

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 768

 B1

DEV

PRIVATE CACHE OF C1

 B1

 B2 DEV

DEV

Zero Directory Eviction affects Unbounded

Coherence Directory and Core Cache Isolation
 Mr.Manas Ranjan Behuria1*, Ms S. Nathsharma2

 1* Assistant Professor Dept. Of Computer Science and Engineering, NIT , BBSR
2Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

 manasranjan@thenalanda.com* snathshrma@thenalanda.com

Abstract— In a cache-coherent chip-multiprocessor, tracking

coherence information of the privately cached blocks often

involves a directory structure (CMP). The privately cached

copies of the block that the evicted entry was monitoring are

inextricably invalidated when a directory entry is removed.

These victims of forced directory eviction present two significant

difficulties. First, performance degrades due to a considerable

increase in the amount of these victim blocks with decreasing

directory size. Because of this, scaling the directory still presents

a significant difficulty. Second, as recently shown, timing-based

side-channel attacks can be launched by taking advantage of the

close coupling between directory evictions and the private cache

contents. The first issue's current solutions only let you reduce

the directory capacity so far before performance starts to suffer.

The existing mitigation technique for the security vulnerability

avoids generation of only a certain specific subset of directory

victims.

In this paper, we present the Zero Directory Eviction Victim (Ze-

roDEV) coherence protocol and accompanying novel mechanisms

that guarantee freedom from invalidations arising from directory

state and the location(s) of a block that is cached privately by

at least one of the processor cores. The sparse directory entry

corresponding to a block is freed when all private copies of the

block are evicted from the processor cores. The eviction of a live

sparse directory entry must invalidate all privately cached copies

of the block the directory entry was tracking. We refer to these

private cache blocks invalidated due to directory entry eviction

as the directory eviction victims (DEVs). Figure 1 illustrates an

example where two blocks B1 and B2 are tracked by sparse

directory entries E1 and E2. B1 is cached in cores C0 and C1,

while B2 is cached only in core C1. When new directory entries

E3 and E4 are allocated in the sparse directory, they evict E1

and E2 respectively. The eviction of E1 generates invalidations

to the copies of B1 cached in C0 and C1, while the eviction of

E2 generates an invalidation to the copy of B2 cached in C1.

These invalidations, in turn, generate the DEVs which are the

invalidated blocks i.e., two copies of B1 and one copy of B2.

victims, thereby completely isolating the private core caches

from the coherence directory evictions. This is the first fully

hardwired design proposal that enables a practically unbounded

coherence directory which, to the core caches in a CMP, appears

to never evict a live entry. Unlike the prior proposals that

have completely eliminated the directory and the coherence

information eviction victims in a multi-/many-core CMP, our

proposal does not require any operating system or application

software changes. Our proposal, instead, repurposes the on-die

last-level cache (LLC) space for holding the evicted directory

SPARSE DIRECTORY

E3

E4

TAG C1 C0

E1 1 1

E2 1 0

PRIVATE CACHE OF C0

entries and engineers a novel mechanism to handle directory

entry eviction from the LLC without generating any invalidation

to the private core caches. The ZeroDEV protocol evaluated on

multi-threaded and multi-programmed workloads for inclusive

and two popular non-inclusive CMP cache hierarchy designs

performs within 1-2% of a well-provisioned traditional baseline.

Importantly, as an additional benefit of eliminating directory

eviction victims and utilizing the large on-die LLC for caching

directory entries, we show that our proposal does not need any

dedicated directory structure at all for certain classes of CMP

cache hierarchy designs while maintaining the performance level

and continuing to guarantee complete isolation of the core caches

from directory entry eviction.

Index Terms—chip-multiprocessor; cache coherence; sparse

directory; directory eviction victim.

I. INTRODUCTION

The coherence directory structure is an integral part of

the scalable cache coherence protocols. Within a chip-

mailto:manasranjan@thenalanda.com
mailto:narottam@thenalanda.com

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 769

×

×

Fig. 1. An example of directory eviction victims (DEVs).

Appropriate sizing of the sparse directory plays a very im-

portant role in determining the CMP performance as the volume

of DEVs has an inverse relationship with the number of sparse

directory entries. In this paper, we represent the number of

entries in the sparse directory as R where R is the ratio of the

number of sparse directory entries to the total number of blocks

in the last-level private caches (e.g., L2 caches if each core has

private L1 and L2 caches) aggregated over all processor cores.

The traditional solution for keeping the volume of DEVs

low is to have a sparse directory that is at least 1 large;

usually it is much larger to avoid worst-case conflicts because

the sparse directory associativity is far lower than the impractical

aggregate associativity of all the private last-level core caches.

As a result, the sparse directory can easily consume several

megabytes of on-chip area for a high-end server CMP.

In this paper, we propose novel techniques that, by design,

guarantee complete freedom from DEVs irrespective of the

sparse directory size, thereby enabling an unbounded sparse

directory. Complete elimination of DEVs can bring multiple

different benefits as discussed in the following.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 770

×

×

×

×

×

×

× ×

A. Motivation: Benefits of Eliminating DEVs

1) Interconnect Traffic, Core Cache Misses, Performance:

Elimination of DEVs can improve performance if the DEVs are

predominantly live; live DEVs increase core cache misses and

interconnect traffic. The performance improvement arising from

elimination of DEVs is likely to be significant for small directory

sizes. In the following, we first empirically establish that a 1
sparse directory performs close to a system with an unbounded

sparse directory for our workload set and system configuration.1

This result allows us to use the 1 sparse directory as a reason-

able baseline throughout this paper and helps us avoid overstat-

ing any results. Next, we show that the performance degrades

gradually with decreasing sparse directory size underscoring the

performance-criticality of DEVs.

Figures 2 and 3 quantify the savings in interconnect traf-

fic (total bytes communicated), core cache misses, and execu-

tion cycles for multi-programmed and multi-threaded workloads

respectively when going from a 1 sparse directory to an

unlimited-capacity sparse directory. All results are collected on

an 8-core CMP model with a non-inclusive cache hierarchy hav-

ing an 8 MB 16-way shared LLC and per-core private 256 KB 8-

way L2 cache and 32 KB 8-way data and instruction L1 caches.

Each eight-way multi-programmed workload consists of eight

copies of a SPEC CPU 2017 application (rate mode or homo-

geneous multi-programming) shown on the x-axis in Figure 2.

Figure 3 shows the results for ten PARSEC applications [3],

and the average numbers for the PARSEC, SPLASH2X (derived

from SPLASH-2 [42] and distributed with PARSEC), SPEC

OMP, and FFTW [13] applications. From Figure 2 we see that

the average speedup is under 1%, although 10% interconnect

traffic and 15% core cache misses are saved on average. To

explain this, on top of each group of bars, we show the core

cache misses saved per kilo instructions. These savings are too

small (except 3.2 in xalancbmk) to affect any noticeable perfor-

mance improvement (xalancbmk speeds up by 4%). Figure 3

shows that a 1 sparse directory is adequate for the PAR-

SEC, SPLASH2X, SPEC OMP, FFTW applications. The 4%

performance loss in freqmine arises from forwarded requests to

owner cores when using an unlimited-capacity directory. These

requests were getting served from the LLC when using a 1
sparse directory because the dirty blocks were retrieved from the

owner cores as DEVs due to directory entry eviction.

The data in Figures 2 and 3 establish that our baseline 1
directory performs close to the unbounded directory. Figure 4,

however, shows that the performance declines gradually com-
pared to the 1× directory as the sparse directory is sized 1 ×,

Fig. 3. Normalized interconnect traffic, core cache misses, and speedup of
multi-threaded applications.

1

0.9

0.8

0.7

0.6
PARSEC SPLASH2X SPECOMP FFTW CPU2017RATE

Fig. 4. Performance impact of sparse directory size.

model wherein a victim process and an active attacker process

are scheduled within the same CMP sharing the sparse direc-

tory. Such attacks can reveal information (such as part of the

physical address [19]) about the victim’s accesses. The Secure

Directory (SecDir) proposed to mitigate this attack divides the

sparse directory into n private partitions and a shared partition

for an n-core CMP [44]. A newly allocated directory entry starts

its life in the shared partition. An entry E evicted from the shared

partition gets allocated in the private partitions of the cores that

are caching the block being tracked by E. Thus, a cross-core

conflict in the shared partition can no longer directly generate

a DEV, but can induce self-conflicts within a private partition

due to migration of an entry from the shared partition to the

1 1
2 private partition. An eviction from the private partition of core

8 , and 32 , thereby making the performance-criticality of the
DEVs prominently visible. A solution that can eliminate DEVs

must create the illusion of an unbounded virtual sparse directory.

An important question that we seek to answer is whether such

a solution can lower the requirement on the physical size of a

dedicated on-chip sparse directory structure.

2) Isolation of Core Caches from Directory Evictions: Re-

cent research [43] has cast shadow on the traditional directory-

based CMP systems by demonstrating that DEVs can be ex-

ploited to launch Prime+Probe attacks [23], [28] under a threat

1 All sparse directory organizations considered in this study are eight-way
set associative (Table I of Section IV).

C due to self-conflicts within the private partition generates an
invalidation to C leading to a DEV. This solution does avoid

direct generation of DEVs arising from cross-core directory con-

flicts, but cross-core directory conflicts can indirectly generate

DEVs by inducing self-conflicts within a core’s directory entries.

Clearly, a solution that can eliminate DEVs altogether could

have offered complete isolation between the core caches and the

directory evictions.

In summary, DEVs degrade performance, inflate interconnect

traffic, and can be exploited to leak information through side-

channels. The central contribution of this paper is the zero

directory eviction victim (ZeroDEV) protocol that, by design,

Fig. 2. Normalized interconnect traffic, core cache misses, and weighted
speedup of eight-way rate (homogeneous) multi-programmed workloads.

Traffic Core cache miss Speedup
1.1 0 0.3 0.2 ~0 0.1 ~0 ~0 0.7 ~0 0.1 0.1 0.1 0.1 0.1

1
0.9
0.8
0.7
0.6
0.5 N

o
rm

a
liz

e
d
 t
o

b
a

s
e
lin

e

S
p

e
e

d
u

p

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 771

×

guarantees freedom from DEVs and offers a practically un-

bounded sparse directory interface to the core caches, which

never receive any invalidation arising from directory entry evic-

tion (Section III). In this paper, we squarely focus on the perfor-

mance aspects of ZeroDEV and leave a thorough evaluation of

the security aspects to future work. Our proposal, evaluated on

inclusive and two popular non-inclusive cache hierarchy designs,

performs within 1-2% of the baseline that uses a 1 sparse

directory. Importantly, due to elimination of DEVs and use of the

LLC for caching directory entries, our proposal maintains this

performance level with a significantly smaller sparse directory

or no sparse directory structure at all (Sections IV and V).

II. RELATED WORK

The volume of DEVs is closely related to the size and or-

ganization of the sparse directory. As a result, the large body

of research on optimization of the space invested to the sparse

directory has also effectively restricted the volume of DEVs [2],

[7], [9], [10], [12], [32], [36], [37], [45], [50]–[54]. None of

these proposals, however, guarantee freedom from DEVs. Ours

is the first proposal to offer a DEV-free protocol for on-chip

directory-based coherence. The two-level directory architecture

proposed in a prior study for cc-NUMA multiprocessors uses

additional space in the home memory to store a second-level

directory to back up entries evicted from the per-node first-

level directory cache, thereby eliminating node-level DEVs [1].

Our proposal, in contrast, focuses on eliminating DEVs within

a CMP and engineers a set of novel run-time techniques to

dynamically synthesize a multi-level caching hierarchy of sparse

directory entries spread across the LLC and home memory. Our

solution for eliminating DEVs related to intra-socket directory

entry evictions does not require any additional storage. In-Cache

Coherence Information (ICCI) tracking is the first proposal to

store coherence tracking information in the LLC blocks [14], but

this proposal requires request forwarding for all shared blocks

increasing the critical path latency of reads to these blocks.

Also, this proposal generates DEVs when an LLC block holding

coherence tracking information is evicted. The Tiny Directory

proposal addresses the critical path-related shortcoming of ICCI

by incorporating a custom-designed tiny directory to track a

critical subset of the read-shared blocks [37]. This proposal,

however, cannot guarantee freedom from DEVs as replacement

of a tiny directory entry generates invalidations just like a tradi-

tional directory entry eviction.

Three different categories of designs have emerged over time

that have eliminated the sparse directory altogether or simpli-

fied coherence protocol/directory design. The first category of

designs relies on timestamp-based leases for privately cached

blocks and employs self-invalidation on lease expiry [25], [26],

[34], [46]–[49]. These systems generate DEVs for privately

cached exclusive/modified blocks when their copies are evicted

from the LLC. The timestamp-based coherence idea has also

been explored for GPUs [29], [38], [40]. The second category

of designs takes help of operating system (OS)-controlled page

mapping on private core caches and uses remote accesses to

other cores’ private caches to avoid replication of data in the

private caches [11]. Thread migration across cores can also

be used to enable access to other cores’ private caches. As

a result, run-time techniques that dynamically select between

thread migration across cores and remote accesses to other

cores’ private caches have also been explored based on the

observed affinity toward data elements [35]. These proposals do

not generate DEVs, but require custom OS support. The third

category of proposals relies on data-race-free software or fully

labeled programs for identifying the acquire/release boundaries

so that the privately cached copies of the blocks can be self-

invalidated at appropriate program points [4], [8], [20], [30],

[39]. Among these, VIPS-M [30], DeNovo [4], DeNovoND [39],

and Dir1-SISD [8] do not have DEVs, but require changes to

the application software as well as OS kernels for correct self-

invalidation. In contrast, our proposal eliminates DEVs while

confining all design modifications to the uncore hardware and re-

tains all benefits of a traditional directory-based cache coherence

protocol; it can seamlessly run unmodified application binaries

on top of stock operating system kernels.

As already discussed, a recent study has pointed out that

DEVs can be exploited to launch timing-based side-channel at-

tacks [43]. The defense mechanism, SecDir [44], avoids genera-

tion of DEVs arising directly from cross-core directory conflicts.

In contrast, our ZeroDEV protocol eliminates DEVs altogether.

III. DESIGN OF THE ZERODEV PROTOCOL

In this section, we discuss the details of the ZeroDEV pro-

posal for designing a DEV-free system. We first summarize

the baseline cache hierarchy architecture (Section III-A). Next,

we discuss the overview of our main idea and present a data-

driven analysis that motivates our approach (Section III-B).

Sections III-C and III-D discuss the two central mechanisms

of our proposal. Sections III-E and III-F discuss application of

ZeroDEV to different LLC designs.

A. Baseline Cache Hierarchy

The baseline CMP has private L1 and L2 caches per core.

The LLC (L3 cache) is banked and shared among all cores.

A demand fill from main memory is always allocated in the

LLC as well as in the L2 and L1 caches of the requesting core.

An eviction from the LLC does not generate any invalidation

to the core caches, thereby making the LLC non-inclusive of

the L2 and L1 caches. A slice of the sparse directory resides

alongside each LLC bank. The directory slice is responsible

for tracking all privately cached copies of the blocks mapped

to that LLC bank. However, the organization of the LLC bank

and the sparse directory slice can be completely different. On

receiving a request from a core, the LLC bank and the adjacent

sparse directory slice are looked up in parallel. The coherence

actions are decided based on the state of the retrieved sparse

directory entry. A write-invalidate MESI cache coherence pro-

tocol keeps the private caches coherent. All evictions from the

private cache hierarchy are notified to the sparse directory to

keep the directory contents up-to-date and avoid unnecessary

future invalidations [24]; the eviction notices for clean blocks (in

E or S state) do not carry any data. To accelerate code sharing,

a code block is always filled in the private caches in S state. A

request forwarded to an owner core caching the requested block

in M or E state is responded directly to the requester by the

owner core making the critical path of such requests three-hop

long [15], [22]; the owner core also sends a “busy clear” message

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 772

×

×

∼

to the home sparse directory slice to clear the busy/pending state

of the corresponding directory entry.

B. Overview of the ZeroDEV Protocol

The ZeroDEV protocol consists of two mechanisms. The first

mechanism utilizes the LLC space for caching directory entries

that cannot be accommodated in the sparse directory. The chal-

lenge in this mechanism is to manage the increased LLC pressure

so that the performance is not affected. Since this mechanism

lengthens the life of a directory entry significantly, we expect

most directory entries allocated in the LLC to get freed while in

the LLC. However, the entries tracking hot blocks may survive

their residency in the LLC and get evicted eventually. The second

mechanism avoids generation of invalidations to the private

caches at the time of such an eviction. In this mechanism, we

exploit the important observation that a copy of the block (say,

B) that the evicted directory entry was tracking is available in the

private cache hierarchy of at least one of the cores. Therefore, the

evicted directory entry can overwrite B in the main memory and

store itself in the place of B not requiring any additional space.

Caching directory entries in the LLC is likely to have perfor-

mance implications if not done judiciously. So, before embark-

ing on the ZeroDEV design, we seek answers to two important

questions: (i) what is the projected increase in LLC pressure

due to directory caching? (ii) what is the estimated performance

loss due to increased LLC pressure? Figure 5 answers the first

question by summarizing the number of additional directory en-

tries required in the unlimited-capacity directory compared to the

baseline 1 directory. This number is shown as a percentage of

the number of LLC blocks assuming that one directory entry will

be spilled in one full LLC block. Within each application suite,

the left bar shows this percentage for the application requiring

the maximum number of entries, while the right bar shows the

average of the maximum counts across all applications of the

suite. Overall, the maximum occupancy is around 12%, while

the average is at most 10%. We note that 12% LLC occupancy

corresponds to less than two ways of the baseline 16-way LLC.

16

12

8

4

0

Fig. 5. Projected LLC occupancy of spilled directory entries.

Figure 6 offers an approximate answer to the second question

by showing the performance as the associativity of all LLC sets

is gradually reduced. The speedup numbers are normalized to

the baseline 16-way LLC. On top of each bar in an application

suite (except FFTW, which is a single-application suite), we

show the speedup of the application that suffers from maximum

slowdown within the suite. When only two ways are taken away

from the LLC, the average performance loss is at most 3% (PAR-

SEC). Within each suite, the following applications suffer most

when two LLC ways are taken away: vips in PARSEC (14%

loss in performance), lu ncb in SPLASH2X (9% loss), 330.art

in SPEC OMP (6% loss), and gcc.ppO2 in SPEC CPU 2017

rate (5% loss). An interesting related question is whether all

directory entries can be housed in the LLC, thereby ridding the

CMP of the sparse directory structure altogether. The number

of entries in a 1 sparse directory corresponds to 25% of the

number of LLC blocks (arising from a 4:1 capacity ratio between

the LLC and the private L2 caches). Figure 6 shows that when

four ways (which is 25% of the LLC) are taken away from the

baseline LLC, the average performance loss (see the 12-way

group) is about 4% for PARSEC and 2% for SPALSH2X, SPEC

OMP, and SPEC CPU 2017 rate. However, the maximum slow-

down within each group is significant: 22% for vips in PARSEC,

17% for lu ncb in SPLASH2X, 14% for 330.art in SPEC OMP,

and 9% for gcc.ppO2 in SPEC CPU 2017 rate. In summary, these

results show that although the average performance loss due to

directory caching in the LLC is not significant, the na¨ıve scheme

of spilling directory entries into the LLC can lead to large worst-

case performance losses. There is a need for designing smarter

schemes of directory entry caching in the LLC.

1.04
1.02

1
0.98
0.96
0.94
0.92

PARSEC SPLASH2X SPECOMP FFTW CPU2017RATE

Fig. 6. Performance with reduced LLC associativity.

C. Caching Directory Entries in LLC

In this section, we present three different policies for accom-

modating directory entries in the LLC. We begin our discussion

with the na¨ıve policy of spilling directory entries into the LLC.

We assume that each LLC block has two state bits, namely

valid (V) and dirty (D). The following three states are used in

the baseline: invalid (V=0, D=0), clean valid (V=1, D=0), and

dirty valid (V=1, D=1).

1) SpillAll Policy: In the SpillAll policy, a valid entry evicted

from the sparse directory is allocated in the LLC. Figure 7

shows a directory entry E tracking the privately cached copies

of a block B4 resident in the LLC. When E is evicted from

the sparse directory, it is allocated in the same set as B4 by

replacing B2. To keep the design simple, we allocate a full LLC

block to a spilled directory entry. Also, we let a spilled directory

entry exercise the same set index function as the regular LLC

blocks. To distinguish between a block and its spilled directory

entry (e.g., B4 and E) residing in the same LLC set, we mark

the spilled directory entry with state (V=0, D=1). The tag match

lines coming out of the tag comparators (or the tag CAM) are

ANDed with V&D to generate a new set of match lines used to

access the directory entry from the data array, while the original

match lines ANDed with V are used to access the actual data

block. If a tag lookup reveals two matching tags in the target set,

the directory entry is looked up first in the data array. While the

decoding of the directory entry progresses, the actual data block

is accessed.

This policy does not require any change to the coherence pro-

tocol, but suffers from two important shortcomings: (i) spilled

directory entries increase LLC pressure, and (ii) the requests to

blocks in S state see an additional data array lookup latency on

the critical path if the directory entry is spilled in the LLC. We

Avg of max Max of max

15 ways 14 ways 13 ways 12 ways

P
e

rc
e

n
ta

g
e

 o
f

L
L

C
 c

a
p

a
c
it
y

S
p

e
e

d
u

p

0
.9

4

0
.8

6

0
.8

1

0
.7

8

0
.9

7

0
.9

1

0
.8

7

0
.8

3

0
.9

7

0
.9

4

0
.9

0

0
.8

6

0
.9

7

0
.9

5

0
.9

4

0
.9

1

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 773

[|

) ¶2

×

1 DIRECTORY ENTRY

SPARSE
DIRECTORY

SLICE

E

LLC BANK

bit (say, b0) of an LLC block in state (V=0, D=1) indicates

whether it is a spilled or a fused entry. The rest of the bits (e.g.,

511 bits in a 64-byte LLC block) in a spilled entry store the

directory entry. For a fused entry, the encoding of the remaining

bits (b1 onward) of the LLC block is as follows (assuming N
cores): LLC block dirty (b), directory state busy (b), owner

1 2

REPLACE

Fig. 7. SpillAll policy.

discuss ways to address these shortcomings in the next policy.

We note that the updates to the spilled directory entries need

additional LLC writes, but there is ample free LLC read/write

bandwidth.

2) FusePrivateSpillShared Policy: To bring down the LLC
pressure of the SpillAll policy, we make one important obser-

vation: to respond to a request R for an LLC block B that

has coherence state M/E, the contents of B are not required.

This is because R has to be forwarded to the core caching the

encoding (b3 , . . . , b2+ log N), and the remaining portion of the

LLC data block. When a core evicts a block in E state, it needs

to send back the least significant 3 + log2 N bits to the LLC

along with the eviction notice message so that the fused LLC
block can be reconstructed and can be returned to (V=1, D=1) or

(V=1, D=0) state depending on whether the LLC block is dirty

or not. These extra bits in the eviction notice message of a block

in the E state introduce negligible interconnect traffic overheads

compared to the baseline. The M state evictions generate full-

block writeback messages, as in the baseline.

latest copy of B in M/E state. Therefore, some part of an LLC

block B that is in the coherence state M/E (i.e., temporarily

private) can be used for storing its directory entry; this won’t

have any impact on the critical path of the next request to B.

(a) Spilled directory entry

(b) Fused LLC block

F/Sp

F/Sp

Such directory entries will be referred to as fused directory

entries. The directory entries of the other blocks (i.e., blocks in

S state) are spilled into the LLC space as in the SpillAll policy.

Therefore, the percentage of directory entries that track shared

blocks can offer an estimate of the increase in LLC pressure for

this FusePrivateSpillShared policy. On average, this percentage

is usually small: for PARSEC 10%, for SPLASH2x 19%, for

SPEC OMP 0.5%, for FFTW nearly zero, and for SPEC CPU

2017 rate 9% (arising from code blocks being cached in shared

state). While this is only an empirical estimate, even in general,

the footprint of actively shared blocks (i.e., copies present in

private caches) is maximized when the sharing degree is two and

this footprint corresponds to only half of the directory entries in a

1 sparse directory. This directory entry population corresponds

to only two LLC ways of a 16-way LLC (due to 4:1 capacity
ratio between the LLC and the private L2 caches). Overall, this
policy is expected to offer significant relief to the LLC pressure.
Figure 8 depicts the operations of this policy. A sparse directory

entry E is tracking the privately cached copies of a block B4
resident in the LLC. When E gets evicted, it is spilled into the

LLC set containing B4 if the coherence state of the block is S;

otherwise E is fused with B4 by overwriting several bits of B4.

SPARSE

Fig. 9. Format of spilled and fused entries. F=fused, Sp=spilled, D=dirty,
B=busy.

Next, we turn to understand the impact of this policy on the
critical path of requests coming from the core caches. To ensure

that the critical path of a read request is not lengthened, this
policy maintains the invariants that (i) if a directory entry is
fused in the LLC, its coherence state must be M/E, and (ii) if
a directory entry is spilled in the LLC, its coherence state must
be S. Recall that the lengthened critical path scenario of read
requests for the SpillAll policy was related to the case where an

LLC lookup (done in parallel with the sparse directory lookup)
returns two tag matches in the target LLC set. Now, two tag
matches in an LLC set necessarily implies that one tag (in state

V=1) corresponds to an LLC block B and the other corresponds

to the block’s spilled directory entry EB. In this case, the

aforementioned invariants imply that B must be in the S state.

Therefore, if the request is a read, B can be read out first and

sent as response to the requester even before EB is read out.

Subsequently, EB is read out and updated off the critical path.

Thus, in this case, the baseline critical path latency of reads is

preserved by this policy. For upgrade requests, only EB is read

out and the count of expected invalidation acknowledgments is
included in the dataless response. For read-exclusive requests,

DIRECTORY
SLICE

E

LLC BANK both B and EB are read out one by one and the count of expected

invalidation acknowledgments is included in the response along

with the data.

If an LLC lookup returns just one tag match, the correspond-

ing block is read out, as in the baseline. The (V, D) states along

with the least significant bit of the block are examined (only if

V=0 and D=1) and the appropriate coherence action is initiated.

Fig. 8. FusePrivateSpillShared policy.

Both fused and spilled entries use the state (V=0, D=1) to

distinguish them from regular LLC blocks. Figure 9 shows the

formats of the spilled and fused entries. The least significant

Note that if the state of the block turns out to be (V=0, D=1), the

request must be forwarded to an owner core (having the block in

the M/E state) or to a sharer core, which will directly respond to

the requester. This is similar to the baseline case where a request

hits in the sparse directory, but misses in the LLC.

 EVICT LLC

INDEX

 EVICT

N

SPILL FUSE

Y
REPLACE

COHERENCE

STATE == M/E ?

LLC

INDEX

B1 B2 B3 B4

B1 B2 B3 B4

LLC BLOCK PART OWNER B D 0

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 774

[|

2

To maintain the two aforementioned invariants, whenever a

block transitions from the S state to the M state and if its

directory entry is spilled in the LLC, the directory entry is fused

with the block and the spilled entry is freed. On the other hand,

eviction notices for the E state blocks carry the least significant

4 + [log2 N | bits, as already discussed in the previous policy.

when a block transitions from the M/E state to the S state and

if its directory entry is fused, the directory entry is spilled into

the same set by invoking the LLC replacement policy. Also, at

this time, the block is reconstructed by having the owner core

(a) Spilled directory entry

(M/E)/S

F/Sp

F/Sp

send back the least significant 3 + log2 N bits of the block to

the LLC along with the busy/pending clear message. These bits

introduce negligible interconnect traffic overhead. In summary,

the FusePrivateSpillShared policy effectively addresses both the

shortcomings of the SpillAll policy.

(b) Fused LLC block in coherence state M/E

(M/E)/S

(c) Fused LLC block in coherence state S

F/Sp

3) FuseAll Policy: To complete the design space of caching

directory entries in the LLC, we consider a policy where an entry

evicted from the sparse directory is fused with the corresponding

LLC block provided the block is present in the LLC irrespective

of the coherence state of the block; if the block is not present in

the LLC, the directory entry is spilled into the LLC. This FuseAll

policy is inspired by the In-Cache Coherence Information (ICCI)

tracking proposal, which does not have a sparse directory and

uses parts of an LLC block to store the block’s directory en-

try [14]. We appropriately modify this proposal by augmenting

it with a sparse directory to derive the FuseAll policy. Figure 10

shows the operations of the FuseAll policy. When a sparse

directory entry E is evicted, it is fused with the LLC block B4,

the privately cached copies of which the entry E is tracking.

SPARSE
DIRECTORY

SLICE LLC BANK

E

Fig. 10. FuseAll policy.

The FuseAll policy requires three different formats for repre-
senting a directory entry accommodated in the LLC. Figure 11
shows these formats. The corrupted portion of a fused block
encodes the following pieces of information starting from the

least significant side: fused/spilled (bit b0), LLC block dirty (b1),

busy state of directory entry (b2), M/E or S state of directory

entry (b3)2, owner encoding if state is M/E (b4 , . . . , b3+)log N¶)

or sharer vector if state is S (b 4 , . . . , b3+N), and the remaining

portion of the LLC block (N is assumed to be the number of

cores). Overall, depending on the state of the block, a fused entry

Fig. 11. Format of spilled and fused entries in FuseAll policy. F=fused,
Sp=spilled, D=dirty, B=busy.

The FuseAll policy nearly nullifies the additional LLC pres-

sure arising from directory entry caching. However, it intro-

duces a significant performance problem for read requests to

the shared blocks. All requests to the shared blocks now need

to be forwarded to a sharer elected by the coherence controller

because the corrupted LLC block cannot provide the requested

data (except for upgrade requests which do not need a data re-

sponse). For read-exclusive requests, this forwarded message can

be combined with the invalidation request to the elected sharer,

thereby keeping the critical path same as the baseline. However,

for read requests, the critical path gets strictly increased to three

hops compared to two hops in the baseline.

Figure 12 summarizes the design space of directory caching

policies considered in this study as a function of LLC space

overhead and increase in the critical path of reads to shared

blocks, the directory entries of which have been accommodated

in the LLC. The SpillAll policy has the maximum LLC space

overhead while the read critical path gets lengthened by the LLC

data array lookup latency. The FusePrivateSpillShared (FPSS)

policy has only LLC overhead and no critical path overhead

for reads. The FuseAll policy has small LLC overhead due to a

small number of spills for the directory entries the corresponding

blocks of which have already been evicted from the LLC, but this

policy lengthens the critical path of reads to shared blocks by one

extra hop.

E

has 4 + [log2 N | or 4 + N bits corrupted. In this policy, on BASE FPSS
OVERHEAD

receiving the eviction notice from the last sharer core of a fused

block, a special acknowledgment message is sent to this sharer

to retrieve the least significant 4 + N bits of the block so that

the fused LLC block can be reconstructed and returned to (V=1,

D=1) or (V=1, D=0) state. A sharer needs to preserve an evicted

block in its eviction buffer until the eviction is acknowledged by

the home LLC bank. This additional interconnect traffic over-

head is negligible because this is introduced only once during

the entire sharing life time of some of the shared blocks. The

2 The directory cannot distinguish between M and E states, as in the
baseline [22].

Fig. 12. Design space for directory entry caching in the LLC.

4) Replacement-disabled Sparse Directory: The ZeroDEV

protocol has an option of having sparse directories that do not

have any replacement policy, thereby simplifying the design. In

such a design, a new directory entry first looks for an invalid

way in the target sparse directory set and if none found, it gets

accommodated in the LLC in fused or spilled form according

to the directory entry caching policy of the LLC. Note that

a valid entry residing in the sparse directory will eventually

get freed (i.e., become invalid) when the block it is tracking

becomes non-shared/unowned. Disabling replacement from the

 EVICT LLC

INDEX

B1 B2 B3 B4

FUSE

1 DIRECTORY ENTRY

SpillAll

LLC SPAC

FuseAll

C
R

IT
IC

A
L

 P
A

T
H

 I
N

C
.

LLC BLOCK PART OWNER 1 B D 0

LLC BLOCK PART SHARER VECTOR 0 B D 0

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 775

N +1 [♩

sparse directory in ZeroDEV is a strictly better design option

because in such a design, a directory entry victimizes only one

sparse directory entry or LLC block (depending on where it gets

allocated) during its entire life time. On the other hand, in a

replacement-enabled sparse directory, a directory entry E can

victimize one directory entry (when E first gets allocated in the

sparse directory) and later one LLC block (when E is evicted

from the directory and moved to the LLC), thereby causing

disturbance in both structures. When our ZeroDEV protocol is

equipped with a sparse directory, we always assume that the

sparse directory is replacement-disabled and hence, simpler to

design.

SPARSE DIRECTORY

OF SOCKET S0

SPARSE DIRECTORY

OF SOCKET S1

E1

PHYSICAL MEMORY

OF HOME SOCKET OF B

E0 E1

 B

D. Directory Entry Eviction from LLC

In this section, we discuss the second important component

of our ZeroDEV proposal, namely handling eviction of fused or

spilled directory entries from the LLC without generating any

invalidations to the private caches. When a valid fused or spilled

directory entry corresponding to a block B is evicted from the

LLC, it is clear that at least one core C is caching a copy of

B. Therefore, overwriting B in the physical memory to store

the evicted directory entry does not lead to any data loss; B can

be recovered from core C. ZeroDEV implements this idea. We

assume the existence of a socket-level coherence directory for

maintaining inter-socket coherence using a home-based MESI

protocol similar to the intra-socket protocol. Each socket-level

directory entry has three stable coherence states, namely M/E, S,

and I, encoded using two state bits. The unused fourth state is

used by ZeroDEV to encode whether the home memory block is

Fig. 13. Housing live intra-socket directory entries in physical memory block.

it is in a transient state. Once E returns to a stable state (M/E

or S), the LLC controller prepares a 64-byte block W with

E positioned in the segment reserved for the source socket S.

W is sent with a directory entry writeback message (opcode

WB DE) to the home socket H of B. If the state of the home

socket directory entry E′ of B is not corrupted or corrupted

with socket S marked as the only sharer/owner, W is written

to home memory. The socket directory entry state switches to
corrupted leaving the sharer vector unchanged (socket S remains

marked as a sharer/owner). On the other hand, if the state of E′
is corrupted with at least one more socket other than S marked

as a sharer, the coherence controller at H executes the following

steps: (i) reads out B from home memory, (ii) extracts the evicted

entry E from W and copies it into the appropriate position

within B, and (iii) writes B back to home memory.

in a corrupted state due to storage of a directory entry. To keep

the socket-level directory entries up-to-date, a socket on evicting

its last copy of a block notifies the home coherence controller.
To understand the basic scheme of the proposal, let us con-

sider a scenario depicted in Figure 13, where two sockets S0
and S1 are caching a block B and the corresponding intra-socket

sparse directory entries are E0 and E1, respectively. When E0
or E1 is evicted from the corresponding socket’s sparse direc-

tory, it is moved to the LLC of the respective socket; when it is

evicted from the LLC, it is housed within B. ZeroDEV partitions

the home memory block B into fixed segments and reserves each

LLC OF

SOCKET S

SOCKET DIRECTORY

AT HOME SOCKET OF B

PHYSICAL MEMORY AT

HOME SOCKET OF B

segment for housing a directory entry from a socket. Therefore,

E0 or E1 is housed in the portion of B that is reserved for

the corresponding socket. If each socket has N cores, a valid

intra-socket sparse directory entry in a stable state would require

N + 1 bits of storage (N bits for sharing-vector/owner, one bit

for two coherence states M/E and S). Assuming 64-byte memory

blocks, this arrangement can support up to 512 sockets. For

scaling beyond these socket counts for a given N , one can

explore imprecise or compressed storage of the evicted intra-

socket directory entries that are housed in the physical memory

blocks. For example, a hybrid of limited-pointer and coarse-

vector formats can dynamically choose between precise and

imprecise representations depending on the sharer count of an

evicted sparse directory entry. Our study in this paper maintains

the full-map bitvector representation.

Figure 14 depicts the flow of a directory entry (DE) write-
back (WB DE) triggered when a fused or spilled directory entry

E corresponding to a block B is evicted from the LLC of some

socket S. The entry E is held up in a buffer inside socket S if

(ii)(b) COPY DIRECTORY ENTRY INTO SLOT OF S

Fig. 14. Flow of operations on a directory entry eviction from LLC.

Overall, a directory entry eviction from the LLC is expensive

because each eviction requires a DRAM write and in a multi-

socket system, some of the evictions may require DRAM reads.

In the following, we discuss simple extensions to the baseline

LLC replacement policy to reduce the volume of directory entry

eviction. We also present a few new extensions to the inter-socket

coherence protocol.

1) Extensions to LLC Replacement Policies: We discuss two
simple modifications to the baseline LRU policy to reduce the
eviction volume of fused and spilled entries. The first modifi-
cation uses the observation that whenever an LLC block B is

accessed, the corresponding directory entry EB is also accessed.

In such situations, we update the LRU position of B first and

then the LRU position of spilled EB (if any) putting EB in the

MRU position. Since both B and spilled EB belong to the same

LLC set, this update rule guarantees that B would be evicted

 E’

EVICT N

W

CORRUPTED ?

Y

Y

SLOT OF S

N (i) READ B

B

IS S THE ONLY

SHARER/OWNER?

B

READ

E

W
R

IT
E

 W

(i
ii

)
W

R
IT

E

E0

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 776

5

Y SPARSE DIR.

ENTRY FOUND?

LOCATE SPARSE

DIR. ENTRY WITHIN

SOCKET

N

FORWARDED REQ.

HAS DIR. ENTRY?

8

9
READ CORRUPTED BLOCK
FROM PHYSICAL MEMORY

ECEIVED DENF_NACK

FROM F

10
EXTRACT SPARSE

DIR. ENTRY OF F

before spilled EB gets evicted. This policy further extends the

LLC residency of the spilled directory entries. We will refer to

this policy as spill protect LRU or spLRU.

The spLRU policy fails to offer any additional protection to

the fused entries, the eviction of which would also require a

DRAM write to back up the fused directory entry even if the

state of the fused block is not dirty. We propose an extension to

the baseline LRU policy that evicts the ordinary LLC block (in

state V=1) closest to the LRU position first before evicting any

spilled or fused entries in an LLC set. This policy, referred to

as dataLRU, evicts all ordinary data/code blocks in a set first

before evicting any spilled or fused entries. We note that these

policy extensions are simple and require minor modifications to

the existing logic. Moreover, the replacement policy is not on the

critical path.

2) Handling Uncore Hits Within a Socket: A core cache

miss request arriving at the home LLC bank may encounter one

of four possible scenarios: (i) the requested block is present in

the LLC and the corresponding directory entry is found inside

the socket (in the sparse directory or in the LLC), (ii) the

requested block is not present in the LLC, but the corresponding

directory entry is found inside the socket, (iii) the requested

block is present in the LLC, but the corresponding directory

entry is not found inside the socket, and (iv) the requested block

is not present in the LLC and the corresponding directory entry

is not found inside the socket. The first three cases constitute

uncore hits (LLC block hit or directory entry hit) within a

socket. The protocol actions for the first two cases are similar

to the corresponding cases in the intra-socket protocol. The third

case requires considering two possible sub-cases: (iiia) there is

no sharer/owner of the block in the socket, or (iiib) there are

sharers/owner of the block in the socket, but the directory entry

has been evicted and written back to home memory. Distin-

guishing between these two sub-cases is expensive, as it requires

querying the inter-socket coherence directory. Fortunately, our

LLC replacement policy extensions guarantee that sub-case (iiib)

cannot arise because an LLC block would be evicted before (or

together with) its spilled (or fused) directory entry. Therefore, if

the requested block is present in the LLC, but the corresponding

directory entry is not found within the socket, we can conclude

that the block has no sharer/owner within the socket (same as

sub-case (iiia)). The protocol actions for handling this sub-case

are same as those for case (iii) in the baseline. That leaves us with

case (iv). This case constitutes a socket miss. In the following,

we discuss the protocol extensions needed to handle a socket

miss.
3) Extensions for Handling Socket Misses: Figure 15 shows

the salient steps after a miss request originating from socket S
reaches home socket H. If the socket-level directory entry at

H indicates a non-corrupted state (i.e., M/E, S, I), the protocol

actions are same as baseline (step 2 in Figure 15). If the socket-

level directory entry indicates a corrupted state with socket S
being a sharer or the owner, the protocol actions at home are
same as baseline (step 3). In this case, the memory block is

read out and sent to the requesting socket S using a special

message type indicating that the returned block is corrupted.

Socket S incurs one cycle additional delay to extract its intra-

socket sparse directory entry from the returned block. The rest
of the actions are similar to the baseline intra-socket protocol

case where the directory entry for the requested block is present

within the socket, but the requested block is not present in the

LLC.
IN SOCKET F

Y

N

R

Fig. 15. Flow of an LLC miss from socket S. H is the home socket and F
is a socket where H may have to forward the request.

If the socket directory entry indicates a corrupted state and

the requesting socket S is not a sharer or the owner, the only

way to get the requested block is to forward the request to a

socket F that is a sharer or the owner (step 4). F is selected

by H from the socket-level directory entry. On receiving the

forwarded request, F first tries to locate the intra-socket sparse

directory entry of the requested block within its socket (step 5).

If F can find the directory entry, it retrieves the requested block

from a sharer core or the owner core within its socket and sends

it to S (step 6). On the other hand, if F fails to find a directory

entry, there are two possible reasons: (i) F still has copies of the

requested block, but has evicted and written back the intra-socket

directory entry, or (ii) F has evicted its last copy of the requested

block and sent the block to H to find out if this is the last system-

wide copy of the block. In the first case, F sends a “directory en-

try not found negative acknowledgment” (DENF NACK) back

to the home socket H (step 7). In the second case, a copy of the

block would be found in the eviction buffer of LLC in F waiting

for an acknowledgment from H. This copy is used by F to send

a response to S (this corner case is not shown in Figure 15 for

brevity). When H receives a DENF NACK message (step 8), it

extracts the directory entry of F from the block in home memory

and forwards the original request again to F along with the

directory entry using a different message type (steps 9 to 11).

A different message type prompts F to use the directory entry in

the forwarded message and F concludes the request (step 6).
Clearly, in the case discussed above (i.e., socket-level direc-

tory entry indicating a corrupted state of the home memory block

with the requester not being a sharer or the owner), the critical

path of LLC misses can get lengthened significantly. Thanks to

our LLC replacement policy extensions, this case is encountered

rarely; less than 0.5% of DRAM writes arise from directory entry

eviction indicating a tiny population of corrupted blocks in home

memory. Further, a very small fraction (less than 0.05%) of LLC

read misses access corrupted blocks. The majority of accesses to

the corrupted blocks arise from core cache evictions that remove

a sharer or the owner from the sparse directory entry segment

belonging to the originating socket. We discuss this next.
4) Handling Evictions from Core Caches: Having discussed

how ZeroDEV handles all the cases of core cache miss requests,

we turn to understand how core cache evictions are handled. Fig-

ure 16 depicts the major steps involved in handling an eviction

7
SEND DENF_NACK

TO HOME SOCKET H

SEND TO S

IN SOCKET H

1
READ SOCKET−LEVEL

DIRECTORY ENTRY E

IS STATE OF E N BASELINE 2
CORRUPTED? FLOW

Y

IS S A SHARER Y BASELINE FLOW

OR THE OWNER? WITH SPECIAL RESP.

N

FORWARD REQ. TO

4 A SHARER OR THE

OWNER SOCKET F

3

6
LOCATE

REQ. BLOCK

11
RESEND REQ. TO F

WITH DIR. ENTRY

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 777

N +2 ≤ [♩
≥

coming from a core C within socket S. The eviction is fielded

by the home LLC bank in socket S (step 1). If the eviction

fails to locate a sparse directory entry within the socket, but it is

a writeback message carrying a full cache block, the inference

is that the evicting core must be the system-wide owner of the

block (in M state). The baseline protocol flow for writeback to

home socket is executed (step 2).
IN SOCKET S

Fig. 16. Flow of a core cache eviction request that cannot find the sparse
directory entry within the requesting socket S.

If the sparse directory entry is not found within socket S
and the eviction message does not carry the full cache block,

an access to the intra-socket directory entry is required to un-

derstand the situation. Therefore, a directory entry (DE) read

request (GET DE) is sent to the home socket (step 3). In

response, the home socket sends the (necessarily) corrupted

block to S. The requesting socket extracts its intra-socket sparse

directory entry from the response (step 4). Now, it executes the

usual intra-socket protocol flow for handling the eviction e.g.,

removes the evicting core from the the directory entry (step 5).

Finally, it sends the updated directory entry back to the home

socket for writing back (step 6). During execution of steps 3

to 6 , any core cache request to the same block is negatively

acknowledged.

As in the baseline, if the last sharer core or the owner core (in

E state) within S has evicted the block and the block is not

present in the LLC, an eviction notice is sent to the home socket

to update the socket-level directory entry. Additionally, in the

ZeroDEV protocol, if the socket-level directory entry indicates

that the state of the home memory block is corrupted and this

is the system-wide last copy of the block, the block is retrieved

from the evicting core and sent to the home socket to overwrite

the corrupted memory block.

5) Handling Socket-level Directory Evictions: In the follow-

ing discussion, we assume that a socket-level directory cache

implements the socket-level directory. This can be either an

SRAM cache [21] or a much larger DRAM cache [5], [18]. An

eviction from this directory cache can generate DEVs throughout

the system jeopardizing the isolation between core caches and

directory evictions. We discuss two solutions to handle this issue.

The first solution is to back up the socket-level directory in

home memory. This solution has been used widely in large-

scale distributed shared memory multiprocessors [21], [22]. On

a directory cache miss, the home memory is looked up for the di-

rectory entry. For a quad-socket system, the DRAM overhead of

this solution is only 1.2% assuming 64-byte memory blocks. For

a 32-socket system, the overhead is 6.6%, still within reasonable

limits. Since this solution is simple and has low DRAM overhead

for small socket-count systems, our multi-socket evaluation on

four sockets uses this solution for both baseline and our proposal.

Our second solution makes the DRAM overhead a constant.

This solution extends ZeroDEV to socket-level directory entries

as well. This is achieved by reserving a partition within each

memory block for housing an evicted socket-level directory

entry. In an M -socket system, this partition would require M +2
bits (M bits for sharer vector and two state bits). Thus, a memory

block would have M +1 partitions: M partitions for intra-socket

directory entries and one for the socket-level directory entry.

Given N cores per socket and 64-byte memory blocks, the upper

bound on M is found by solving 512 M (N + 1) + (M + 2)
i.e., M 510 . When an evicted socket-level directory entry

is housed in the home memory block, a separate DirEvict bit per

memory block records this status. Thus, instead of backing up

a full directory entry in home memory, just a bit is maintained

per block bringing down the DRAM overhead to 0.2%. This

overhead does not depend on the socket-count. On a directory

cache miss, the DirEvict bit of the block is consulted. If this bit

is set, the socket-level directory entry is extracted from the home

memory block (which is anyway looked up in parallel with the

directory cache access). The protocol actions are same as what

have been discussed for a block in the corrupted state. In general,

requests to corrupted blocks need to be forwarded to a sharer

socket or the owner socket to get the data unless the requester
itself is marked as a sharer or the owner, in which case step 3

from Figure 15 is invoked. To improve performance, the array of

the DirEvict bits can be cached; an 8 KB cache can capture the

DirEvict bits of 64K blocks and cover 4 MB of home memory

footprint. Also, the volume of corrupted shared blocks should

be minimized to reduce the impact on the critical path of reads

to shared blocks. This can be achieved by associating a higher

replacement priority to the owned blocks (in M/E state) in the

directory cache.

6) Discussion: Protocol Complexity: We have discussed in

reasonable detail the life of an intra-socket directory entry as it

moves from the on-chip sparse directory to the LLC and then

to the home memory. While most of the extensions incorporated

on top of the baseline protocol are quite routine, one specific

protocol path is significantly more complex than others; this path

is invoked when handling a socket miss to a corrupted block

with the requester not marked as a sharer or the owner (see

Section III-D3). Although this case has a lot of resemblance

with the baseline protocol case when a request needs to be

forwarded to another socket, the situation is complicated by

the possibility of a racing sparse directory entry eviction in the

forwarded socket as discussed in Section III-D3. Generating the

rule-sets governing this protocol case and the related invariants

requires careful consideration. Overall, the ZeroDEV protocol

extensions require a few new message types and one new stable

state (fused/spilled/corrupted) in the LLC and the socket-level

directory entry. It also requires small additional storage in main

memory to handle socket-level directory entry evictions. In ex-

change, ZeroDEV rids the entire system of invalidations arising

from directory entry evictions.

E. LLC with Exclusive Private Data

Our baseline design always fills a block in the LLC when

fetching it from the main memory, thereby significantly improv-

HOME LLC BANK

RECEIVES EVICTION 1
FROM CORE C

SPARSE DIRECTORY

ENTRY FOUND?

N

EVICTION HAS

FULL CACHE BLOCK?

N

SEND GET_DE
3 TO HOME SOCKET

Y BASELINE

FLOW

Y FORWARD TO HOME

SOCKET AS A NORMAL 2
WRITEBACK

EXTRACT SPARSE

4 DIRECTORY ENTRY

FROM RESPONSE

5
BASELINE

FLOW

SEND UPDATED

DIR. ENTRY TO

HOME SOCKET

6

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 778

ing the chances of fusing directory entries with the correspond-

ing LLC blocks. However, an important class of non-inclusive

non-exclusive LLC design does not fill a block into the LLC

when fetching it from the main memory (similar to AMD Magny

Cours [6]). In such designs, the fetched block is filled only in the

private cache hierarchy of the requesting core in E or M state. A

block gets allocated in the LLC if (i) the block is evicted from

the private cache hierarchy of the owner core, or (ii) the block

gets shared; allocating a shared block in the LLC can accelerate

future sharing by making the subsequent shared-read requests

conclude in two hops. Additionally, whenever a block transitions

to M or E state (meaning that it becomes temporarily private),

it is de-allocated from the LLC. In general, temporarily private

data blocks (i.e., in M or E state) are not allocated in the LLC

and can be found exclusively in private caches, thereby avoiding

replication of such blocks in the LLC and improving cache space

utilization. We will refer to such a design as exclusive private

data (EPD) LLC. As in the baseline non-inclusive LLC, an LLC

replacement does not invalidate the copies (if any) of the evicted

block from the core caches.

In an EPD LLC, the privately owned blocks in M/E state

are not present in the LLC. So, directory entry fusion for these

blocks is not possible in the LLC. The directory entries of these

blocks must be spilled into the LLC when they are evicted from

the sparse directory. Since these blocks occupy a major portion

of the application working set, the ZeroDEV proposal needs

assistance from a sparse directory to keep the directory caching

pressure in the EPD LLC within reasonable limits.

F. Inclusive LLC

A cache hierarchy with an inclusive LLC also suffers from

forced core cache invalidations due to sparse directory entry

eviction. The ZeroDEV proposal applies seamlessly to an inclu-

sive LLC and can help eliminate all DEVs. An important obser-

vation is that an inclusive LLC does not experience any directory

entry eviction from the LLC. This is because the ZeroDEV LLC

replacement policies (see Section III-D) victimize the code/data

blocks before (or together with) their spilled (or fused) directory

entries. To maintain the inclusion property, the privately cached

copies of these blocks must also be invalidated, thereby freeing

the corresponding directory entries even before they are evicted.

Therefore, the baseline inter-socket coherence protocol does not

need any change in an inclusive LLC.

IV. SIMULATION ENVIRONMENT

We use the Multi2Sim simulation infrastructure [41] to eval-

uate our proposal. Table I lists the parameters of a simulated

socket. We use CACTI [17] to determine the lookup latency of

the cache arrays shown in Table I. It is important to note that

the LLC tag and data lookup latency numbers mentioned in this

table are only for the array lookup. The round-trip latency for

LLC lookup includes, in addition to these array lookup latency

numbers, the latency to traverse the interconnect, the lookup

latency at the inner-level caches, and the waiting time at several

interface queues up and down the cache hierarchy including

the port queues in the interconnect switches. The multi-socket

evaluations are done for four sockets with an inter-socket routing

delay of 20 ns. To evaluate the scalability of our proposal, we

also model a 128-core single-socket system having a 32 MB

16-way shared LLC, per-core 128 KB 8-way L2 cache and

32 KB 8-way L1 caches, and eight single-channel DDR3-2133

controllers.

TABLE I
 BASELINE SIMULATION ENVIRONMENT (ONE SOCKET)

CPU core (eight in number, dynamically scheduled, x86, 4 GHz)

224-entry ROB, 128-entry LSQ, iL1 & dL1 cache: 32 KB/8-way,
L2 cache: 256 KB/8-way, all caches: 64-byte block, LRU policy

Shared LLC, sparse directory, interconnect

LLC: 8 MB/16-way/8 banks/LRU/3-cycle tag lookup/
4-cycle data access/64-byte block. Sparse directory: 8-way, 1-bit NRU.
Interconnect: 2D mesh, 1-cycle routing delay, 1-cycle link latency.

Main memory (modeled using DRAMSim2 [31])

Two single-channel DDR3-2133 controllers, 64-bit channel, BL=8,
two ranks per channel, x8 DRAM devices, eight banks,
1 KB row buffer per bank, latency parameters: 14-14-14-35

Table II shows the multi-threaded applications used in our

evaluation. The PARSEC, SPLASH2X, SPEC OMPM 2001,

and FFTW applications are executed for the entire region of

interest (ROI). The throughput-oriented server workloads are

evaluated on 128 cores by replaying a trace of instructions

collected using PIN.

TABLE II
 MULTI-THREADED APPLICATIONS

PARSEC (input sizes within parentheses)

blackscholes (large), canneal (large), dedup (medium), facesim (large),
ferret (large), fluidanimate (large), freqmine (large), swaptions (large)
streamcluster (medium), vips (large)

SPLASH2X (inputs within parentheses)

fft (16M points), lu cb (2048×2048 matrix), radix (64M keys),
lu ncb (2048×2048 matrix), ocean cp (1026×1026 grid),

radiosity (1.5e-2 BFepsilon), raytrace (anti-aliasing with 2 subpixels,
balls4.env), water nsquared (medium size from SPLASH2X inputs),
water spatial (medium size from SPLASH2X inputs)

SPEC OMPM 2001 (inputs within parentheses)

312.swim (ref with 3 iters), 314.mgrid (ref with 1 charge, 1 iter),
316.applu (train with 6 pseudo-timesteps), 320.equake (ref with
ARCHduration 0.01), 324.apsi (train with 1 timestep), 330.art (train 2)

FFTW (inputs within parentheses)

FFTW (256×256×256 points)

SERVER (inputs, configuration, simulation length within parentheses)

SPEC jbb (82 warehouses, single JVM instance, 6 billion instructions),
Apache HTTP server (SPEC Web-Banking (B)/Ecommerce (E)/
Support (S), 128 simultaneous sessions, worker thread model,
mod php, 5 billion instructions), MySQL TPC-C (10 GB DB,
2 GB buffer, 100 warehouses, 100 clients, 500 transactions),
MySQL TPC-E (10 GB DB, 2 GB buffer, 100 clients, 5 billion
instructions), MySQL TPC-H (2 GB DB, 1 GB buffer, 100 clients,
zero think time, even mix of Q6, Q8, Q11, Q13, Q16, Q20,
5 billion instructions)

We prepare 36 homogeneous (rate) and 36 heterogeneous 8-

way multi-programmed workloads using the SPEC CPU 2017

applications. These applications were shown in Figure 2 (all

application-input pairs when using the ref inputs). We ensure that

each application has equal representation in the heterogeneous

workload mixes, thereby avoiding any bias. Each application in a

multi-programmed workload retires a representative segment of

500M dynamic instructions picked using the SimPoint tool [33].

Early finishing applications continue running until each applica-

tion in the workload retires the representative instruction set.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 779

8

×
× ×

V. SIMULATION RESULTS

We begin our evaluation of the ZeroDEV proposal by select-

ing the directory entry caching policy (from among SpillAll,

FusePrivateSpillShared, and FuseAll) and the LLC replacement

policy (from among spLRU and dataLRU). Next, we evaluate

the sensitivity of ZeroDEV to different system parameters and

1

0.96

0.92

0.88

0.84

PARSEC SPLASH2X SPECOMP

FFTW CPU2017RATE

compare its performance with related proposals.

Selection of Directory Entry Caching Policy. Figure 17 com-

pares the speedup of ZeroDEV working with three policies rela-

tive to the baseline. To make a robust selection, we maximize the

directory footprint in the LLC by completely disabling the sparse

directory of ZeroDEV. ZeroDEV executes the dataLRU LLC

replacement policy in this study. On top of each bar, we show

the minimum speedup of any application within a suite (except

FFTW, which has only one application). As expected, SpillAll is

the worst policy. While the average speedup numbers of FusePri-

vateSpillShared (FPSS) and FuseAll are close, the minimum

speedup numbers clearly show that FusePrivateSpillShared is

a superior policy. The FuseAll policy reduces the number of

LLC misses, but significantly lengthens the critical path of read

requests to shared blocks. Additionally, we note that the savings

in the interconnect traffic for SpillAll and FPSS are similar to

what we observed in Figures 2 and 3 due to reduction in core

cache misses. However, due to the extra forwarded read requests,

the interconnect traffic in FuseAll increases by about 9% on

average compared to FPSS for the multi-threaded workloads.

Further, we observed that the performance gap between the

FusePrivateSpillShared and FuseAll policies increases gradually

with increasing core-count, as the performance penalty of the

lengthened critical paths in the FuseAll policy is significantly

more in larger systems. In the rest of this section, we will operate

ZeroDEV with the FusePrivateSpillShared policy.

1

0.98
0.96
0.94
0.92

Fig. 18. Comparison between spLRU and dataLRU.

these results, ZeroDEV is evaluated with three different sparse

directory configurations, namely 1 , 1 , and no directory.

All results are normalized to the baseline having a 1 sparse

directory. Across all the suites, we observe that the performance

of ZeroDEV is nearly invariant of the sparse directory size. Most

importantly, ZeroDEV without any sparse directory performs

within a percentage of the baseline for all the suites, on av-

erage (see the GEOMEAN bars). The primary reason for this

remarkable result is the judicious use of the LLC space for

caching the directory entries. We find that for ZeroDEV oper-

ating without a sparse directory, the average DRAM read traffic

increases by at most 2% for any of the application suites (the

primary reason for small performance loss in ZeroDEV), while

the increase in the average DRAM write traffic is less than 0.5%

relative to the baseline. For the PARSEC suite (Figure 19), fre-

qmine has the largest slowdown (expected result and explained

in Figure 3 of Section I). For the SPLASH2X, SPEC OMP, and

FFTW suites (Figure 20), lu ncb, raytrace, water nsquared, and

330.art suffer from 1-4% slowdown. For the SPEC CPU 2017

rate workloads (Figure 21), cam4 suffers from the largest slow-

down of 2%. Across all suites, ZeroDEV delivers performance

within a percentage of the baseline, on average, for all three

directory configurations.

1.02

1
0.98
0.96
0.94
0.92

PARSEC SPLASH2X SPECOMP FFTW CPU2017RATE

Fig. 17. Comparison between SpillAll, FusePrivateSpillShared (FPSS), and
FuseAll policies on an 8-core single-socket system.

Selection of LLC Replacement Policy. Figure 18 shows the

speedup achieved by ZeroDEV (without a sparse directory) oper-

ating with the spLRU or dataLRU policy for 8 MB LLC (sp8MB,

data8MB bars) and 4 MB LLC (sp4MB, data4MB bars) in an 8-

core system. For reference, the baseline 4 MB LLC performance

executing LRU replacement policy is shown in Base4MB. The

4 MB LLC results help us clearly see the difference between the

spLRU and dataLRU policies because any inefficiency would

be significantly magnified in a capacity-constrained LLC. All

results are normalized to baseline 8 MB LLC. Across the board,

the dataLRU policy is higher performing. The spLRU policy fails

to offer protection to the fused directory entries and increases the

DRAM traffic for reading and updating such directory entries. In

the rest of this section, ZeroDEV will use the dataLRU policy.

Impact of Sparse Directory Size on ZeroDEV. Having fixed

the directory caching and LLC replacement policies for Ze-

roDEV, we show its detailed performance in Figures 19, 20,

and 21 for an 8-core system having a shared 8 MB LLC. In

Fig. 19. Performance of ZeroDEV on the PARSEC suite.

FuseAll FPSS SpillAll

Fig. 20. Performance of ZeroDEV on SPLASH2X, SPEC OMP, FFTW.

Sensitivity to LLC Capacity. Figure 22 evaluates ZeroDEV for

4 MB and 16 MB shared LLCs (both 16 ways). All results are

normalized to the baseline with 8 MB LLC. For 16 MB LLC ca-

pacity, ZeroDEV operating without a sparse directory performs

within a percentage of the 16 MB baseline (Base16MB). For

4 MB LLC capacity, ZeroDEV needs some assistance from a

sparse directory (results shown with a × directory) in the case
1
4

S
p

e
e

d
u

p

0
.7

6

0
.9

4

0
.9

1

0
.8

1

0
.9

6

0
.9

0

0
.8

4

0
.9

8

0
.9

8

0
.8

7

0
.9

8

0
.9

9

S
p

e
e

d
u

p

S
p

e
e

d
u

p

 sp8MB data8MB Base4MB sp4MB data4MB

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 780

×

2

×

2

×

× ×

× ×

× ×

8

8

× ×

× ×

2

8 ×

×

× ×

1.04
1.02

1
0.98
0.96
0.94
0.92

1.02

1

0.98
0.96
0.94

0.92

1.04
1.02

1
0.98
0.96
0.94
0.92

Fig. 21. Performance of ZeroDEV on the SPEC CPU 2017 rate workloads.

of a few applications (e.g., FFTW) to keep the LLC pressure

within reasonable limits and perform within a percentage of the

4 MB baseline (Base4MB).

Fig. 24. Performance on server workloads (128-core single-socket).

Performance on EPD and Inclusive LLCs. Figure 25 evaluates

ZeroDEV on exclusive private data (EPD) and inclusive LLCs

of capacity 8 MB (for the server applications, the LLC capacity

is 32 MB). All results are normalized to the baseline non-

inclusive LLC running with a 1 sparse directory. CPU-RATE

and CPU-HET groups respectively refer to the homogeneous and

heterogeneous multi-programmed workloads. For each group of

applications, the leftmost three bars show the baseline EPD LLC

performance (BaseEPD) for three sparse directory sizes (1×,

1.2

1.15
1.1

1.05
1

0.95
0.9

0.85

PARSEC SPLASH2X SPECOMP FFTW CPU2017RATE

Fig. 22. Performance with 4 MB and 16 MB shared LLC.

2 , 8); the next three bars show ZeroDEV performance on
EPD LLC (ZeroDEVEPD) for three sparse directory configu-

rations (no directory, 1 , 1); the rightmost two bars show

the performance of baseline inclusive LLC (BaseIncl) with 1
sparse directory and ZeroDEV performance on top of inclusive

LLC working without a sparse directory (ZeroDEVIncl+NoDir).

Across the board, the baseline EPD LLC with 1 and 1
sparse directories performs better than the baseline non-inclusive

LLC having a 1 sparse directory. This performance advantage

comes from better cache space utilization in the EPD LLC (see
Section III-E). ZeroDEV with EPD LLC performs within 1-

Heterogeneous Multi-programmed Workloads. Figure 23

evaluates ZeroDEV operating with three directory configura-

tions (1 , 1 , and no directory) for the heterogeneous multi-

programmed workloads running on 8 cores. The individual

workload slowdown is at most 2%, while, on average, all three

configurations of ZeroDEV perform within a percentage of the

baseline which has a 1× sparse directory.

1.02

1
0.98
0.96

0.94
0.92

1.02
1

0.98
0.96
0.94
0.92

Fig. 23. Performance on heterogeneous multi-programmed workloads.

Server Workloads. Figure 24 evaluates ZeroDEV operating

with three directory configurations (1 , 1 , and no directory)

on the server workloads. This evaluation is done on a 128-

core single-socket system with a 32 MB 16-way shared LLC.

When ZeroDEV has no directory, the maximum slowdown is

1.4% (SPECWeb-S). Across all three configurations, the average

performance is within a percentage of the baseline.

2% of the corresponding EPD LLC baseline when equipped

with 1 and 1 sparse directories. Interestingly, for several

application groups, ZeroDEVEPD without a sparse directory

outperforms the EPD LLC baseline having a 1 sparse direc-

tory. This is because ZeroDEVEPD can use the LLC space for

directory caching. Overall, ZeroDEVEPD maintains acceptable

performance compared to the baseline EPD LLC design for all

directory configurations. However, it is desirable to have a sparse

directory with ZeroDEV when incorporated in an EPD LLC

because directory entry fusion is not possible in the LLC (see

Section III-E); due to excessive directory entry spilling in the

LLC, ZeroDEVEPD+NoDir loses significant performance for

some applications when compared to BaseEPD with 1 sparse

directory (e.g., FFTW).

ZeroDEV implemented in an inclusive LLC with no sparse

directory (ZeroDEVIncl+NoDir) performs within 1-2% of the

baseline inclusive design (BaseIncl). Interestingly, we notice

that ZeroDEV eliminates 95% of the forced invalidations from

the core caches in the inclusive design. The remaining forced

invalidations arise due to inclusion property of the LLC.

Comparison to Related Work. We compare the performance of

ZeroDEV with two recent related proposals. The first one (Multi-

grain Directory [50]) improves the sparse directory space in-

vestment, while the second one (SecDir [44]) addresses the

problem of DEV-related side-channel attacks. In Figure 26, we

compare our proposal with the Multi-grain Directory (MgD),

which significantly reduces the overhead of tracking private

blocks by investing just one directory entry to track a private

region of size 1 KB. The leftmost three bars in each application

1 1

1× 1 ×
8

No Dir

S
p

e
e

d
u

p

N
o

rm
a

liz
e

d
 w

e
ig

h
te

d
 s

p
e
e

d
u

p

N
o

rm
a

liz
e

d
 w

e
ig

h
te

d
 s

p
e
e

d
u

p

S
p

e
e

d
u

p

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 781

8 ×
×

8

×

8 ×

× ×

8 × ×

×

×
×

×

8 ×

×
×

8 ×

×

8 8

8 8 × × × ×

Fig. 25. Performance on exclusive private data (EPD) and inclusive LLCs.

group show the performance of MgD for 1 ×, 1 ×, and 1 ×

In Figure 27, on top of the bars for SecDir+1 Dir,

SecDir+ 1 Dir, and ZeroDev+NoDir, the minimum speedup

numbers achieved by any application within a group are noted

to understand the maximum slowdown observed in these de-
signs. While SecDir loses performance with decreasing sparse

directory size (1 to 1) as the baseline also does, ZeroDEV

remains mostly unaffected by the varying sparse directory size

and performs within a percentage of the 1 baseline. The

minimum speedup figures for SecDir indicate large slowdown

at 1 directory size due to internal fragmentation in the private

partitions. For the server group (evaluated on 128 cores), the

internal fragmentation becomes so severe that the average per-

8 16 formance loss relative to the baseline 1 × configuration is 11% directory sizes. The next three bars show ZeroDEV performance
for 1 , 1 , and no directory. All results are collected for the

non-inclusive LLC configuration and normalized to baseline
1× directory configuration. While MgD with a 1 × directory

8
while the maximum slowdown is 18%.

offers performance similar to the baseline 1×
8

, its performance
1.04

1

degrades gradually as the directory size is further reduced (we

note that this performance is still much better than the baseline

with identical directory sizes). As already discussed, the decline

in average performance of ZeroDEV with shrinking directory

size is within 1% across the board. Thus, the performance gap

0.96
0.92
0.88
0.84

PARSEC SPLASH2X SPECOMP FFTW

CPU-RATE CPU-HET SERVER

between ZeroDEV and MgD rapidly widens with shrinking

sparse directory size.

Fig. 26. Performance comparison with Multi-grain Directory.

Figure 27 compares the performance of SecDir and ZeroDEV.

The SecDir proposal was introduced in Section I-A2. The left-

most three bars in each application group show SecDir with

1× directory, baseline with 1 × directory, and SecDir with 1 ×

Fig. 27. Performance comparison with SecDir.

Energy Expense. ZeroDEV can save area and leakage energy by

eliminating the sparse directory in inclusive and non-inclusive

LLC designs. However, it also increases the LLC dynamic

energy due to additional reads and writes to the directory entries

accommodated in the LLC. Using CACTI we estimate that

ZeroDEV running without a sparse directory can save about 9%

energy, on average, in the sparse directory and the LLC taken

together compared to the baseline running with a non-inclusive

LLC of capacity 8 MB (32 MB for server applications) and a 1
sparse directory.

Multi-socket Evaluation. We evaluate ZeroDEV on a four-

socket system with each socket having eight cores and an 8 MB

non-inclusive shared LLC. We use the PARSEC, SPLASH2X,

SPEC OMP, FFTW, SPEC CPU 2017 rate and heteroge-

directory. The next three bars show ZeroDEV performance for
1 , 1 , and no directory. For both SecDir sizes (1 , 1), the

comparison is iso-storage meaning that the number bits devoted

to the sparse directory of SecDir is nearly same as in the baseline.

The overall number of directory entries in SecDir R size is

more than that in baseline R size because an entry in the private

partition of SecDir does not need to maintain the sharer list

or owner information, thereby saving bits. In the 1 directory

configuration of SecDir for an 8-core system, each baseline
directory slice having 512 sets and 8 ways is partitioned into

eight private zones each having 32 sets and 7 ways and a shared

zone having 512 sets and 5 ways; in the 1 configuration, the

number of sets in each partition is made one-eighth of what the

1 configuration has keeping the associativity unchanged. For

the 128-core system (the server group), in the 1 configuration

of SecDir, each baseline sparse directory slice having 256 sets

and 8 ways is partitioned into 128 private zones each having 4
sets and 8 ways and a shared zone having 256 sets and 4 ways.

In the 1 configuration, each private partition is four-way fully

associative and the shared partition has 32 sets and 4 ways.

programmed workload is scaled up to have a mix of 32 appli-

cations. Each homogeneous (rate) multi-programmed workload

now has 32 copies of the same SPEC CPU 2017 application.

Each multi-threaded application is executed with 32 threads.

Across these groups of workloads, ZeroDEV operating without

an intra-socket sparse directory performs, on average, within

1.6% of the baseline which has a 1 sparse directory for intra-

socket coherence.

VI. SUMMARY

We have presented the ZeroDEV protocol, the first design

to guarantee freedom from directory eviction victims within a

CMP. A scheme for efficiently caching directory entries in the

LLC and a mechanism for handling directory entry eviction from

the LLC without generating invalidations to the core caches are

at the center of the ZeroDEV design. The end-result is that

the core caches enjoy the illusion of an unbounded directory

and remain completely isolated from directory eviction. For a

large set of multi-threaded and multi-programmed workloads,

neous workloads in this evaluation. Each heterogeneous multi-

32

S
p

e
e

d
u

p

0
.9

8

0
.8

2

 0
.9

4

0
.9

9

0
.8

6

 0
.9

6

0
.9

7

0
.9

5

0
.9

8

0
.9

3

0
.6

9

0
.9

8

0
.9

9

0
.8

5

0
.9

8

0
.9

9

0
.7

9

0
.9

9

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 782

ZeroDEV performs within 1-2% of a well-provisioned tradi-

tional baseline, which delivers performance close to that of an

unlimited-capacity sparse directory. Interestingly, for inclusive

and a class of non-inclusive LLCs, ZeroDEV maintains its

performance level without requiring an intra-socket directory.

While ZeroDEV, by design, has isolated the core caches from

directory entry evictions, a thorough study of the security aspects

of ZeroDEV is an important future work.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers for

all the feedback.

REFERENCES

[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. A Two-Level
Directory Architecture for Highly Scalable cc-NUMA Multiprocessors.
In IEEE TPDS, January 2005.

[2] M. Alisafaee. Spatiotemporal Coherence Tracking. In MICRO 2012.
[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark

Suite: Characterization and Architectural Implications. In PACT 2008.
[4] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.

Adve, V. S. Adve, N. P. Carter, and C. T. Chou. DeNovo: Rethinking
the Memory Hierarchy for Disciplined Parallelism. In PACT 2011.

[5] C-C. Chou, A. Jaleel, and M. K. Qureshi. CANDY: Enabling Coherent
DRAM Caches for Multi-node Systems. In MICRO 2016.

[6] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, B. Hughes.
Cache Hierarchy and Memory Subsystem of the AMD Opteron Proces-
sor. In IEEE Micro, January/February 2010.

[7] B. A. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. Duato. Increasing
the Effectiveness of Directory Caches by Deactivating Coherence for
Private Memory Blocks. In ISCA 2011.

[8] M. Davari, A. Ros, E. Hagersten, and S. Kaxiras. An Efficient, Self-
Contained, On-Chip Directory: DIR1-SISD. In PACT 2015.

[9] S. Demetriades and S. Cho. Stash Directory: A Scalable Directory for
Many-core Coherence. In HPCA 2014.

[10] L. Fang, P. Liu, Q. Hu, M. C. Huang, and G. Jiang. Building Expressive,
Area-efficient Coherence Directories. In PACT 2013.

[11] C. Fensch and M. Cintra. An OS-based Alternative to Full Hardware
Coherence on Tiled CMPs. In HPCA 2008.

[12] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo Direc-
tory: A Scalable Directory for Many-core Systems. In HPCA 2011.

[13] M. Frigo and S. G. Johnson. FFTW: An Adaptive Software Architecture
for the FFT. In ICASSP 1998.

[14] A. Garcia-Guirado, R. Fernandez-Pascual, and J. M. Garcia. ICCI: In-
cache Coherence Information. In IEEE TC, April 2015.

[15] K. Gharachorloo, M. Sharma, S. Steely, and S. vanDoren. Architecture
and Design of AlphaServer GS320. In ASPLOS 2000.

[16] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic
Requirements for Scalable Directory-based Cache Coherence Schemes.
In ICPP 1990.

[17] HP Labs. CACTI: An Integrated Cache and Memory Access Time,
Cycle Time, Area, Leakage, and Dynamic Power Model. Available at
http://www.hpl.hp.com/research/cacti/.

[18] C-C. Huang, R. Kumar, M. Elver, B. Grot, and V. Nagarajan. C3D:
Mitigating the NUMA Bottleneck via Coherent DRAM Caches. In
MICRO 2016.

[19] R. Hund, C. Willems, and T. Holz. Practical Timing Side Channel
Attacks Against Kernel Space ASLR. In IEEE S&P 2013.

[20] S. Kaxiras and G. Keramidas. SARC Coherence: Scaling Directory
Cache Coherence in Performance and Power. In IEEE Micro, Septem-
ber/October 2010.

[21] J. Kuskin, D. Ofelt, M. A. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, J. L. Hennessy. The Stanford FLASH Multiprocessor.
In ISCA 1994.

[22] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable
Server. In ISCA 1997.

[23] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level Cache
Side-Channel Attacks are Practical. In IEEE S&P 2015.

[24] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why On-chip Cache
Coherence is Here to Stay. In CACM, July 2012.

[25] S. L. Min and J. L. Baer. Design and Analysis of a Scalable Cache
Coherence Scheme Based on Clocks and Timestamps. In IEEE TPDS,
January 1992.

[26] S. K. Nandy and R. Narayan. An Incessantly Coherent Cache Scheme
for Shared Memory Multithreaded Systems. In International Workshop
on Parallel Processing, December 1994.

[27] B. O’Krafka and A. Newton. An Empirical Evaluation of Two Memory-
efficient Directory Methods. In ISCA 1990.

[28] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermea-
sures: The Case of AES. In Proceedings of the Cryptographers’ Track
at the RSA Conference on Topics in Cryptology, February 2006.

[29] X. Ren and M. Lis. Efficient Sequential Consistency in GPUs via
Relativistic Cache Coherence. In HPCA 2017.

[30] A. Ros and S. Kaxiras. Complexity-effective Multicore Coherence. In
PACT 2012.

[31] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle
Accurate Memory System Simulator. In IEEE CAL, January-June 2011.

[32] D. Sanchez and C. Kozyrakis. SCD: A Scalable Coherence Directory
with Flexible Sharer Set Encoding. In HPCA 2012.

[33] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. In ASPLOS 2002.

[34] K. S. Shim, M. H. Cho, M. Lis, O. Khan, and S. Davadas. Library
Cache Coherence. MIT CSAIL Technical Report MIT-CSAIL-TR-2011-
027, May 2011.

[35] K. S. Shim, M. Lis, O. Khan, and S. Devadas. The Execution Mi-
gration Machine: Directoryless Shared-Memory Architecture. In IEEE
Computer, September 2015.

[36] S. Shukla and M. Chaudhuri. Pool Directory: Efficient Coherence
Tracking with Dynamic Directory Allocation in Many-core Systems.
In ICCD 2015.

[37] S. Shukla and M. Chaudhuri. Tiny Directory: Efficient Shared Memory
in Many-core Systems with Ultra-low-overhead Coherence Tracking. In
HPCA 2017.

[38] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, T. M. Aamodt.
Cache Coherence for GPU Architectures. In HPCA 2013.

[39] H. Sung, R. Komuravelli, and S. V. Adve. DeNovoND: Efficient Hard-
ware Support for Disciplined Non-determinism. In ASPLOS 2013.

[40] A. Tabbakh, X. Qian, and M. Annavaram. G-TSC: Timestamp Based
Coherence for GPUs. In HPCA 2018.

[41] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A
Simulation Framework for CPU-GPU Computing. In PACT 2012.

[42] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. In ISCA
1995.

[43] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J.
Torrellas. Attack Directories, Not Caches: Side Channel Attacks in a
Non-inclusive World. In IEEE S&P 2019.

[44] M. Yan, J-Y. Wen, C. W. Fletcher, and J. Torrellas. SecDir: A Secure
Directory to Defeat Directory Side-channel Attacks. In ISCA 2019.

[45] Y. Yao, G. Wang, Z. Ge, T. Mitra, W. Chen, and N. Zhang. Select-
Directory: A Selective Directory for Cache Coherence in Many-core
Architectures. In DATE 2015.

[46] Y. Yao, G. Wang, Z. Ge, T. Mitra, W. Chen, and N. Zhang. Efficient
Timestamp-Based Cache Coherence Protocol for Many-Core Architec-
tures. In ICS 2016.

[47] X. Yu and S. Devadas. TARDIS: Timestamp based Coherence Algorithm
for Distributed Shared Memory. In PACT 2015.

[48] X. Yu, H. Liu, E. Zou, and S. Devadas. Tardis 2.0: Optimized Time
Traveling Coherence for Relaxed Consistency Models. In PACT 2016.

[49] X. Yuan, R. Melhem, and R. Gupta. A Timestamp-based Selective
Invalidation Scheme for Multiprocessor Cache Coherence. In ICPP
1996.

[50] J. Zebchuk, B. Falsafi, and A. Moshovos. Multi-grain Coherence Direc-
tories. In MICRO 2013.

[51] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos. A Tagless
Coherence Directory. In MICRO 2009.

[52] L. Zhang, D. Strukov, H. Saadeldeen, D. Fan, M. Zhang, and D.
Franklin. SpongeDirectory: Flexible Sparse Directories Utilizing Multi-
Level Memristors. In PACT 2014.

[53] H. Zhao, A. Shriraman, S. Dwarkadas, and V. Srinivasan. SPATL: Honey,
I Shrunk the Coherence Directory. In PACT 2011.

[54] H. Zhao, A. Shriraman, and S. Dwarkadas. SPACE: Sharing Pattern-
based Directory Coherence for Multicore Scalability. In PACT 2010.

http://www.hpl.hp.com/research/cacti/

