitivity of ZeroDEV to different system parameters and 
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compare its performance with related proposals. 

Selection of Directory Entry Caching Policy. Figure 17 com- 

pares the speedup of ZeroDEV working with three policies rela- 

tive to the baseline. To make a robust selection, we maximize the 

directory footprint in the LLC by completely disabling the sparse 

directory of ZeroDEV. ZeroDEV executes the dataLRU LLC 

replacement policy in this study. On top of each bar, we show 

the minimum speedup of any application within a suite (except 

FFTW, which has only one application). As expected, SpillAll is 

the worst policy. While the average speedup numbers of FusePri- 

vateSpillShared (FPSS) and FuseAll are close, the minimum 

speedup numbers clearly show that FusePrivateSpillShared is 

a superior policy. The FuseAll policy reduces the number of 

LLC misses, but significantly lengthens the critical path of read 

requests to shared blocks. Additionally, we note that the savings 

in the interconnect traffic for SpillAll and FPSS are similar to 

what we observed in Figures 2 and 3 due to reduction in core 

cache misses. However, due to the extra forwarded read requests, 

the interconnect traffic in FuseAll increases by about 9% on 

average compared to FPSS for the multi-threaded workloads. 

Further, we observed that the performance gap between the 

FusePrivateSpillShared and FuseAll policies increases gradually 

with increasing core-count, as the performance penalty of the 

lengthened critical paths in the FuseAll policy is significantly 

more in larger systems. In the rest of this section, we will operate 

ZeroDEV with the FusePrivateSpillShared policy. 
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Fig. 18. Comparison between spLRU and dataLRU. 

 
these results, ZeroDEV is evaluated with three different sparse 

directory configurations, namely 1 , 1   , and no directory. 

All results are normalized to the baseline having a 1 sparse 

directory. Across all the suites, we observe that the performance 

of ZeroDEV is nearly invariant of the sparse directory size. Most 

importantly, ZeroDEV without any sparse directory performs 

within a percentage of the baseline for all the suites, on av- 

erage (see the GEOMEAN bars). The primary reason for this 

remarkable result is the judicious use of the LLC space for 

caching the directory entries. We find that for ZeroDEV oper- 

ating without a sparse directory, the average DRAM read traffic 

increases by at most 2% for any of the application suites (the 

primary reason for small performance loss in ZeroDEV), while 

the increase in the average DRAM write traffic is less than 0.5% 

relative to the baseline. For the PARSEC suite (Figure 19), fre- 

qmine has the largest slowdown (expected result and explained 

in Figure 3 of Section I). For the SPLASH2X, SPEC OMP, and 

FFTW suites (Figure 20), lu ncb, raytrace, water nsquared, and 

330.art suffer from 1-4% slowdown. For the SPEC CPU 2017 

rate workloads (Figure 21), cam4 suffers from the largest slow- 

down of 2%. Across all suites, ZeroDEV delivers performance 

within a percentage of the baseline, on average, for all three 

directory configurations. 

 
1.02 
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PARSEC SPLASH2X SPECOMP FFTW CPU2017RATE 

Fig. 17. Comparison between SpillAll, FusePrivateSpillShared (FPSS), and 
FuseAll policies on an 8-core single-socket system. 

Selection of LLC Replacement Policy. Figure 18 shows the 

speedup achieved by ZeroDEV (without a sparse directory) oper- 

ating with the spLRU or dataLRU policy for 8 MB LLC (sp8MB, 

data8MB bars) and 4 MB LLC (sp4MB, data4MB bars) in an 8- 

core system. For reference, the baseline 4 MB LLC performance 

executing LRU replacement policy is shown in Base4MB. The 

4 MB LLC results help us clearly see the difference between the 

spLRU and dataLRU policies because any inefficiency would 

be significantly magnified in a capacity-constrained LLC. All 

results are normalized to baseline 8 MB LLC. Across the board, 

the dataLRU policy is higher performing. The spLRU policy fails 

to offer protection to the fused directory entries and increases the 

DRAM traffic for reading and updating such directory entries. In 

the rest of this section, ZeroDEV will use the dataLRU policy. 

Impact of Sparse Directory Size on ZeroDEV. Having fixed 

the directory caching and LLC replacement policies for Ze- 

roDEV, we show its detailed performance in Figures 19, 20, 

and 21 for an 8-core system having a shared 8 MB LLC. In 

 
 

Fig. 19. Performance of ZeroDEV on the PARSEC suite. 

FuseAll FPSS SpillAll 

Fig. 20. Performance of ZeroDEV on SPLASH2X, SPEC OMP, FFTW. 

 

Sensitivity to LLC Capacity. Figure 22 evaluates ZeroDEV for 

4 MB and 16 MB shared LLCs (both 16 ways). All results are 

normalized to the baseline with 8 MB LLC. For 16 MB LLC ca- 

pacity, ZeroDEV operating without a sparse directory performs 

within a percentage of the 16 MB baseline (Base16MB). For 

4 MB LLC capacity, ZeroDEV needs some assistance from a 

sparse directory (results shown with a   × directory) in the case 
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Fig. 21. Performance of ZeroDEV on the SPEC CPU 2017 rate workloads. 

 

of a few applications (e.g., FFTW) to keep the LLC pressure 

within reasonable limits and perform within a percentage of the 

4 MB baseline (Base4MB). 

 
Fig. 24. Performance on server workloads (128-core single-socket). 

Performance on EPD and Inclusive LLCs. Figure 25 evaluates 

ZeroDEV on exclusive private data (EPD) and inclusive LLCs 

of capacity 8 MB (for the server applications, the LLC capacity 

is 32 MB). All results are normalized to the baseline non- 

inclusive LLC running with a 1 sparse directory. CPU-RATE 

and CPU-HET groups respectively refer to the homogeneous and 

heterogeneous multi-programmed workloads. For each group of 

applications, the leftmost three bars show the baseline EPD LLC 

performance (BaseEPD) for three sparse directory sizes (1×, 
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Fig. 22. Performance with 4 MB and 16 MB shared LLC. 

2     , 8    ); the next three bars show ZeroDEV performance on 
EPD LLC (ZeroDEVEPD) for three sparse directory configu- 

rations (no directory, 1 , 1 ); the rightmost two bars show 

the performance of baseline inclusive LLC (BaseIncl) with 1 
sparse directory and ZeroDEV performance on top of inclusive 

LLC working without a sparse directory (ZeroDEVIncl+NoDir). 

Across the board, the baseline EPD LLC with 1 and 1 
sparse directories performs better than the baseline non-inclusive 

LLC having a 1    sparse directory. This performance advantage 

comes from better cache space utilization in the EPD LLC (see 
Section III-E). ZeroDEV with EPD LLC performs within 1- 

Heterogeneous Multi-programmed Workloads. Figure 23 

evaluates ZeroDEV operating with three directory configura- 

tions (1 , 1 , and no directory) for the heterogeneous multi- 

programmed workloads running on 8 cores. The individual 

workload slowdown is at most 2%, while, on average, all three 

configurations of ZeroDEV perform within a percentage of the 

baseline which has a 1× sparse directory. 
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Fig. 23. Performance on heterogeneous multi-programmed workloads. 

Server Workloads. Figure 24 evaluates ZeroDEV operating 

with three directory configurations (1   , 1    , and no directory) 

on the server workloads. This evaluation is done on a 128- 

core single-socket system with a 32 MB 16-way shared LLC. 

When ZeroDEV has no directory, the maximum slowdown is 

1.4% (SPECWeb-S). Across all three configurations, the average 

performance is within a percentage of the baseline. 

2% of the corresponding EPD LLC baseline when equipped 

with 1 and 1 sparse directories. Interestingly, for several 

application groups, ZeroDEVEPD without a sparse directory 

outperforms the EPD LLC baseline having a 1 sparse direc- 

tory. This is because ZeroDEVEPD can use the LLC space for 

directory caching. Overall, ZeroDEVEPD maintains acceptable 

performance compared to the baseline EPD LLC design for all 

directory configurations. However, it is desirable to have a sparse 

directory with ZeroDEV when incorporated in an EPD LLC 

because directory entry fusion is not possible in the LLC (see 

Section III-E); due to excessive directory entry spilling in the 

LLC, ZeroDEVEPD+NoDir loses significant performance for 

some applications when compared to BaseEPD with 1 sparse 

directory (e.g., FFTW). 

ZeroDEV implemented in an inclusive LLC with no sparse 

directory (ZeroDEVIncl+NoDir) performs within 1-2% of the 

baseline inclusive design (BaseIncl). Interestingly, we notice 

that ZeroDEV eliminates 95% of the forced invalidations from 

the core caches in the inclusive design. The remaining forced 

invalidations arise due to inclusion property of the LLC. 

Comparison to Related Work. We compare the performance of 

ZeroDEV with two recent related proposals. The first one (Multi- 

grain Directory [50]) improves the sparse directory space in- 

vestment, while the second one (SecDir [44]) addresses the 

problem of DEV-related side-channel attacks. In Figure 26, we 

compare our proposal with the Multi-grain Directory (MgD), 

which significantly reduces the overhead of tracking private 

blocks by investing just one directory entry to track a private 

region of size 1 KB. The leftmost three bars in each application 
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Fig. 25. Performance on exclusive private data (EPD) and inclusive LLCs. 

group show the performance of MgD for 1 ×, 1 ×, and 1 × 
 

In Figure 27, on top of the bars for SecDir+1 Dir, 

SecDir+ 1 Dir, and ZeroDev+NoDir, the minimum speedup 

numbers achieved by any application within a group are noted 

to understand the maximum slowdown observed in these de- 
signs. While SecDir loses performance with decreasing sparse 

directory size (1 to 1 ) as the baseline also does, ZeroDEV 

remains mostly unaffected by the varying sparse directory size 

and performs within a percentage of the 1 baseline. The 

minimum speedup figures for SecDir indicate large slowdown 

at 1 directory size due to internal fragmentation in the private 

partitions. For the server group (evaluated on 128 cores), the 

internal fragmentation becomes so severe that the average per- 
 

 

8 16 formance loss relative to the baseline 1 × configuration is 11% directory sizes. The next three bars show ZeroDEV performance 
for 1 , 1 , and no directory. All results are collected for the 

non-inclusive LLC configuration and normalized to baseline 
1× directory configuration. While MgD with a 1 × directory 

8 
while the maximum slowdown is 18%. 

offers performance similar to the baseline 1× 
8 

, its performance 
1.04 

1 

degrades gradually as the directory size is further reduced (we 

note that this performance is still much better than the baseline 

with identical directory sizes). As already discussed, the decline 

in average performance of ZeroDEV with shrinking directory 

size is within 1% across the board. Thus, the performance gap 
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between ZeroDEV and MgD rapidly widens with shrinking 

sparse directory size. 

 

 

 

 

 

 

 

Fig. 26. Performance comparison with Multi-grain Directory. 

 

Figure 27 compares the performance of SecDir and ZeroDEV. 

The SecDir proposal was introduced in Section I-A2. The left- 

most three bars in each application group show SecDir with 

1× directory, baseline with 1 × directory, and SecDir with 1 × 

Fig. 27. Performance comparison with SecDir. 

 

Energy Expense. ZeroDEV can save area and leakage energy by 

eliminating the sparse directory in inclusive and non-inclusive 

LLC designs. However, it also increases the LLC dynamic 

energy due to additional reads and writes to the directory entries 

accommodated in the LLC. Using CACTI we estimate that 

ZeroDEV running without a sparse directory can save about 9% 

energy, on average, in the sparse directory and the LLC taken 

together compared to the baseline running with a non-inclusive 

LLC of capacity 8 MB (32 MB for server applications) and a 1 
sparse directory. 

Multi-socket Evaluation. We evaluate ZeroDEV on a four- 

socket system with each socket having eight cores and an 8 MB 

non-inclusive shared LLC. We use the PARSEC, SPLASH2X, 

SPEC OMP, FFTW, SPEC CPU 2017 rate and heteroge- 

 
directory. The next three bars show ZeroDEV performance for 
1 , 1 , and no directory. For both SecDir sizes (1 , 1 ), the 

comparison is iso-storage meaning that the number bits devoted 

to the sparse directory of SecDir is nearly same as in the baseline. 

The overall number of directory entries in SecDir R   size is 

more than that in baseline R size because an entry in the private 

partition of SecDir does not need to maintain the sharer list 

or owner information, thereby saving bits. In the 1 directory 

configuration of SecDir for an 8-core system, each baseline 
directory slice having 512 sets and 8 ways is partitioned into 

eight private zones each having 32 sets and 7 ways and a shared 

zone having 512 sets and 5 ways; in the 1 configuration, the 

number of sets in each partition is made one-eighth of what the 

1    configuration has keeping the associativity unchanged. For 

the 128-core system (the server group), in the 1    configuration 

of SecDir, each baseline sparse directory slice having 256 sets 

and 8 ways is partitioned into 128 private zones each having 4 
sets and 8 ways and a shared zone having 256 sets and 4 ways. 

In the 1 configuration, each private partition is four-way fully 

associative and the shared partition has 32 sets and 4 ways. 

programmed workload is scaled up to have a mix of 32 appli- 

cations. Each homogeneous (rate) multi-programmed workload 

now has 32 copies of the same SPEC CPU 2017 application. 

Each multi-threaded application is executed with 32 threads. 

Across these groups of workloads, ZeroDEV operating without 

an intra-socket sparse directory performs, on average, within 

1.6% of the baseline which has a 1 sparse directory for intra- 

socket coherence. 

 

VI. SUMMARY 

We have presented the ZeroDEV protocol, the first design 

to guarantee freedom from directory eviction victims within a 

CMP. A scheme for efficiently caching directory entries in the 

LLC and a mechanism for handling directory entry eviction from 

the LLC without generating invalidations to the core caches are 

at the center of the ZeroDEV design. The end-result is that 

the core caches enjoy the illusion of an unbounded directory 

and remain completely isolated from directory eviction. For a 

large set of multi-threaded and multi-programmed workloads, 

neous workloads in this evaluation. Each heterogeneous multi- 

32 

S
p

e
e

d
u

p
 

0
.9

8
 

0
.8

2
 

 0
.9

4
 

0
.9

9
 

0
.8

6
 

 0
.9

6
 

0
.9

7
 

0
.9

5
 

0
.9

8
 

0
.9

3
 

0
.6

9
 

0
.9

8
 

0
.9

9
 

0
.8

5
 

0
.9

8
 

0
.9

9
 

0
.7

9
 

0
.9

9
 



 

 

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 51, Issue 04, April : 2022 

 

 

UGC CARE Group-1,                                                                                     782 

  

ZeroDEV performs within 1-2% of a well-provisioned tradi- 

tional baseline, which delivers performance close to that of an 

unlimited-capacity sparse directory. Interestingly, for inclusive 

and a class of non-inclusive LLCs, ZeroDEV maintains its 

performance level without requiring an intra-socket directory. 

While ZeroDEV, by design, has isolated the core caches from 

directory entry evictions, a thorough study of the security aspects 

of ZeroDEV is an important future work. 
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