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ABSTRACT 

 

Finding a molecule or group of molecules that balances various, frequently conflicting 

qualities is necessary for molecular discovery, which is a multi-objective optimization 

problem. Scalarization is frequently used to combine properties of interest into a single 

objective function in order to address multi-objective molecular design, but this method 

makes assumptions about the relative relevance of the features and reveals little about the 

trade-offs between the objectives. In contrast to scalarization, Pareto optimization shows the 

trade-offs between objectives without requiring knowledge of relative importance. Yet, it adds 

new factors for algorithm design to take into account. With a focus on Pareto optimization 

algorithms, we describe pool-based and de novo generative techniques to multi-objective 

molecule discovery in this study. We show how pool-based molecular discovery is a rela- 

tively direct extension of multi-objective Bayesian optimization and how the plethora of 

different generative models extend from single-objective to multi-objective optimization in 

similar ways using non-dominated sorting in the reward function (reinforcement learning) or 

to select molecules for retraining (distribution learning) or propagation (genetic algorithms). 

Finally, we discuss some remaining challenges and opportu- nities in the field, emphasizing the 

opportunity to adopt Bayesian optimization techniques into multi-objec- tive de novo design. 

 

INTRODUCTION 

 

Molecular discovery is inherently a constrained multi-objective optimization problem. Almost every 

molecular design application requires multiple properties to be optimized or constrained. For 

example, for a new drug to be successful, it must simultaneously be potent, bioavailable, safe, and 

synthesizable. Multi-objective optimization, also referred to as multi-parameter optimization, pertains 

to other applications as well, including solvent design,
1–4

 personal care products,
5,6

 electronic 

materials,
7–11

 functional polymers,
12,13

 and other materials.
14–16

 Redox-active species in redox flow 

batteries must maximize redox potential and solubi-lity to ensure a high cell voltage.
17,18

 

Sustainability of new mate- rials (e.g., emissions caused during production and disposal
19

) is also an 

increasingly important design objective,
20,21

 which is particularly important for working fluids.
19,22,23

 

Multi-objective optimization can address multiple design criteria simultaneously, allowing for the 

discovery of molecules that are most fit for a specific application. 

When many objectives must be optimized simultaneously, a common approach is to aggregate 

the objectives into a single objective function, which requires quantifying the relative impor- tance 
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of each objective. This method, also known as scalariza- tion, reduces a multi-objective 

molecular optimization (MMO) 

 

A Pareto Front Terminology 

B Non-dominated Sorting C 

first rank second rank third rank 

Hypervolume Improvement 

 

acquired points candidate point current hypervolume 

Figure 1. Terminology and acquisition functions in Pareto optimization 

(A) Visual depiction of common Pareto terminol- ogy including the  Pareto front dominated  and 
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area of the dominated region is the hypervolume. 

(B) Non-dominated sorting, also referred to as Pareto ranking. 

(C) Hypervolume improvement for one candidate point over the current hypervolume defined by the 

set of previously acquired points; the drawing omits uncertainty for clarity. 

 

 

problem into one that is solvable with single-objective algo- rithms, but the ability to explore trade-

offs between objectives is limited. Furthermore, the optimization procedure must be repeated each 

time the scalarization function is adjusted. In contrast, Pareto optimization, which discovers a set of 

solutions that reveal the trade-offs between objectives, relies on no prior measure of the importance 

of competing objectives. This approach allows an expert to modify the relative importance of 

objectives without sacrificing optimization performance or repeating the optimization procedure. 

The solution set of a Pareto optimization contains the solution to every scalarization problem with 

any choice of weighting factors. For these reasons, we believe that Pareto optimization is the most 

robust approach to multi-objective molecular discovery. 
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The discovery of optimal molecules can be framed as either a search for molecules from an 

enumerated library or generation of novel molecules (i.e., de novo design).
24,25

 The extension of both 

discovery approaches from single-objective to multi-objective optimization has been reviewed for 

molecular discovery
26,27

 and more specifically drug discovery.
28,29

 However, recent de- velopments, 

specifically in de novo design using deep learning, warrant further discussion and organization of 

new methods. 

In this review, we organize established and emerging MMO techniques. After defining MMO 

and introducing relevant mathematical concepts, we describe key design choices during the 

formulation of an optimization scheme. Then, we pro- vide a thorough discussion of relevant 

methods and case studies, first in library-based optimization and then in de novo design. Finally, we 

share some open challenges in MMO and propose future work that we believe would most 

advance the field. 

 

DEFINING MMO 

 

The molecular discovery literature is riddled with approaches to solve the inverse problem of 

property / structure, many of which are labeled ‘‘multi-objective.’’ However, the line between 

MMO and single objective or constrained optimization is quite blurred. To organize the field’s 

communication of MMO method- ologies, we classify MMO as follows: 

 

1. Multiple objectives, which are not aggregated into a single scalar objective, are considered. 

Some trade-off exists between objectives (i.e., they are not perfectly correlated). 

2. The domain over which to optimize (‘‘design space’’) is a chemical space. Molecules in this 

space may be defined either implicitly (e.g., as latent variables that can be 

decoded using generative models) or explicitly (i.e., as a molecular library). 

3. The goal of the optimization task is to identify molecules that maximize or minimize some 

molecular properties. We consider tasks that aim to identify molecules with properties within 

some specified range to be constrained generation, not multi-objective optimization. 

 

Any definitive scope of MMO is bound to be somewhat subjec- tive. Yet, we believe the preceding 

definition captures all relevant implementations of MMO and excludes methods that are better 

categorized elsewhere (e.g., as a single objective optimization or constrained optimization). 

In contrast to de novo molecular design where molecules are proposed with few constraints other 

than structural validity, pool-based or library-based optimization constrains the design space to a 

predefined set of molecules. One approach to pool- based optimization is to predict the properties 

of every molecule in the set using quantitative structure-property relationships (QSPRs) and identify 

those that optimize the desired properties. This process is typically denoted virtual screening and 

can be viewed as an inefficient or brute-force approach to MMO. Virtual screening using structure-

based drug design techniques for property estimation has been used to identify multi-target 

inhibitors
30–32

 as well as selective inhibitors.
33

 In the interest of summarizing efficient optimization 

algorithms, we do not discuss enumeration and exhaustive screening approaches in this review. 

 

PRELIMINARY MATHEMATICAL CONCEPTS IN MMO 
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The Pareto front 

In MMO problems, two or more desirable molecular properties compete with one another. For 

Pareto optimal solutions, an improvement in one objective is detrimental to at least one other 

objective. For instance, when a selective drug is designed, strong affinity to the target and weak 

affinity to off-targets are both desired. However, when the binding affinities to on- and off-targets 

are highly correlated (i.e., they bind strongly to similar molecules), an increase in potency to the 

target often necessi- tates a decrease in selectivity. The Pareto front quantifies (and, in the 2- or 3-

objective case, visualizes) these types of trade- offs. Figure 1A illustrates a Pareto front for two 

objectives that are to be maximized, with points in red representing the non- dominated points, 

which form the Pareto front and define the set of optimal solutions for the multi-objective 

optimization problem. For these points, an improvement in one objective 

 

 

 
 

Figure 2. Progress in membranes for gas separation as revealed by the movement of a Pareto 

front 

Reprinted with permission from Swaidan et al., ACS Macro Lett. 2015, 4, 9, 946–951.
34

 Copyright 

2015 American Chemical Society. 

 

necessitates a detriment to at least one other objective. In Figure 1A, one can imagine that each 

objective is a desired prop- erty and that each point on the plot represents one molecule. If the two 

maximized objectives were measures of selectivity and binding affinity, non-dominated points 

represent molecules for which an improvement in binding affinity necessitates a decrease in 

selectivity, or vice versa. For simplicity and ease of visualization, we always consider that objectives 

are maximized for the remainder of the review. Pareto fronts for minimized objectives would instead 

appear in the lower left corner, as opposed to the upper right. 

The hypervolume of a set is the volume spanned by the Pareto front with respect to a reference point. 
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In the two-dimensional case, the hypervolume is the area that is dominated by the Pareto front (the 

red shaded region in Figures 1A and 1C). This metric can evaluate how ‘‘good’’ a Pareto front is: a 

larger hyper- volume indicates a larger dominated region (i.e., a ‘‘better’’ Pareto front). 

Progress in new materials development is often reported and visualized by the advancement of a 

Pareto front. As an example, in gas separation applications, membrane selectivity and perme- ability 

are two competing objectives which are both to be maximized. The trade-offs for this optimization 

can be visualized as a Pareto front. Figure 2 shows the improving upper bound for the two maximized 

objectives, which can be understood as an expansion of the Pareto front from 1991 to 2015.
34

 

 

Single-objective Bayesian optimization 

Bayesian optimization (BO) is a strategy for black box optimiza- tion where the scalar function to be 

optimized, sometimes referred to as the oracle, may be non-differentiable or difficult to measure 

(costly).
35

 The workflow of BO applied to single- objective molecular discovery is summarized in 

Figure 3A. 

BO is an iterative optimization procedure that begins by defining some prior model to map the 

design space to the 

objective. This model is called a surrogate model and, in the molecular setting, is equivalent to a 

QSPR model. The surrogate model is used to predict the objective values of hypothetical can- didates 

in the design space, which an acquisition function uses (along with the surrogate model 

uncertainty) to prioritize which candidates to sample next. The newly sampled, or acquired, 

molecules are then evaluated, or scored, against the oracle, and these new data are used to refine 

the surrogate model. The process is repeated until some stopping criterion is met: the objective 

value of the acquired molecules converges, resources are expended, or some objective value 

threshold is attained. 

The acquisition function is central to BO. This function quan- tifies the ‘‘utility’’ of performing a 

given experiment and can be broadly understood to balance both the exploitation and explo- ration 

of the design space.
36

 

In molecular BO, exploration prevents stagnation in local optima and can encourage acquisition 

of more diverse mole- cules. However, the acquisition function must also exploit by se- lecting 

candidates predicted to optimize the objective, enabling the algorithm to converge upon an 

optimum and identify the 

best-performing molecule(s). A few acquisition functions for the case where a single objective ðfÞ 

is maximized are worth mentioning: 

 

1. Expected improvement (EI): 

 

EIðxÞ  = E½maxf0; fðxÞ — f
ω
g]; (Equation 1) in which fðxÞ represents the objective value for 

some molecule x, 

E is the expectation operator, and f
ω
 is the best objective value 

attained so far from the acquired molecules.
35,36

 

2. Probability of improvement (PI): 
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b 

PIðxÞ  = E½ðfðxÞ — f
ω
Þ > 0]: (Equation 2) 

 

The PI metric estimates how likely a new molecule x is to outperform the current best 

molecule.
36

 

3. Greedy acquisition (G): 

 

 

 

GðxÞ = fbðxÞ: (Equation 3) 

Here, the acquisition function is simply the predicted value for the maximized objective function, 

regardless of uncertainty and what has been observed so far.
37

 

4. Upper confidence bound (UCB): 

 

 

 

UCBðxÞ = f ðxÞ + bsðxÞ; (Equation 4) 

in which s is the surrogate model prediction uncertainty and b is a hyperparameter.
36
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Figure 3. Overview of the Bayesian optimization workflow 

There are several commonalities between the (A) single-objective and (B) multi-objective settings. 

 

While the BO literature thoroughly discusses and tests many acquisition functions, we have only 

described a few that are most relevant to our discussion of MMO. We refer to readers interested in 

single-objective acquisition functions to Frazier’s tutorial
35

 or Shahriari et al.’s review.
36

 

Relating to BO, active learning can be understood as an imple- mentation of iterative experimental 

design in which the objective is to train a surrogate machine learning model with greatest ac- curacy 

and fewest sampled points.
38

 The motivation for active learning lies in the belief that a machine 

learning model will attain greater accuracy with less training data if it ‘‘chooses’’ its training data. 

While the iterative loop is similar to that of BO, active learning acquisition functions prioritize 

exploration and select points with greatest model uncertainty. 

 

Multi-objective  BO 

Pareto optimization problems, in which multiple objectives are considered simultaneously without 

quantification of relative objective importance, must be handled with a slightly modified set of 

tools, although the core BO ideology remains the same (Figure 3B). First, all oracle functions must 

be approximated either with multiple surrogate models, a multi-task surrogate model,
36

 or some 

combination thereof. Second, the acquisition function must account for all objectives without 

explicitly assign- ing a relative importance weight to each of them. Here, the goal is to expand the 

Pareto front, or increase the dominated hypervo- lume, as much as possible. We focus on three 
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multi-objective acquisition functions: 

 

1. Expected hypervolume improvement (EHI): 

 

 

EHIðxÞ  = E½maxð0; HVðX acq W fxgÞ — HVðX acqÞÞ]; 

(Equation 5) 

in which HV is the hypervolume and X acq is the set of previously acquired candidates. EHI is best 

understood as an analog to 

the single-objective expected improvement, which measures improvement in hypervolume instead 

of objective value. 

 

2. Probability of hypervolume improvement (PHI): 

 

 

PHIðxÞ  = E½ðHVðX acq W fxgÞ — HVðX acqÞÞ > 0]:    (Equation 6) 

 

PHI, comparable with probability of improvement, is the prob- ability that an acquired point will 

improve the hypervolume by any amount. 

 

3. Non-dominated sorting (NDS): NDS assigns an integer rank to each molecule by sorting the 

set of molecules into separate fronts. One can imagine identifying a Pareto front from a finite 

set of molecules (denoted first rank), removing that Pareto front, and subsequently identifying 

the next Pareto front (denoted second rank), as shown in Figure 1B. NDS does not consider 

uncertainty, and a can- didate’s assigned Pareto rank is taken to be its acquisition score. The first 

rank candidates are equivalent to the set of points that would be acquired from using greedy 

acquisi- tion with every set of possible scalarization weights, so NDS can be thought of as a 

multi-objective analog of greedy acquisition. 

 

 

Batching and batch diversity 

While the canonical BO procedure evaluates candidates sequentially by acquiring the single 

candidate with the highest acquisition score at each iteration, many molecular oracles can be 

evaluated in batches. Experiments performed in well plates are naturally run in parallel, and 

expensive computations are 
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Objective 1 

 

Figure 4. Contrasting definitions of diversity 

During batch acquisition, one can consider one or both of (A) Pareto diversity and (B) 

molecular/structural diversity. Promoting one form of diversity does not necessarily improve the 

other. 

 

often distributed in batches to make the best use of computa- tional resources. In the BO workflow, 

this means that an acquisi- tion function should be used to select a set of molecules, instead of just one. 

A naive approach, top-k batching, scores molecules normally and acquires the k candidates with the 

highest acquisi- tion scores. The utility of the entire set is thus implicitly taken to be the sum of 

individual acquisition scores. However, the infor- mation gained from acquiring one molecule that is 

highly similar to another molecule in the batch is likely to be small. 

In batched multi-objective optimization, the acquisition function should maximize the utility of 

scoring the entire batch. For the case of acquisition with EHI, this refers to the improvement in hypervo- 

lume after all molecules in a batch are acquired. One can imagine that acquiring a set of candidates very 

near each other on the Par- eto front would not maximize this utility. An ideal batching algo- rithm 

would consider all possible batches, predict the utility of each, and select the batch with greatest 

utility. However, solving this combinatorial optimization exactly is intractable. Instead, ap- 

proximations are used to construct batches iteratively: identify the most promising molecule, assume it 

has been observed, select the next most promising molecule, and repeat this until the desired batch size is 

achieved.
39

 

Batched optimization is more often approached with heuris- tics that promote some measure of 

diversity within a batch while selecting molecules with high acquisition scores. For example, the 

objective space can be split into regions (Figure 4A) with a limit on the number of candidates 

acquired in each region
40,41

; 

lecular optimization
47,48

 or in active learning.
49–52

 While one might predict that Pareto front 

diversity also indicates molecular diversity, this is not necessarily true. It is possible for two struc- 

turally similar molecules to have different properties and there- fore lie in different regions of the 

objective space; conversely, molecules with similar properties are not necessarily structurally 

similar. 

 

FORMULATING MOLECULAR OPTIMIZATION PROBLEMS 

 

A molecular optimization task always begins with some state- ment of desired properties. Some of 

the subsequent formulation decisions are listed in Figure 5. First, the individual properties must be 

converted to mathematical objectives. Then, the means of proposing candidate molecules, either de 

novo or library based, must be selected. If more than one objective exists, they must either be 

aggregated into a single objective or treated with an appropriate multi-objective formulation. 

Finally, an acquisition function, or selection criterion in the case of de novo design, must be 

selected. In this section, we explore some of these design choices in detail. 

 

Converting a desired property to a mathematical objective function 
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ð Þ 

 

ð Þ 

In the formulation of any MMO task, after properties of interest are identified by a subject matter 

expert, the individual objectives must be quantitatively defined (Figure 5, panel 2). While this 

seems like an easy task, framing the objectives can be subjective in nature. If one property of interest 

for a molecular optimization 

task is estimated by a score SðxÞ, there are still multiple ways to represent the corresponding value 

to be maximized ðJðxÞÞ, including but not limited to: 

 

1. A continuous, strictly monotonic treatment, where a greater value is strictly better: 

 

JðxÞ = SðxÞ: (Equation 7) 

 

2. A thresholded, monotonic treatment, where some mini- mum T is required: 

likewise, candidates in less crowded regions along the Pareto front can be more strongly favored.
42

 

Such approaches to pro- mote Pareto diversity have been incorporated into multi-objec- tive 

molecular design.
43–45

 

Diversity of the design space can also be considered during 

J x = SðxÞ SðxÞ R T 

— N  SðxÞ % T 

(Equation 8) 

acquisition, which is distinct from Pareto diversity and can also be applied to single-objective 

optimization.
46

 In MMO, design space diversity is equivalent to the structural, or molecular, diver- 

sity of a batch. Acquisition with structural diversity constraints might promote selection of a 

molecular batch with a wide array of scaffolds or functional groups (Figure 4B). Molecular diversity 

can be measured with metrics like Tanimoto similarity using fingerprint representations, which 

characterize a specific kind of structural similarity. As with Pareto diversity, structural diver- sity 

constraints can be imposed during batch acquisition in mo- 

3. A Boolean treatment, where some minimum is required and no preference is given to even 

higher values: 

 

J x = 1 SðxÞ R T : (Equation 9) 

0 SðxÞ % T 

 

The most appropriate representation depends on the property of interest and the application, 

demonstrated here for common properties of interest for novel drug molecules. If S predicts a 
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Figure 5.  Decisions when formulating MMO problems 

Iterative generative models tend to employ selection criteria for retraining or propagation, which 

are analogous to acquisition functions in Bayesian optimization. As discussed in later sections, 

conditional generation aims to propose molecules with a specified property profile in a non-iterative 

manner and therefore does not utilize selection criteria or an acquisition function. Single-objective 

acquisition functions can only consider molecular diversity, while Pareto acquisition functions can 

consider both molecular and Pareto diversity. 

 

ligand’s binding affinity to a target protein, a higher affinity is often better, so the first representation 

may be most appropriate. If S predicts solubility, there may be no additional benefit of greater 

solubility once a certain solubility is met that allows for sufficient delivery and bioavailability. In 

this case, the third repre- sentation, which is most consistent with a property constraint instead of an 

optimized objective, would be most fitting. In a similar manner, remaining components of 

Lipinski’s Rule of 5
53

 define some threshold, and no extra benefit is attained once the threshold is 

met. These heuristics may be most appropriately defined as constraints and not optimized objectives. 

The perspectives of domain experts during objective formula- tion are extremely valuable to ensure 

that molecules identified as optimal are suitable for the application. However, in cases where expertise 

is not available or a specific threshold is unknown, we argue that solving the problem with a simple 

continuous repre- sentation (representation 1) is most robust because it requires no predefined 

hyperparameters or assumptions. This way, con- straints can later be imposed on the solution set 

without needing to repeat the optimization from scratch. 

 

Choosing between library-based selection and de novo 

design 

Once the objectives are defined, an approach to chemical space exploration must be chosen. The 

scope of exploration can be limited to an explicitly defined molecular library, which can be 

constructed to bias exploration toward chemical spaces relevant to a specific task. Alternatively, a 

de novo design tool can be 

used to ideate novel molecules not previously seen or enumer- ated. The type of generative model 

influences the area of chem- ical space that is explored.
54

 For example, the chemical space explored 

by genetic algorithms (GAs) may be constrained by the molecules used as the initial population and 

the set of evolu- tionary operators that are applied to the population. In a more general sense, the 

molecules that can be generated by any de novo model will be determined by the training set and 

many other design choices. Broadly, constraining the design space to a carefully enumerated 

chemical library can bias exploration to- ward molecules that are synthesizable and/or more fit for a 

given application, potentially sacrificing the creativity and theoretically wider chemical space 

accessible with de novo design.
54

 

 

Defining   the relationship   between   different   objectives Once individual objective functions are 

defined and the chemical space approach is chosen, the next challenge is to decide how to consider 

all objectives simultaneously. The most naive choice is to simply combine the objective functions 
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into one aggregated objective function, referred to as scalarization. The scalarized objective 

function is most commonly a weighted sum of objec- tives,
55–61

 with weighting factors indicating 

the relative impor- tance of different objectives. A weighted sum of multiple binding affinities has 

been used to identify multi-target
62

 as well as selec- tive inhibitors.
63

 Nonlinear scalarization 

approaches are also uti- lized in MMO problems.
64–66

 For example, Cardoso Gajo et al. divide 

predicted drug activity by toxicity to yield a scalarized objective function.
67

 The objective function 

can also be framed 
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Figure 6. Optimization workflows for various generative model categories 

Note that all model classes, except conditional generation, involve a scoring step and are designed 

to be iterative. The reward calculation step in reinforcement learning and the selection step in 

distribution learning and genetic algorithms are analogous to an acquisition function in multi-

objective Bayesian optimization. While the termination criterion is not explicitly shown for 

distribution learning, genetic algorithms, and reinforcement learning, these iterative loops can 

accommodate various stopping criteria. We also emphasize that while an autoencoder architecture 

is depicted in both distribution learning and conditional generation, these generators can also be 

recurrent neural networks or other generative architectures. 
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as a product of Booleans,
68

 each of which denotes whether a given threshold is met. This scalarization 

approach has been uti- lized to identify multi-target kinase inhibitors.
69

 

Booleans can also be summed to define an objective function, commonly referred to as multi-

property optimization.
70

 Desir- ability functions, another common scalarization method, trans- form 

one or more objectives into a scale-free value between 0 and 1.
71–73

 As with the definition of 

individual objectives, the scalarization function must be justified by the use case. There are 

alternatives to scalarization that also reduce a multi-objective optimization into one that can be solved 

with single-objective algorithms, such as defining a hierarchy of objective impor- tance
74

 or using 

alternating rewards to maximize each objective in turn.
75,76

 

However, the solution to a scalarized multi-objective problem is equivalent to just a single point out 

of the many non-dominated solutions that exist on the Pareto front. Scalarization is overly simplistic 

and requires a user to quantify the relative importance of different objectives. It therefore fails to 

inform a user about the trade-offs between objectives. Even when the relative impor- tance of 

objectives is known or can be approximated a priori, scalarization is strictly less informative than 

Pareto optimization, which identifies the full set of molecules that form a Pareto front. We focus 

exclusively on Pareto optimization approaches to molecular discovery throughout the remainder of 

this review. 

 

EXAMPLES OF MMO FROM VIRTUAL LIBRARIES 

 

Library-based MMO aims to identify the Pareto front (or a set close to the Pareto front) of a large 

molecular library while scoring few molecules with the objectives. The well-established BO 

workflow (Figure 3B) is exemplified by the retrospective studies of del Rosario et al.
77

 and 

Gopakumar et al.
78

 In general, the iterative optimization scheme entails training a surrogate model 

to predict properties of interest, selecting molecules for acquisition using surrogate model 

predictions and uncertainties, scoring the acquired molecules with the ground-truth objectives, and 

retraining the surrogate model. 

Janet et al.
47

 apply this methodology to discover transition metal complexes for redox flow 

battery applications with maxi- mized solubility and redox potential. Ideal complexes must be 

soluble in polar organic solvents commonly used for flow batte- ries and have high redox potentials 

to yield sufficient cell voltage. The design space the authors explore is a combinatorial library of 

almost 3 million complexes. A neural network surrogate model predicts solubilities and redox 

potentials from feature vector rep- resentations of complexes.
79

 DFT calculations served as the 

oracle for both solubility and redox potential, and the expected hypervolume improvement 

acquisition function was used. To encourage exploration of structurally diverse complexes, the 

top 10,000 peformers according to EHI were clustered in feature 

 

space to identify and evaluate 100 medoids. Improvements of over three standard deviations from 

the initial random set of complexes were observed for both objectives in just five itera- tions, which 

the authors estimate to represent a 500X reduction in simulations compared with a random search. 

In a similar vein, Agarwal et al.
44

 use library-based Pareto opti- mization to search for redox-active 
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materials with minimized reduction potential and solvation free energy. A third objective penalized 

deviation from a target peak absorption wavelength of 375 nm. Candidates were scored with 

expected hypervolume improvement, while crowding distance constraints ensured acquisition of a 

diverse set along the Pareto front. When retro- spectively applied to a dataset of 1,400 molecules, a 

random search required 15X more evaluations than did BO to acquire molecules dominating 99% of 

the total possible hypervolume. Then, a prospective search was performed on a set of 1 million 

molecules, with the prior dataset serving as the first set of ac- quired molecules. Of the 100 

molecules acquired during pro- spective BO iterations, 16 new Pareto-optimal molecules were 

identified. 

Most pool-based MMO problems follow this exact workflow with minor variability in the choice 

of acquisition function and consideration of diversity. This approach works effectively and is almost 

guaranteed to outperform random search baselines. While there is certainly room for algorithmic 

improvement (e.g., increasing sample efficiency of surrogate models, exploring the effects of 

batch size and diversity), we expect that future work will largely focus on additional applications 

incorporating more meaningful objective functions and experi- mental validation. 

 

EXAMPLES OF MMO USING GENERATIVE MODELS 

 

The primary drawback of pool-based MMO is the explicit constraint on the chemical space that can 

be accessed. De novo design relaxes this constraint and can, in principle, explore a wider region of 

chemical space. At the same time, de novo design can introduce additional challenges related to 

chemical validity
80

 and synthesizability.
81

 In many generative models, molecules are proposed as 

SMILES/SELFIES strings, graphs, or synthetic pathways. Some generate novel molecules by de- 

coding continuous embeddings into discrete molecular struc- tures while others modify those 

already identified with discrete actions. We focus not on the details of each model, but instead on 

how certain categories of models aid in the molecular optimi- zation task. A reader interested in a 

detailed discussion of gener- ative models, which is outside the scope of this review, is directed to 

other publications.
80,82–84

 

The myriad of multi-objective de novo design approaches noticeably lack standardization. Unlike 

library-based discovery where multi-objective optimization is a modest extension of BO, the 

adaptation of generative models to MMO is not nearly as straightforward. We therefore introduce 

another categoriza- tion scheme for case studies in this section, as summarized in Figure 6. 

 

Iterative retraining for distribution learning 

Generative models that are designed for distribution learning are intended to ideate molecules 

exhibiting a distribution of struc- 

tures similar to those of the training set.
85

 A very basic approach to optimization with an 

unsupervised generative model is to sam- ple a set of molecules, evaluate their properties, and 

identify those that optimize the objective function; to extend this to multi-objective optimization, 

the Pareto front of the sampled set can be identified by evaluating all oracles.
86

 This approach 

essentially uses a generative model to define a virtual library suit- able for exhaustive screening. 

Optimization schemes can use distribution learning iteratively to progressively shift the distribu- 

tion of generated molecules and push the Pareto front. To achieve this, generative models are 
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iteratively retrained on the increasingly promising (e.g., closest to the Pareto front) subsets of the 

molecules they propose. This process is akin to a simu- lated design-make-test loop, in which 

design is analogous to sampling, make to decoding to a molecule, and test to evaluating the oracles. 

The iterative distribution learning workflow for single-objective optimization is exemplified by 

the library generation strategy defined by Segler et al.
87

 to identify inhibitors predicted to be active 

against the 5-HT2A receptor. Here, a subset of molecules from the ChEMBL database, with 

corresponding experimental pIC50 values against 5-HT2A, was used to train both a SMILES- based 

recurrent neural network (RNN) and a QSAR classifier to predict whether a molecule inhibits 5-

HT2A. Then, sequences of characters were randomly sampled from the RNN to generate SMILES 

representations of novel molecules. Molecules pre- dicted by the QSAR classifier to be active were 

used to retrain the model, progressively biasing the generator to propose active molecules. After four 

iterations of retraining, 50% of sampled molecules were predicted to be active, a significant 

increase from only 2% in the initial random library. The same procedure has also been employed 

using a variational autoencoder to generate molecules with high docking scores to the DRD3 

receptor.
88

 

The extension of the method to multiple objectives is best illus- trated by Yasonik
89

 for the 

generation of drug-like molecules. As before, a recurrent neural network was pretrained to 

generate valid molecular SMILES strings. Five oracles associated with drug-likeness were then 

minimized: ClogP (estimated lipophilic- ity), molecular weight, number of hydrogen bond 

acceptors, number of hydrogen bond donors, and number of rotatable bonds. A set of about 10k 

novel, unique, and valid molecules were sampled and scored according to the five properties. NDS 

was used to select half of these molecules for retraining. The use of NDS distinguishes this Pareto 

optimization from Se- gler et al.’s single-objective optimization. Although continuous objective 

values were used during selection of molecules for re- training, constraints associated with the 

oracles, derived from the ‘‘Rule of Three’’
90

 (an extension of Lipinski’s Rule of 5
53

), were used 

to evaluate the generator’s performance. After five re- training iterations, the fraction of molecules 

that fulfilled all five constraints increased from 2% to 33%. While there is no evi- dence that the 

Pareto front was shifted outwards (i.e., that the dominated hypervolume increased) after 

retraining iterations, this study demonstrates that a generative model’s property dis- tributions for 

multiple objectives can be shifted simultaneously. In addition to recurrent neural networks, as 

in the prior two examples, variational autoencoders and other generative models can be 

iteratively retrained to simultaneously fulfill
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Figure 7. Advancement of the Pareto front from Abeer et al. using iterative retraining for 

distribution learning 

Both (A) and (B) are from the same optimization task, with each set only showing two objectives 

for ease of visualization. The first and second columns are the distribution of the training molecules 

and the first batch of sampled molecules, respectively. The following 3 columns depict molecules 

sampled from the model after 1, 5, and 10 iterations. Reproduced from Abeer et al.
92

 with 

permission from the authors. 

 

multiple property constraints.
91

 Abeer et al.
92

 describe one such approach to generate drugs with high 

predicted binding affinity to the DRD2 receptor, high ClogP, and low synthesizability score using a 

VAE as the unsupervised generator. After initial training, sampling, and scoring, the best molecules 

were selected ac- cording to their Pareto rank, but some random molecules were also included in the 

retraining set. Importantly, the authors show a progression of the two-dimensional Pareto fronts 

beyond those of the original training set: they identified molecules that are strictly superior to (i.e., 

that ‘‘dominate’’ in a Pareto optimality sense) the best molecules in the training set. Two such plots 

are shown in Figure 7. Here, it is clear that this method is capable of increasing the dominated 

hypervolume and identifying novel molecules that have property values outside of the objective 

space spanned by the training set. 

 

Genetic algorithms 

In contrast to many deep learning architectures, genetic algo- rithms (GAs) do not rely on a mapping 

between continuous and discrete spaces. Instead, molecules are iteratively trans- formed into new 

ones using evolutionary operators like muta- tions and crossovers. Molecular mutations may include 

the addi- tion or removal of atoms, bonds, or molecular fragments, while molecular crossover 

involves molecular fragment exchange be- tween two parent molecules. GAs begin with a starting 

popula- tion of molecules that are scored by the oracle function(s). Selec- tion criteria are imposed to 

determine which molecules in the population are chosen as parents to be propagated. This selec- tion 
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step is what guides a GA to optimized molecules and, like an acquisition function in BO, determines 

whether an optimiza- tion is a Pareto optimization or not. Evolutionary operators are randomly 

chosen and applied to the parents, and the population is updated with the resulting molecules. 

GAs were the first popularized polymer
93

 and small- molecule
94

 generators. In 1995, Sheridan and 

Kearsley
94

 pro- 

posed generating small molecules by iteratively evolving integer sequence representations of 

molecules. That same year, Weber et al.
95

 used a GA to find optimal molecules from a syn- 

thetically enumerated library. Since then, GAs have adopted evolutionary operators which function 

directly on molecular graphs
96–98

 or SMILES strings.
99

 Some GAs even mutate mole- cules using 

chemical reaction templates to encourage synthesiz- ability.
95,100,101

 Multiple objectives can be 

scalarized during selection to frame a multi-objective GA as a single objective one.96,98,102,103 

As with any generative model, if the selection criteria consider multiple objectives simultaneously 

without imposing assump- tions about relative importance, a GA can advance the popula- tion’s 

Pareto front. One such GA was proposed by Brown et al.
97

 to generate ‘‘median molecules,’’ 

which maximize Tani- moto similarity
104

 to two different molecules simultaneously. In each 

iteration, molecules in a population are manipulated with either mutations (add/delete atoms, 

add/delete bonds) or crossovers (molecular fragment exchange between two parent molecules). 

NDS, using the two Tanimoto similarities as objec- tives, determine which molecules are selected 

for propagation. The critical adaptation for the multi-objective case is the use of Pareto ranking—

specifically, NDS—as a selection criterion, instead of using a single property estimate or a 

scalarization of multiple properties. 

A comparable multi-objective GA, presented by Nicolaou et al.,
48

 generates ligands with 

maximized docking scores for a target receptor (estrogen receptor b) and minimized scores for a 

negative but closely related target (estrogen receptor a). As an extension from the prior example, 

the NDS selection criterion was modified to include niching and elitism. Niching encourages 

structurally diverse populations by grouping candidates into niches based on their structural 

similarity during selection, and only a set number of molecules may be acquired in each niche. 

Promoting diversity can be especially beneficial to G 

areto Front for Selective Inhibitors of ERα 

 
ΔG, ERβ 

 

 
 
 
 
 
 
 
 
 

1st Generation 

20th Generation 

50th Generation 

100th Generation 

–
Δ
G
, 
E
R
α
 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 51, Issue 03, March : 2022 

 

UGC CARE Group-1,                                                                                                             692              

 
  

Figure 8. Pareto front for the identification of selective inhibitors The DG values represent 

docking scores. Note that the Pareto front in this plot is located in the bottom left. The Pareto front is 

shown after 1, 20, 50, and 100 iterations. It clearly shifts to the bottom left with each iteration. Here, 

niching is used but elitism is not. Redrawn from Nicolaou et al.
48

 

 

 

performance, as GAs are constrained by their starting set and set of modification operators.
105,106

 

When elitism is imposed, all Pareto-dominant molecules found during prior iterations are appended 

to the population before selection to prevent good molecules from being ‘‘forgotten.’’ The authors 

report that both elitism and niching improve optimization performance. The depicted progression 

of the Pareto front is replicated here (Figure 8). The notion of optimizing against a negative target 

can be generalized into a ‘‘selectivity score’’ that aggregates affinity to multiple off-target 

controls.
107

 Properties related to bioavailability, such as blood-brain barrier penetration and aqueous 

solubility, can serve as additional objectives for the dis- covery of novel drug molecules, as reviewed 

by Ekins et al.
28

 

The effect of diversity-aware acquisition is further explored by Verhellen,
43

 wherein the 

effectiveness of two different multi- objective GAs that promote Pareto diversity are compared. 

Both GAs use NDS to select the population members to be prop- agated as parents of the next 

generation. The first, NSGA-II,
42

 promotes selection of molecules with a larger distance from other 

molecules in the objective space and has precedent in application to a synthesizability-constrained 

molecular GA.
101

 The second, NSGA-III,
41

 enforces diversity by requiring at least one molecule to 

be acquired in each of a set of reference regions in the objective space (Figure 4A). Both GAs are 

applied to seven molecular case studies, each with a different set of objectives including affinity to a 

target, selectivity, and/or molecular weight. Using the dominated hypervolume as an evaluation 

metric, both multi-objective optimization approaches outperform a weighted- sum scalarization 

baseline, but there is no clear winner among the two NSGA algorithms. A measure of internal 

similarity indi- cates that the structural diversity decreased with each evolu- tionary iteration. 

Nonetheless, the selection criteria promoted Pareto diversity, demonstrating that Pareto diversity 

can be achieved without necessarily requiring molecular, or structural, diversity. 

Reinforcement  learning 

Reinforcement learning (RL)-based generative models are trained to create molecules by learning 

to maximize a reward function quantifying the desirability of generated molecules. In molecular 

RL, a policy determines which molecules are gener- ated and can be iteratively updated to 

maximize the reward as new molecules are generated and scored. The set of actions or choices 

available to the policy is denoted the action space. The framing of the reward function, 

analogous to the BO acqui- sition function and GA selection criteria, determines whether an RL 

method utilizes Pareto optimization. 

When the learned policy generates molecules by modifying a previous population of molecules, 

the action space may be comprised of atom- and bond-level graph modifications
108–110

 or a set of 

fragment-level graph modifications.
111

 In a similar manner, graph modifications resulting from 

chemical reactions can constitute the action space to promote synthesizability.
112

 When the policy 

is a deep learning generator that designs molecules from scratch, any de novo generator that 

decodes latent variables to a molecule, such as SMILES recurrent neural networks, can be 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 51, Issue 03, March : 2022 

 

UGC CARE Group-1,                                                                                                             693              

 
  

considered as the policy.
113–117

 Typically, these policies are trained using policy gradient 

algorithms (e.g., REINFORCE).
118

 

Most RL approaches to molecular discovery, and specifically to drug design,
119,120

 optimize a 

reward that considers a single property113–115 or a scalarized objective.30,59,92,108–

112,116,121–126 We are aware of only one molecular RL approach whose reward function directly 

encourages molecules to be generated along a Pareto front. In DrugEx v2, presented by Liu et al.,
127

 

RL is used to generate multi-target drug molecules. To promote the discovery of molecules along the 

Pareto front, NDS is used to calculate the reward. The authors test their algorithm with both this 

Pareto reward function and a weighted sum reward function. In the weighted-sum benchmark, 

the weighting factors were set as dy- namic parameters that were altered during inference to 

encourage the model to find solutions at different locations on the Pareto front, analogous to the 

alternating reward approach to scalarization. For the multi-target discovery case, the fraction of 

generated mole- cules with all properties above some threshold values was 81% with the Pareto 

scheme and 97% with the weighted sum scheme. The two approaches were only compared in this 

constraint-style evaluation, not in terms of a Pareto optimization criterion such as hypervolume 

improvement, so it is not clear if the lackluster performance of the Pareto optimizer is merely due to 

this misalign- ment of evaluation criteria. 

 

Conditional  generation 

Conditional generators produce molecules that are meant to achieve some set of user-defined 

properties instead of directly maximizing or minimizing them in an iterative manner. These models 

generate one or more molecules predicted to fulfill the specified properties in one pass and 

without any iterative feedback as in previously discussed approaches. Although our focus in this 

review is on multi-objective optimization, we feel that discussing the role of conditional 

generators in MMO is necessary due to their prevalence in the field and the ease of extending from 

single-objective (single-constraint) condi- tional generators to multi-objective (multi-constraint) 

condi- tional generators. 

 

Many conditional generators are autoencoders that map molecules to latent embeddings and vice 

versa. To generate molecules with specific properties, the latent variables of these generators can be 

manipulated during training such that they represent the properties of interest. One such 

manipulation applied to variational autoencoders is to recenter the prior distribution around the 

associated molecule’s property value c instead of the origin, encouraging the latent distribution 

to 

match N ðc; s
2
Þ instead of N ð0; s

2
Þ.

128–130
 This approach can 

be expanded to multiple objectives by centering each latent dimension along a different property of 

interest.
128

 Then, during inference, sampled latent variables are chosen according to the desired 

property values with at least partial success. 

Autoencoders can also be manipulated for conditional generation by directly feeding the property 

value(s) of training molecules to the decoder during training.
131,132

 As one example, Lim et al.
133

 use 

this approach to fulfill certain ‘‘drug-like’’ prop- erty criteria. During CVAE (conditional VAE) 

training, a condition vector including molecular weight, ClogP, number of hydrogen bond donors, 
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number of hydrogen acceptors, and topological polar surface area is appended to the latent space 

during decod- ing. Then, during generation, a manually specified conditional vector influences the 

decoder to generate molecules with the stated properties. In all case studies, less than 1% of 

generated molecules have properties within 10% of the values set in the condition vector. Another 

study using a similar architecture
134

 demonstrates that it is possible for the properties of up to 33% of 

generated molecules, ‘‘when rounded up,’’ to reflect the spec- ified properties. In this case, it appears 

that this fraction strongly correlates with how many training molecules also fulfilled those constraints. 

Some conditional generators modify existing molecular graphs or scaffolds provided as input 

instead of generating molecules from scratch. These models are typically trained with matched 

molecular pairs: pairs of molecules with only one well-defined structural transformation that causes a 

change in molecular properties.
135,136

 One such single-objective genera- tive model is intended to 

‘‘translate’’ molecules that are inactive as DRD2 inhibitors to active inhibitor molecules,
137

 wherein 

ac- tivity is predicted by a trained classifier. The generative model is presumed to learn graphical 

translations that most contribute to inhibitory strength. This methodology can be extended to the 

multi-constraint case if improvements in multiple properties are desired.
138–140

 For example, 

MolGPT, a conditional generator proposed by Bagal et al.,
141

 accepts a scaffold and desired property 

values. It then outputs a molecule that it believes to fulfill the input constraints. Molecules are 

completed from scaffolds as SMILES strings, and the model is trained on sets of {scaffold, molecule, 

properties}. The success of MolGPT in meeting target properties relies on having molecules with that 

property be well- represented in the training set. While MolGPT is able to generate molecules 

conditioned on multiple properties, the authors do not report whether their model is capable of 

generating mole- cules with combinations of property values not present in the training set. 

The effectiveness of conditional molecule generators depends not only on their ability to generate 

valid and unique molecules, but also on the accuracy of the implicit molecule-property model. If this 

model is inaccurate, the generator will suggest mol- 

ecules that do not actually exhibit the desired properties. We further emphasize that, in order to 

identify Pareto-optimal mole- cules, the model must be able to extrapolate past the training set 

because, by definition, Pareto-optimal molecules have proper- ties (or combinations of properties) 

that are not dominated by members of the training set. 

Therefore, we find it unlikely that these non-iterative condi- tional generators will succeed in 

advancing the Pareto front. This is in contrast to iterative optimization methods, wherein the 

predictive capability of the generators is improved for newly explored regions of chemical space 

with each iteration. 

Furthermore, the nature of conditional generators requires that a user know what property value 

ranges are feasible. Based on the discussed and other case studies,
142,143

 conditional genera- tors 

perform well primarily when attempting to generate novel molecules with property combinations 

spanned by the training set. A pIC50-conditioned model would propose some set of mol- ecules if 

asked to achieve a pIC50 value of 100, even though such a value is unrealistic. Their behavior in 

these settings is not well understood, so a user may need to know which property constraints are 

valid or possible. Due to these concerns, we caution the reader that conditional generators may 

not be most appropriate for Pareto optimization tasks. 

 

Hybrid approaches 
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The case studies that we have shared so far fall neatly into our defined categories. However, 

certain other approaches that combine methods from multiple categories or otherwise deviate from 

this classification are worth mentioning. 

Grantham et al.
45

 introduce one such hybrid approach, in which latent representations of 

molecules are mutated with a GA and decoded to generate new molecules. A variational au- 

toencoder is first trained to encode molecules into latent vectors. After encoding the starting 

population, mutations are applied to their corresponding latent vectors, which are then decoded. 

From this new set of evolved molecules, NDS with a crowding distance constraint (specifically, 

NSGA-II
42

) is used to select new molecules to use for retraining the autoencoder. The proposed 

method outperforms two BO baselines in terms of the hypervolume of the final Pareto front 

when applied to an optimization of ClogP, QED, and synthesizability score. A similar methodology 

was used to optimize both drug-likeness proper- ties and binding affinity (estimated via docking 

scores) to carbonic anhydrase IX.
144

 

Iterative retraining has also been used to improve the perfor- mance of a conditional generator. In 

one example, a conditional graph generator is fine-tuned with molecules that are active against both 

JNK3 and GSK3b.
145

 This workflow essentially fol- lows the iterative retraining of distribution 

learning algorithms, but uses conditional generation to provide an extra bias toward sampling 

molecules with favorable properties. In a similar manner, RL methods can be considered conditional 

generation if the reward function favors molecules with a target property pro- file.
146–148

 Two such 

methods
69,149

 use RL to generate molecules that are predicted to be dual inhibitors of GSK3b and 

JNK3 receptors according to pretrained surrogate models. In the final populations in both studies, 

100% of molecules are active against both inhibitors. However, the dataset used in both studies for 

training already includes a small fraction of dual inhibitors. 

 

Therefore, discovering ‘‘active inhibitors’’ in this case is equivalent to discovering the chemical space 

that is classified as active ac- cording to the surrogate models, and this task is easier than 

extrapolating with a continuous oracle. In general, the reported success of generators conditioned on 

Boolean values (instead of continuous ones) can be overoptimistic, as the degree of optimiza- tion 

success is harder to quantify with metrics such as the hyper- volume. 

 

DISCUSSION 

 

In the description of library-based MMO, we explained that these methods are a natural extension of 

BO. In contrast, de novo methods stray farther from classic BO, although some aspects of BO 

acquisition functions are present in generative workflows. In particular, NDS is often used as the 

selection criterion for re- training (distribution learning) or propagation (GAs). Other con- ventional 

BO acquisition functions, such as EHI and PHI, are rarely incorporated into optimization with 

generative models. These acquisition functions use the uncertainty in surrogate model predictions, 

which aids in the balance between explora- tion and exploitation. But most generative optimization 

architec- tures score molecules with the ground truth objectives during selection, thus bypassing 

uncertainty quantification and making EHI and PHI unusable as acquisition functions. An 

opportunity exists to incorporate Bayesian principles into de novo design by including a separate 

surrogate model that predicts objective function values and can be retrained as new data are acquired 
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to guide selection. These and other adjustments to de novo optimi- zation approaches may help bridge 

the gap between generation and model-guided optimization. 

We have also observed that the performance of Pareto opti- mization approaches is often 

evaluated using individual prop- erty values or constraints. These metrics, however, reveal little 

about the combination of properties of discovered molecules, which is of foremost interest in 

MMO. Hypervolume improve- ment can indicate the shift in the Pareto front, but other quali- ties of 

the discovered molecules related to the Pareto front
150,151

 can be of equal importance, including 

the density of the Pareto front or the average Pareto rank of the molecules. In molecular discovery, 

imperfect property models are often used as oracles. In these cases, it is beneficial to discover a 

dense Pareto front and many close-to-optimal molecules according to QSPR predictions, even if not 

all increase the hypervolume. Naturally, some molecules that are predicted to perform well will not 

validate experimentally, and having a denser population to sample from will increase the 

probability of finding true hits. For the same reason, promoting structural diversity and not just 

Pareto diversity is a way to hedge one’s bets and avoid the situation where none of the Pareto-

optimal molecules validates. 

In batched multi-objective optimization, Pareto diversity can be considered during acquisition 

to promote exploration. In molecular optimization, structural diversity similarly encour- ages 

exploration of a wider region of chemical space. Thus, in MMO, both potential measurements of 

diversity are relevant, and either or both can be used during optimization. At this point, neither 

diversity metric has been shown to outperform the other in MMO tasks, and the question of how best 

to incorporate both 

into acquisition (or whether this actually benefits optimization) re- mains. At present, diversity-aware 

acquisition is more commonly incorporated into multi-objective GAs rather than other optimi- 

zation architectures like RL or iterative distribution learning, although diversity-promoting 

acquisition functions may improve the performance of these generative models as well. 

We have argued that Pareto optimization is a more practical approach to many molecular 

discovery tasks than scalarization or constrained optimization, but the ability of Pareto optimization 

to scale to several dimensions must also be addressed. NDS increasingly fails to differentiate the 

optimality of solutions with more objectives, as more and more points are non-dominated in a 

higher-dimensional space.
152

 The numerical estimation of hypervolume has a computational cost 

that scales exponentially with the number of objectives, making EHI and PHI acquisition functions 

also increasingly difficult to use in high dimensions.
152

 The increased computational costs 

associated with fine-tuning many surrogate models and scoring candidates for every objec- tive 

contribute to scalability issues as well. Considering the chal- lenges faced with Pareto optimization 

of many (more than three) objectives, scalarizing certain objectives or converting some to 

constraints to make the problem solvable may be the most prac- tical approach, especially when 

some objectives are known to be more important than others. The question of whether Pareto 

optimization can robustly scale to many objectives is a worth- while one only if a problem cannot 

be feasibly reduced. The visualization of the Pareto front is an additional consideration; objective 

trade-offs are more easily conveyed with a Pareto front of two or three objectives. Ultimately, the 

optimal formulation of an MMO problem will depend on the use case, and collaboration with subject 

matter experts can ensure that the problem formu- lation is feasible but does not impose unrealistic 

assumptions. 
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Beyond these unique challenges posed by multi-objective opti- mization, many challenges from 

single-objective optimization remain relevant.
25,80,153

 The first is the need for realistic oracle 

functions that can be evaluated computationally but meaningfully describe experimental 

performance; this is closely related to the need for more challenging benchmarks to mimic practical 

applica- tions. Optimizing QED, ClogP, or a Boolean output from a classifier are easy tasks and are not 

good indicators of robustness or gener- ality. Generative models specifically must also prove effective 

with fewer oracle calls, which is often the bottleneck when molecules must be scored with 

experiments or high-fidelity simulations.
154

 Active learning and optimal experimental design 

techniques
155

 will continue to inspire methods that improve molecular optimiza- tion sample 

efficiency.
49,52

 For experimental applications, the syn- thesizability of generated molecules is an 

additional factor that must be considered
81

 and can be cast as a continuous objective or a rigid 

constraint. Experimental prospective validation is essen- tial to demonstrate the viability of molecular 

discovery algorithms, although algorithmic advances can be made more rapidly with purely 

computational studies. 

 

Conclusion 

Although many approaches to computer-aided molecular design have been developed with just 

single-objective optimiza- tion in mind, molecular discovery is a multi-objective optimiza- tion 

problem. In certain situations, such as optimization from a library (BO-accelerated virtual 

screening), the extension from 

 

single-objective to multi-objective requires only minor modifica- tions, e.g., to the acquisition 

function and to the number of surrogate models. In contrast, de novo design workflows vary more in 

methodology and are less directly analogous to BO. The use of Pareto rank as a reward (for RL) or 

the use of NDS to select sampled molecules to include in subsequent popula- tions (for GAs) or 

training sets (for iterative distribution learning) replaces greedy acquisition functions. Yet, there is an 

opportu- nity to define new generative workflows that more directly incor- porate model-guided 

optimization methods with consideration of model uncertainty. Batching in MMO can encourage 

chemical space exploration by rewarding structural diversity, Pareto diver- sity, or both, but best 

practices around diversity-aware batching are not well established. Emerging workflows will benefit 

from the adoption of challenging benchmarks and evaluation metrics that measure the dominated 

hypervolume or Pareto front den- sity. As newly proposed molecular discovery tools increasingly 

emphasize multi-objective optimization, emerging methods must address the algorithmic 

complexities introduced by Pareto optimization. 
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