

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 696

Using Re-Reference Interval Prediction, High

Performance Cache Replacement (RRIP)

 Ms.Banashree Dash1*, Dr. Nagarjuna 2

 1* Assistant Professor Dept. Of Computer Science and Engineering, NIT , BBSR
2Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

banashree@thenalanda.com* ,nagarjuna@thenalanda.com

ABSTRACT

1. INTRODUCTION
An optimal replacement policy makes its replacement decisions

By anticipating the re-reference interval of a cache block,
practical cache replacement policies try to mimic optimal
replacement. On cache hits and misses, the widely used LRU
replacement policy always forecasts a nearly immediate re-
reference interval. Apps with a long re-reference interval have
poor LRU performance. These applications frequently reference
non-temporal data in short bursts or have working sets that are
larger than the cache (called scans). This research suggests cache
replacement using re- reference interval prediction to enhance the
performance of such workloads (RRIP). Both the scan-resistant
Static RRIP (SRRIP) and the thrash-resistant Dynamic RRIP
(DRRIP) are the solutions we suggest.

Both RRIP strategies only need two bits per cache block and are

simple to implement into the LRU approximations already present

in contemporary CPUs. Our tests on a single-core processor with a

2MB last-level cache (LLC) and workloads from PC games,

multimedia, servers, and SPEC CPU2006 demonstrate that SRRIP

and DRRIP beat LRU replacement on the throughput metric by an

average of 4% and 10%, respectively. SRRIP and DRRIP exceed

LRU replacement on the throughput parameter by an average of

7% and 9%, respectively, according to our studies with over 1000

multi-programmed workloads on a 4-core CMP with an 8MB

shared LLC. We also demonstrate that RRIP works better than

LFU, the most advanced scan-resistant replacement algorithm

available right now. RRIP requires 2X less hardware for the cache

configurations being studied.

Categories and Subject Descriptors
B.3.2 [Design Styles]: Cache memories, C.1.4 [Parallel architectures]

General Terms

Design, Performance.

Keywords
Replacement, Scan Resistance, Thrashing, Shared Cache

mailto:banashree@thenalanda.com
mailto:nagarjuna@thenalanda.com

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 697

using perfect knowledge of the re-reference (or reuse) pattern of
each cache block and replaces the block that will be re-referenced
furthest in the future. Practical cache replacement policies, on the
other hand, can be viewed as basing their replacement decisions on
a prediction of which block will be re-referenced furthest in the
future and pick that block for replacement. Typically, on a miss,
replacement policies make a prediction on when the missing block
will be re-referenced next. These predictions can be updated when
further information about the block is available, for example, on a
re-reference.

In the commonly used Least Recently Used (LRU)
replacement policy, the LRU chain represents the recency of cache
blocks referenced with the MRU position representing a cache
block that was most recently used while the LRU position
representing a cache block that was least recently used. Recent
proposals on cache insertion policies [11, 25, 28, 30] and hit
promotion policies [30] have altered the description of the LRU
chain. Rather than representing recency, the LRU chain can
instead be thought of as a Re-Reference Interval Prediction
(RRIP) chain that represents the order in which blocks are
predicted to be re-referenced. The block at the head of the RRIP
chain is predicted to have a near-immediate re- reference interval
while the block at the tail of the RRIP chain is predicted to have a
distant re-reference interval. A near-immediate re-reference
interval implies that a cache block will be re-referenced sometime
soon while a distant re-reference interval implies that a cache
block will be re-referenced in the distant future. On a cache miss,
the block at the tail of the RRIP chain (i.e., the block predicted to be
referenced most far into the future) will be replaced1.

Using the RRIP framework, LRU replacement predicts that a
block filled into the cache has a near-immediate re-reference
interval and thus places it at the head of the RRIP chain. Upon re-
reference to a block, LRU updates its prediction and again
anticipates that the block has a near-immediate re-reference
interval. In effect, LRU predicts that cache blocks are re-
referenced in the reverse-order of reference, i.e., LRU predicts that
a Most Recently Used (MRU) cache block will be re-referenced
much sooner than an LRU cache block.

While LRU provides good performance for workloads with
high data locality, LRU limits performance when the prediction of a

near- immediate re-reference interval is incorrect. Applications
whose re- references only occur in the distant future perform badly

under LRU. Such applications correspond to situations where
the application working set is larger than the available cache or

when a burst of references to non-temporal data discards the active
working set from the cache. In both scenarios, LRU inefficiently

utilizes the cache since newly inserted blocks have no temporal
locality after insertion. The Dynamic Insertion Policy (DIP) [25]

improves LRU replacement in situations where the re-reference
interval is in the

1. We are viewing the RRIP chain like a “snake” where, for LRU,

new cache blocks enter the head and leave at the tail.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 698

(a1 , a2 , ... , ak-1 , ak , ak , ak-1 , ... , a2 , a1)
N

(a) Recency-friendly Access Pattern (for any k)

(a1 , a2 , ... , ak)
N

(b) Thrashing Access Pattern (k > cache size)

(a1, a2, a3, a4, ... ak)

(c) Streaming Access Pattern (k =)

[(a1 , ... , ak , ak , ... , a1)
A P(a1 , a2 , ... , ak , ak+1 ... , am)] N

[(a1 , ... , ak)
A P(b1 , b2 , ... , bm)] N

“scan”

(d) Mixed Access Pattern (k < cache size AND m > cache size , 0 < < 1)

Figure 1: Common Cache Access Patterns.

distant future by dynamically changing the re-reference prediction
from a near-immediate re-reference interval to a distant re-reference
interval. At the time of a cache miss, the LRU Insertion Policy (LIP)
component of DIP predicts that the cache blocks that already reside
in the cache will be re-referenced sooner than the missing cache
block. As a result, when the working set is larger than the available
cache, LIP preserves part of the working set in the cache by replacing
the most recently filled cache block instead of using LRU
replacement. DIP dynamically uses LIP for workloads whose
working set is larger than the available cache and relies on LRU for
all other workloads.

Unfortunately, DIP makes the same predictions for all references
of a workload. The LRU component of DIP predicts that all re-
references to missing cache blocks will be near-immediate and
inserts them at the head of the RRIP chain. On the other hand, the LIP
component of DIP predicts that all re-references to missing cache
blocks will be in the distant future and inserts them at the tail of the
RRIP chain. Consequently, when the workload re-reference pattern is
mixed, i.e., both near-immediate and distant re-references occur,
neither LRU nor DIP can make accurate predictions. For example,
both DIP and LRU limit cache performance when scans [5] discard
the frequently referenced working-set of an application from the
cache. A scan is defined as a burst of references to data whose re-
reference interval is in the distant future. In comparison, accesses that
do not belong to the scan have a near-immediate re-reference
interval. Our studies show that many real world applications suffer
from frequent scans in their cache access patterns. Consequently,
improving the performance of real world applications require a
practical scan-resistant cache replacement policy.

Scans, regardless of their length, do not receive cache hits after
their initial reference. This is because the re-reference interval of a
scan block is in the distant future. The situation may be different for
the blocks resident in the cache when the scan first starts. When the
data referenced after the scan is different from the data referenced
before the scan, replacement decisions during the scan are irrelevant
because the references to the new data cause compulsory misses2.
However, when the data referenced after the scan belongs to the
working set prior to the scan, the optimal replacement policy knows
that a distant re-reference interval be applied to cache blocks
belonging to the scan and a near-immediate re-reference interval be
applied to cache blocks belonging to the working set. In doing so, the
optimal replacement policy preserves the frequently referenced
working set in the cache after the scan completes. Practical
replacement policies can potentially accomplish this by using LIP-
style replacement during the course of the scan and LRU replacement

in the absence of the scan.
In comparison to prior scan-resistant replacement algorithms [5,

13, 17, 22, 27, 29], this paper focuses on designing a high performing

2. Compulsory misses cannot be reduced under any replacement policy.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 699

scan-resistant replacement policy that requires low hardware
overhead, retains the existing cache structure, and most
importantly integrates easily into existing hardware
approximations of LRU [1, 2]. To that end, we propose a practical
replacement policy that uses Re-reference Interval Prediction
(RRIP).

RRIP prevents cache blocks with a distant re-reference
interval (i.e., scan blocks) from evicting blocks that have a near-
immediate re-reference interval (i.e., non-scan blocks). RRIP
accomplishes this by requiring an M-bit register per cache block to
store its Re- reference Prediction Value (RRPV). We propose Static
RRIP (SRRIP) that is scan-resistant and Dynamic RRIP (DRRIP)
that is both scan- resistant and thrash-resistant. Both SRRIP and
DRRIP improve performance over LRU and easily integrate into
existing hardware approximations for LRU. In fact, when M=1,
SRRIP degenerates to the Not Recently Used (NRU) [2]
replacement policy commonly used in modern high performance
processors [1, 2].

The rest of this paper is organized as follows, Section 2
motivates the need for a scan-resistant replacement algorithm,
Section 3 provides related work, Section 4 introduces RRIP, Section
5 provides the experimental methodology, Section 6 presents
results, and finally Section 7 summarizes the paper.

2. MOTIVATION
Efficient last-level cache (LLC) utilization is crucial to avoid long
latency cache misses to main memory. Under LRU replacement,
many studies have illustrated that the filtering of temporal locality
by small caches cause the majority of blocks inserted into the LLC
to never be re-referenced [14, 16, 25, 30]. The inefficient cache
utilization is because LRU performs poorly for the cache access
patterns resulting from the filtered temporal locality.

To better understand when LRU performs poorly, Figure 1
presents several representative cache access patterns commonly
found in applications. Let ai denote the address of a cache line, (a1,

...
, ak) denote a temporal sequence of references to k unique addresses
and let P(a1, ... , ak) denote a temporal sequence that occurs with
some probability . A temporal sequence that repeats N times is

represented as (a1, ... , ak)
N. The cache access patterns can be

classified into the following categories:
• Recency-friendly Access Patterns: Figure 1a presents a

typical stack access pattern that repeats N times. In general,
recency- friendly access patterns have a near-immediate re-
reference interval. For any value of k, the access pattern
benefits from LRU replacement. Any other replacement
policy besides LRU can degrade the performance of these
access patterns.

• Thrashing Access Patterns: Figure 1b presents a cyclic access
pattern of length k that repeats N times. When k is less than
or equal to the number of blocks in the cache, the working set
fits into the cache. However, when k is larger than the
number of cache blocks, LRU receives zero cache hits due to
cache thrashing. For such patterns, LRU provides no cache hits
unless

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 700

the cache size is increased to hold all k entries of the access
pattern. When the available cache is less than k entries, the

optimal replacement policy preserves some of the working set in
the cache. Unfortunately, LRU is incapable of doing so.

• Streaming Access Patterns: Figure 1c presents a streaming
access pattern. When k = , the access pattern has no locality in
its references. Streaming access patterns can be characterized as
workloads that have infinite re-reference interval. Consequently,
streaming access patterns receive no cache hits under any
replacement policy. As a result, LRU is adequate since
replacement decisions are irrelevant in the presence of
streaming access patterns.

• Mixed Access Patterns: Mixed access patterns can be
characterized as workloads where some references have a near-
immediate re-reference interval while other references have a
distant re-reference interval. Figure 1d illustrates this using two
example access patterns that have scans (highlighted by the grey
box in the figure). Both examples include an access pattern of
length k that repeats A times followed by a reference to a

sequence of length m with probability . Both the scan and
access pattern repeat N times. The first reference pattern is
representative of an application that performs operations on a
linked list of m entries. The initial stack reference pattern
illustrates operations that have temporal locality to the
beginning of the linked list. The scan illustrates a search or
update operation that requires traversing the entire list. The
second example is representative of an application that operates
on a data structure of k entries and then updates a different data
structure of m entries. For both access patterns, when m + k is
less than the available cache, the total working set fits into the
cache and LRU works well. However, when m + k is greater
than the available cache, LRU discards the frequently
referenced working set from the cache. Consequently, accesses
to the frequently referenced working set always misses after the
scan. In the absence of scans, mixed access patterns prefer LRU.
However, in the presence of scans, the optimal policy preserves
the active working set in the cache after the scan completes.
Unfortunately, LRU cannot preserve the active working set.

For the access patterns described above, there is room to improve
LRU for thrashing and mixed access patterns. DIP [25] addresses the
cache thrashing problem by preserving some of the working set in the
cache. Unfortunately, DIP only targets workloads that have a
working set larger than the available cache and relies on LRU for all
other workloads. As a result, DIP limits performance of workloads
where frequent scans discard the active working from the cache. To
illustrate this problem, Figure 2 compares the cache performance of
thrash-resistant DIP to scan-resistant HYBLRU/LFU. HYBLRU/LFU is

a hybrid cache replacement policy that uses Set Dueling [25] to
dynamically choose between the scan-resistant Least Frequently
Used (LFU)3 [17] replacement policy and LRU replacement. The
study consists of 14 workloads each running on a 2MB LLC. The y-
axis presents the average reduction in cache misses compared to LRU
while the x-axis presents the applications and their categories. The
application categories under study are PC games, multimedia, server,
and SPEC CPU 2006.

Figure 2 shows that DIP outperforms LFU for two workloads
from the SPEC CPU2006 category. However, LFU significantly
outperforms DIP for workloads in the PC games and multimedia

categories (and the hmmer workload in the SPEC CPU2006
category). For example, PC games and multimedia workloads
observe no benefit from thrash-resistant DIP but observe up to 20%

3. Access frequency is measured by using a 4-bit counter per cache block.

All LFU counters in the set are halved whenever any counter saturates.

%
 F

ew
er

 C
ac

h
e

M
is

se
s

C
o
m

p
ar

ed
 t

o
 L

R
U

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 701

Figure 2: Comparing LRU to Thrash-Resistant DIP and Scan-

Resistant LFU.

reduction in cache misses from scan-resistant LFU. The results in
Figure 2 motivate the need for a practical cache replacement
policy that is not just thrash-resistant but also scan-resistant.
Section 4 discusses the design of such a replacement policy.

3. RELATED WORK
Both industry and academia have produced an impressive amount
of research work dedicated to improving the performance of
replacement policies. While we cannot describe all replacement
policies that exist in the literature, we summarize prior art that
most closely relates to improving LLC performance by targeting
cache blocks that are dead upon cache insertion.

Dead blocks brought in by scans have commonly been
addressed by using access frequency to predict the re-reference
pattern. The proposed Least Frequently Used (LFU) [17]
replacement policy predicts that blocks that are frequently accessed
will be re-referenced in the near-immediate future while blocks
infrequently accessed will be re-referenced in the distant future.
LFU accomplishes this by using counters to measure a block’s
access frequency. While LFU improves the performance of
workloads with frequent scans, it significantly degrades the
performance of workloads where recency is the preferred choice
for replacement. Several studies have combined recency and
frequency [17, 23, 27] to address the problem but they require
several parameters to be tuned on a per-workload basis. Self-
tuning adaptive policies [22, 5, 29] exist, however they
significantly increase the hardware overhead and complexity. The
hardware overhead and complexity can be reduced via hybrid
cache replacement [25]. Hybrid cache replacement uses set dueling
[25] to dynamically choose between multiple replacement policies.
While hybrid cache replacement using LRU and LFU can provide
scan- resistance, hybrid replacement requires hardware and
verification overhead for two different cache replacement policies.
It would be highly desirable that a single cache replacement policy
provide scan resistance and perform well for recency friendly
workloads.

Another area of research predicts when the re-reference interval
of a cache block becomes distant, i.e., a cache block becomes

dead [16, 18]. A recent study applied dead block prediction at the
LLC [19]. The proposed policy attaches a prediction with each cache
block to determine whether or not the block is dead. The proposed
policy uses the block’s re-reference history to predict death after the
block moves out of the head of the RRIP chain. The victim selection
policy selects dead blocks closer to the tail of the RRIP chain.
While dead block prediction improves cache performance, it
requires additional hardware overhead for the dead block predictor.

70

PC games multi server SPEC CPU2006

60 media

50

AVERAGE

DIP
HYBLRU/LFU

40

30

20

10

0

h
al

fl
if

e2

h
al

o

g
u
n
m

et
al

2

fi
n
al

-f
an

ta
sy

p
h
o
to

sh
o
p

re
n
d
er

m
an

sa
p

tp
c-

c

ap
p
-s

er
v
er

ca
ct

u
sA

D
M

sp
h
in

x
3

h
m

m
er

m
cf

b
zi

p
2

G
A

M
E

S

M
U

L
T

IM
E

D
IA

S
E

R
V

E
R

S
P

E
C

0
6

A
L

L

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 702

A recent study [25] shows that dead blocks occur when the
application working set is larger than the available cache. In such
scenarios, the proposed Dynamic Insertion Policy (DIP) [25]
dynamically changes the insertion policy from always inserting
blocks at the head of the RRIP chain to inserting the majority of the
blocks at the tail of the RRIP chain. By doing so, DIP preserves some
of the working set in the cache. Since DIP makes a single insertion
policy decision for all references of a workload, DIP only targets
workloads whose working set is larger than the available cache.
Consequently, in the presence of scans, the LRU component policy of
DIP is unable to preserve the active working set in the cache.

Another recent study proposes pseudo-LIFO [8] based
replacement policies. The policy proposes cache replacement using a
fill stack as opposed to the recency stack. The proposed policy learns
the re-reference probabilities of a cache block beyond each fill stack
position and finds that evicting blocks from the upper portion of the
fill stack improves cache utilization by evicting dead blocks quickly.
The proposed policy however requires additional hardware to keep
track of a block’s fill stack position and also requires a dynamic
mechanism to learn the best eviction position on the fill stack.

Various other solutions [6, 13, 20, 26, 31] exist but they either
require significant additional hardware or they drastically change the
organization of the existing cache. Reuse distance prediction [15]
most closely resembles the work presented in this paper. Reuse
distance prediction explicitly calculates the reuse distance of a given
cache block by using a PC indexed predictor. RRIP does not
explicitly calculate reuse distance. Instead, RRIP always predicts that
all missing cache block will have the same re-reference interval and
updates the prediction when more information is available, for
example, on a re-reference. RRIP also differs from prior work in that
it proposes a high performing practical scan-resistant cache
replacement policy that does not require significant hardware
overhead or changes to the existing cache structure.

4. RE-REFERENCE INTERVAL

PREDICTION (RRIP)
When workloads have mixed access patterns, LRU replacement and
its approximations cannot perfectly distinguish between blocks that
have a distant re-reference interval from blocks that have a near-
immediate re-reference interval. Since chain-based LRU replacement
is impractical to build in hardware for highly associative caches, we
illustrate the problem for mixed access patterns using the Not
Recently Used (NRU) [1, 2] replacement policy.

 Not Recently Used (NRU) Replacement
The Not Recently Used (NRU) replacement policy is an
approximation of LRU commonly used in modern high performance
processors. NRU uses a single bit per cache block called the nru-bit4.
With only one bit of information, NRU allows two re-reference
interval predictions: near-immediate re-reference and distant re-
reference. An nru-bit value of ‘0’ implies that a block was recently
used and the block is predicted to be re-referenced in the near-
immediate future. An nru-bit value of ‘1’ implies that the block was
not recently used and the block is predicted to be re-referenced in the
distant future. On cache fills, NRU always predicts that the missing
block will have a near-immediate re-reference. Upon re-reference,
NRU again anticipates that the block referenced will have a near-
immediate re-reference. On a cache miss, NRU selects the victim

cache block whose predicted re-reference is in the distant future, i.e., a
block whose nru-bit is ‘1’. Because multiple blocks may have a
distant re-reference prediction, a tie-breaker is needed. The NRU

4. This paper describes NRU replacement by inverting the polarity of the

bit to represent not-recently used. instead of recently used.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 703

victim selection policy always starts the victim search from a
fixed location (the left in our studies). In the event that all nru-bits
are ‘0’, i.e., all blocks are predicted to be re-referenced in the near-
immediate future, NRU updates the re-reference predictions of all
cache blocks to be in the distant future and repeats the victim
search. Updating all nru-bits to ‘1’ allows the victim selection
policy to make forward progress while also removing stale blocks
from the cache.

Figure 3b illustrates the behavior of NRU using a 4-entry
cache initialized with invalid blocks ‘I’. For reference, Figure 3a also
shows the behavior of LRU. The figure also shows the steps taken
by the replacement policy on cache hits and cache misses. We use
the following bimodal access pattern to illustrate NRU behavior:

(a1 , a2 , a2 , a1) (b1 , b2 , b3 , b4) (a1 , a2 , ...)

Figure 3b shows the four blocks of the cache each with the nru-bit
shown in the lower right hand corner. The figure shows that after
the scan completes, references to a1 and a2 both miss the cache
when the optimal replacement policy would have preserved them in
the cache.

 Static RRIP (SRRIP)
With only one bit of information, NRU can predict either a near-
immediate re-reference interval or a distant re-reference interval
for all blocks filled into the cache. Always predicting a near-
immediate re-reference interval on all cache insertions limits cache
performance for mixed access patterns because scan blocks
unnecessarily occupy the cache space without receiving any cache
hits. On the other hand, always predicting a distant re-reference
interval significantly degrades cache performance for access
patterns that predominantly have a near-immediate re-reference
interval. Consequently, without any external information on the re-
reference interval for every missing cache block, NRU cannot
identify and preserve non-scan blocks in a mixed access pattern.

To address the limitations of NRU, we enhance the granularity
of the re-reference prediction stored with each cache block. We
propose cache replacement based on Re-reference Interval
Prediction (RRIP). RRIP uses M-bits per cache block to store one

of 2M possible Re-
reference Prediction Values (RRPV). RRIP dynamically learns re-
reference information for each block in the cache access pattern.
Like NRU, an RRPV of zero implies that a cache block is predicted
to be
re-referenced in the near-immediate future while RRPV of

saturation (i.e., 2M–1) implies that a cache block is predicted to be
re-referenced in the distant future. Quantitatively, RRIP predicts
that blocks with small RRPVs are re-referenced sooner than
blocks with large
RRPVs. When M=1, RRIP is identical to the NRU replacement
policy. When M>1, RRIP enables intermediate re-reference
intervals that are greater than a near-immediate re-reference
interval but less than a distant re-reference interval.

The primary goal of RRIP is to prevent blocks with a distant
re- reference interval from polluting the cache. In the absence of
any external re-reference information, RRIP statically predicts the
block’s re-reference interval. Since always predicting a near-
immediate or a distant re-reference interval at cache insertion time
is not robust across all access patterns, RRIP always inserts new
blocks with a long re-reference interval. A long re-reference

interval is defined as an intermediate re-reference interval that is
skewed towards a distant
re-reference interval. We use an RRPV of 2M–2 to represent a long
re-reference interval. The intuition behind always predicting a long
re-reference interval on cache insertion is to prevent cache blocks
with re-references in the distant future from polluting the cache.
Additionally, always predicting a long re-reference interval instead of
a distant re-reference interval allows RRIP more time to learn and
improve the re-reference prediction. If the newly inserted cache block
has a near-immediate re-reference interval, RRIP can then update the
re-reference prediction to be shorter than the previous prediction. In
effect, RRIP learns the block’s re-reference interval.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 704

hit

hit

Figure 3: Behavior of LRU, NRU, and SRRIP for a Mixed Access Pattern.

On a cache miss, the RRIP victim selection policy selects the
victim block by finding the first block that is predicted to be re-

referenced in the distant future (i.e., the block whose RRPV is 2M–1).
Like NRU, the victim selection policy breaks ties by always starting
the victim search from a fixed location (the left in our studies). In the
event that RRIP is unable to find a block with a distant re-reference
interval, RRIP updates the re-reference predictions by incrementing
the RRPVs of all blocks in the cache set and repeats the search until a
block with a distant re-reference interval is found. Updating RRPVs
at victim selection time allows RRIP to adapt to changes in the
application working set by removing stale blocks from the cache.

A natural opportunity to change the re-reference prediction of a
block occurs on a hit to the block. The algorithm for this update of the
RRPV register is called the RRIP hit promotion policy. The primary
purpose of the hit promotion policy is to dynamically improve the
accuracy of the predicted re-reference interval of cache blocks. We
propose two policies to update the re-reference prediction: Hit

Priority (HP) and Frequency Priority (FP). The RRIP-HP policy
predicts that the block receiving a hit will be re-referenced in the
near-immediate future and updates the RRPV of the associated block
to zero. The goal of the HP policy is to prioritize replacement of
blocks that do not receive cache hits over any cache block that

Next
Ref

a1

RRIP head RRIP tail

miss
1 1 1 1 miss 3 3 3 3 miss

a2 miss
0 1 1 1

miss
2 3 3 3

miss

a2 hit
0 0 1 1

hit
2 2 3 3

hit

a1

b1

hit
0 0 1 1

hit
2 0 3 3

hit

miss
0 0 1 1

miss
0 0 3 3

miss

b2 miss
0 0 0 1 miss 0 0 2 3 miss

b3
miss

0 0 0 0
miss

0 0 2 2
miss

b4
miss

a1

a2 b3

b1

b2

miss

0 1 1

b3 0 b4 0 b1 1

b3 0 b4 0 a1 0

b3 0 b4 0 a1 0

1

b2 1

b2 1

a2 0

miss

miss

a1 b4 miss miss

a2 a1 b4 b3

1 1 2

a1 1 a2 1 b3 2

a1 0 a2 1 b3 2

a1 0 a2 0 b3 2

3

b4 2

b4 2

b4 2

miss

“nru-bit”

(a) LRU

Cache Hit:

(i) move block to MRU

(b) Not Recently Used (NRU)

Cache Hit:

(i) set nru-bit of block to ‘0’

“RRPV”

(c) 2-bit SRRIP with Hit Promotion

Cache Hit:

(i) set RRPV of block to ‘0’

Cache Miss:

(i) replace LRU block

(ii) move block to MRU

Cache Miss:

(i) search for first ‘1’ from left

(ii) if ‘1’ found go to step (v)

(iii) set all nru-bits to ‘1’

(iv) goto step (i)
(v) replace block and set nru-bit to ‘1’

Cache Miss:

(i) search for first ‘3’ from left

(ii) if ‘3’ found go to step (v)

(iii) increment all RRPVs

(iv) goto step (i)
(v) replace block and set RRPV to ‘2’

b2 b3 b4

b1 b2 b3

a1 b1 b2

a2 a1 b1

I a2 a1

I a1 a2

I a1 a2

I I a1

I I I

b2 b3 a2 a1 b2 b1 a2 b3 a1

b2 b1 a2 a1 b2 b1 a2 a1 a2

I b1 a2 a1 I b1 a2 a1 I

I I a2 a1 I I a2 a1 I

I I a2 a1 I I a2 a1 I

I I a2 a1 I I a2 a1 I

I I I a1 I I I a1 I

I I I I I I I I I

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 705

receives a hit. However, the HP policy can potentially degrade
cache performance when a cache block is re-referenced only once
after cache insertion. In such situations, the HP policy incorrectly
predicts a near-immediate re-reference prediction instead of
distant re- reference prediction for the block and causes the block
to occupy valuable cache space without receiving any hits. To
address this problem, the RRIP-FP policy uses more information
(i.e., cache hits) to update the re-reference prediction. Instead of
updating the re- reference prediction to be near-immediate on a hit,
RRIP-FP updates the predicted re-reference interval to be shorter
than the previous re- reference interval each time a block receives
a hit. The FP policy accomplishes this by decrementing the RRPV
register (unless the RRPV register is already zero) on cache hits.
The goal of the FP policy is to prioritize replacement of
infrequently re-referenced cache blocks over frequently re-
referenced cache blocks.

Since the re-reference predictions made by RRIP are statically
determined on cache hits and misses, we refer to this replacement
policy as Static Re-reference Interval Prediction (SRRIP). Figure
3c illustrates the behavior of 2-bit SRRIP-HP. The example shows
that SRRIP emulates optimal replacement by correctly predicting a
near- immediate re-reference interval for the actively used cache
blocks and a distant re-reference interval for the scan blocks.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 706

In general, for associativity A, active working set size w (w < A),
and scan length Slen, M-bit SRRIP is scan-resistant when

Slen <= (2M – 1) * (A – w) (Eq. 1)

When the condition in Equation 1 does not hold, SRRIP is unable to
preserve the active working set in the cache because the RRPVs of
the scan blocks and the non-scan blocks become identical due to the
aging mechanism of the victim selection policy. In such scenarios,
the active working set can be preserved for a longer time by
increasing the width of the RRPV register. While large RRPVs can
be resistant to long scans, they can result in inefficient cache
utilization when a cache block receives its last hit and the RRPV
becomes zero. In such situations the effective cache capacity reduces
until the victim selection policy updates the re-reference prediction of
the dead block to have a distant re-reference. Consequently, scan-
resistance using RRIP requires that the width of the RRPV register to
be appropriately sized to avoid sources of performance degradation.

 Dynamic RRIP (DRRIP)
SRRIP inefficiently utilizes the cache when the re-reference interval
of all blocks is larger than the available cache. In such scenarios,
SRRIP causes cache thrashing and results in no cache hits. To avoid
cache thrashing, we propose Bimodal RRIP (BRRIP) that inserts
majority of cache blocks with a distant re-reference interval
prediction (i.e., RRPV of 2M–1) and infrequently (with low
probability) inserts new cache blocks with a long re-reference

interval prediction (i.e., RRPV of 2M–2). BRRIP is analogous to the
Bimodal Insertion Policy (BIP) [25] component of DIP which helps
preserve some of the working set in the cache.

For non-thrashing access patterns, always using BRRIP can
significantly degrade cache performance. In order to be robust across
all cache access patterns, we propose to dynamically determine
whether an application is best suited to scan-resistant SRRIP or
thrash-resistant BRRIP. We propose Dynamic Re-reference Interval
Prediction (DRRIP) that uses Set Dueling [25] to identify which
replacement policy is best suited for the application. DRRIP
dynamically chooses between scan-resistant SRRIP and thrash-
resistant BRRIP by using two Set Dueling Monitors (SDMs) [11]. An
SDM estimates the misses for any given policy by permanently
dedicating a few sets5 of the cache to follow that policy. Set Dueling
uses a single policy selection (PSEL) counter to determine the
winning policy. DRRIP uses the winning policy of the two SDMs for
the remaining sets of the cache.

 Comparing SRRIP to LRU
A natural way of modifying an LRU managed cache to predict the re-
reference interval would be by changing the insertion position of
blocks on the LRU chain, creating a RRIP chain. The baseline MRU
Insertion Policy (MIP) [25] predicts a near-immediate re-reference
interval by always inserting new blocks at the head of the RRIP
chain. The LRU Insertion Policy (LIP) [25] predicts a distant re-
reference interval by always inserting new blocks at the tail of the
RRIP chain. Insertion positions in the middle of the RRIP chain [28,
30] can be used to predict an intermediate re-reference interval.
While different insertion positions in the RRIP chain can provide
scan-resistance, they require tuning on a per-application basis. A
static insertion position for all applications can degrade performance
when changes in the working set requires an alternate re-reference
prediction, i.e., an alternate insertion position on the RRIP chain.

Unlike SRRIP, modified LRU cannot automatically adapt to
changes in the application working set size and thus can degrade
performance significantly. Set dueling can be used to design a

5. Prior work has shown that 32 sets are sufficient to estimate cache

performance [11]. Throughout the paper an SDM consists of 32 sets.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 707

mechanism that dynamically identifies the best insertion position
on the RRIP chain suitable to the application (or application
phase). Specifically, SDMs can monitor the performance of
different insertion positions on the RRIP chain and then apply the
best position to the remainder of the cache. However, using SDMs
to identify the best insertion position on the RRIP chain does not
scale well with increasing cache associativity. This is because the
number of monitor sets required can exceed the total number of
sets in the cache. As a result, set dueling controlled policies to
identify the best insertion position on the RRIP chain are not
considered as a practical solution to provide scan resistance.
Nonetheless, we compare SRRIP and DRRIP to an offline
profiling mechanism that knows the best single insertion location
on the RRIP chain on a per application basis. We refer to this
scheme as the Best Offline Insertion Policy (BOIP). We do not
consider the potentially better and more complex scheme where
the insertion position on the RRIP chain dynamically adapts to
different phases of an application.

 RRIP Extensions to Shared Caches
With the growing number of cores on-chip, shared caches are now
very common. Since shared caches receive access patterns from
concurrently executing workloads, the combined access stream
from the different workloads can also be thought of as a mixed
access pattern. Thus, SRRIP naturally extends to shared caches
and can minimize cache contention between applications with
varying memory demands. For example, using the mixed access
pattern terminology, the references to the active working set can
potentially be described as memory references by an application
whose working set is small and fits in the shared LLC and the scan
can be described as memory references by an application with a
very large working set. In such situations, SRRIP reduces cache
contention by preserving the small working set in the shared LLC.

Extending DRRIP to shared caches is analogous to the
extension of DIP to shared caches. We propose Thread-Aware
DRRIP (TA- DRRIP) which is similar to the Thread-Aware
Dynamic Insertion Policy (TA-DIP) [9]. TA-DRRIP uses two
SDMs per application to dynamically determine whether the
application should use SRRIP or BRRIP in the presence of other
applications. Like TA-DIP, TA- DRRIP merely requires a policy
selection counter (PSEL) for each hardware thread sharing the
LLC.

5. EXPERIMENTAL METHODOLOGY

 Simulator
We use CMP$im [10], a Pin [21] based trace-driven x86 simulator
for our performance studies. Our baseline processor is 4-way out-
of- order with a 128-entry reorder buffer and a three level cache
hierarchy. Only the LLC of the hierarchy enforces inclusion. Our
cache hierarchy is roughly comparable to the Intel Core i7 [3].
The L1 instruction and data caches are 4-way 32KB each while
the L2 cache is unified 8-way 256KB. The L1 and L2 cache sizes
are kept constant in our study. We support two L1 read ports and one
L1 write port on the data cache. We evaluate both single-core and
4-core configurations. In the 4-core configuration, the L1 and L2
are private and only the LLC is shared by all four cores. The
baseline LLC (L3) is 16-way 2MB in the single-core and 8MB in
the 4-core system. All caches in the hierarchy use a 64B line size.

For replacement decisions, all caches in the hierarchy use the LRU
replacement policy. Only demand references to the cache update
the LRU state while non-demand references (e.g., write back
references) leave the LRU state unchanged. The load-to-use
latencies for the L1, L2, and L3 caches are 1, 10, and 24 cycles
respectively. We model a 250 cycle penalty to main memory and
support a maximum of 32 outstanding misses to memory.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 708

Figure 4: Cache Sensitivity of Workloads Used in this Study.

 Benchmarks
For our single-core studies we use five workloads from the SPEC
CPU2006 benchmark suite and nine “real world” workloads from the
PC game, multimedia, and server workload segments. These
workloads were selected because they are sensitive to memory
latency on the baseline processor configuration and there is an
opportunity to improve their performance through enhanced
replacement decisions. To be thorough, we report results across a
broad set of memory intensive and non-memory intensive workloads
in the appendix. The SPEC CPU2006 workloads were all collected
using PinPoints [24] for the reference input set while the real world
workloads were all collected on a hardware tracing platform. The real
world workloads include both operating system and user-level
activity while the SPEC CPU2006 workloads only include user-level
activity. Table 1 lists the workloads used and Figure 4 provides their
sensitivity to different cache sizes. The workloads were all run for
250M instructions.

For our multi-core workloads, we created all possible 4-core
combinations (14 choose 4 = 1001 workloads). Simulations were run

until all benchmarks ran 250 million instructions. Statistics for each
core were collected only for the first 250 million instructions. If the
end of the trace is reached, the model rewinds the trace and restarts
from the beginning. The simulation methodology is similar to recent
work on shared caches [11, 8, 30, 20].

20 30

Table 1: Benchmarks
app-server 25

15
bzip2

Category

PC Games

Multimedia

Server

SPEC CPU2006

Workloads

final-fantasy, gunmetal2, halflife2, halo

photoshop, renderman

app-server, sap, tpc-c

bzip2, cactusADM, hmmer, mcf, sphinx3

20

10 15

10

5

5

0 0

Cache Size (MB) Cache Size (MB)

50 20 20 20

40 cactusADM 15 final-fantasy 15 gunmetal2 15 halflife2
30

10 10 10

20

5 5 5

10

0 0 0 0

Cache Size (MB) Cache Size (MB) Cache Size (MB) Cache Size (MB)

20 20 40 4

15 15 30 3

halo hmmer mcf photoshop
10 10 20 2

5 5 10 1

0 0 0 0

Cache Size (MB) Cache Size (MB) Cache Size (MB) Cache Size (MB)

7 30 40 20

6

5

renderman
25

sap 30 sphinx3 15 tpc-c
20

4

15 20 10

3

10

2
10 5

5
1

0 0 0 0

Cache Size (MB) Cache Size (MB) Cache Size (MB) Cache Size (MB)

M
is

se
s

P
e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

M
is

se
s

P
e
r

1
0

0
0

 I
n

st
ru

c
ti

o
n

s
M

is
se

s
P

e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

M
is

se
s

P
e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

M
is

se
s

P
e
r

1
0

0
0

 I
n

st
ru

c
ti

o
n

s
M

is
se

s
P

e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

M
is

se
s

P
e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

M
is

se
s

P
e
r

1
0

0
0

 I
n

st
ru

c
ti

o
n

s
M

is
se

s
P

e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

M
is

se
s

P
e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

M
is

se
s

P
e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

M
is

se
s

P
e
r

1
0

0
0

 I
n

st
ru

c
ti

o
n

s
M

is
se

s
P

e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

M
is

se
s

P
e
r

1
0

0
0

 I
n

st
ru

ct
io

n
s

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 709

6. RESULTS AND ANALYSIS

 SRRIP Sensitivity to RRPV on Insertion
Figure 5 shows the sensitivity of SRRIP-HP to the width of the M-
bit register and the Re-reference Prediction Value on cache
insertion when both are changed statically. The y-axis represents
the percent
reduction in cache misses compared to LRU replacement. For

M=1 (NRU), 2, 3, 4, and 5, the x-axis shows all 2M possible
RRPVs for cache insertion. The x-axis labels follow the format
“INS=r, M=m” and denotes an m-bit SRRIP configuration where
all missing cache
blocks are inserted with an RRPV of ‘r’. For each SRRIP
configuration, the figure also shows the maximum, average, and
minimum values for the reduction in cache misses across all
workloads. The average is represented by squares while the
minimum and maximum values are represented by triangles.

Figure 5 shows that when M>1, always predicting that a
missing cache block has a long re-reference interval has the best
performance. In fact, predicting a long re-reference interval
consistently outperforms NRU replacement (M=1). This is
because RRIP enhances the granularity for predicting the re-
reference interval. By always predicting a long re-reference
interval, cache blocks that do not have temporal locality (i.e., scan
blocks) do not pollute the cache for an extended period of time.
Always predicting a distant re- reference interval has the worst
performance because SRRIP does not

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 710

Change in Performance (%) Change in Misses (%)

halflife2

halo

gunmetal2

final-fantasy

photoshop

halflife2

halo

gunmetal2

final-fantasy

photoshop

renderman renderman

sap sap

tpc-c tpc-c

app-server app-server

cactusADM cactusADM

sphinx3 sphinx3

hmmer

mcf

bzip2

hmmer

mcf

bzip2

GAMES

MULTIMEDIA

GAMES

MULTIMEDIA

SERVER SERVER

SPEC06 SPEC06

ALL ALL

Change in Performance (%) Change in Misses (%)

halflife2

halo

gunmetal2

final-fantasy

photoshop

halflife2

halo

gunmetal2

final-fantasy

photoshop

renderman renderman

sap sap

tpc-c tpc-c

app-server app-server

cactusADM

sphinx3

hmmer

mcf

bzip2

GAMES

MULTIMEDIA

SERVER

SPEC06

ALL

cactusADM

sphinx3

hmmer

mcf

bzip2

GAMES

MULTIMEDIA

SERVER

SPEC06

ALL

% Fewer Cache Misses Compared to LRU

INS=0, M=1
INS=1, M=1
INS=0, M=2
INS=1, M=2
INS=2, M=2
INS=3, M=2
INS=0, M=3
INS=1, M=3
INS=2, M=3
INS=3, M=3
INS=4, M=3
INS=5, M=3
INS=6, M=3
INS=7, M=3
INS=0, M=4
INS=1, M=4
INS=2, M=4
INS=3, M=4
INS=4, M=4
INS=5, M=4
INS=6, M=4
INS=7, M=4
INS=8, M=4
INS=9, M=4
INS=10, M=4
INS=11, M=4
INS=12, M=4
INS=13, M=4
INS=14, M=4
INS=15, M=4
INS=0, M=5
INS=1, M=5
INS=2, M=5
INS=3, M=5
INS=4, M=5
INS=5, M=5
INS=6, M=5
INS=7, M=5
INS=8, M=5
INS=9, M=5
INS=10, M=5
INS=11, M=5
INS=12, M=5
INS=13, M=5
INS=14, M=5
INS=15, M=5
INS=16, M=5
INS=17, M=5
INS=18, M=5
INS=19, M=5
INS=20, M=5
INS=21, M=5
INS=22, M=5
INS=23, M=5
INS=24, M=5
INS=25, M=5
INS=26, M=5
INS=27, M=5
INS=28, M=5
INS=29, M=5
INS=30, M=5
INS=31, M=5

6
0

“
n
ea
r-im

m
ed
ia
te”

 R
R

IP

“
lo
n
g
”

 R
R

IP

“
d
ista

n
t”

 R
R

IP

M
A

X

A
V

G

M
IN

4
0

2
0

0

-
2

0

F
ig

u
re

 5
: R

e
-re

fe
re

n
c
e
 P

re
d

ic
tio

n
 V

a
lu

e
 (R

R
P

V
) S

e
n

s
itiv

ity
 S

tu
d

y
 fo

r S
R

R
IP

-H
P

.

h
av

e en
o

u
g

h
 tim

e to
 im

p
ro

v
e th

e b
lo

ck
s re-referen

ce in
terv

al. W
h

ile
alw

ay
s p

red
ictin

g
 d

ista
n

t re-referen
ce in

terv
al h

as p
o

sitiv
e o

u
tliers,

alw
ay

s p
red

ictin
g
 a lo

n
g
 re-referen

ce in
terv

al is ro
b

u
st acro

ss all

w
o

rk
lo

ad
s an

d
 red

u
ces cach

e m
isses relativ

e to
 L

R
U

 b
y

 6
-1

0
%

.

6
.2

. S
R

R
IP

 P
erfo

rm
a
n

ce
F

ig
u

re 6
 p

resen
ts th

e p
er-w

o
rk

lo
ad

 b
eh

av
io

r fo
r S

R
R

IP
-H

P
 an

d

S
R

R
IP

-F
P

 fo
r M

=
1

, 2
, 3

, 4
 an

d
 5

. B
o

th
 S

R
R

IP
 p

o
licies alw

ay
s

p
red

ict a lo
n
g

 re-referen
ce in

terv
al o

n
 cach

e in
sertio

n
. T

h
e x

-ax
is

sh
o

w
s th

e d
ifferen

t w
o

rk
lo

ad
s w

h
ile th

e y
-ax

is sh
o

w
s th

e red
u

ctio
n

in

cach
e

m
isses.

T
h

e
x

-ax
is

lab
els

G
A

M
E

S
,

M
U

L
T

IM
E

D
IA

,

S
E

R
V

E
R

, an
d

 S
P

E
C

0
6

 rep
resen

t th
e av

erag
e fo

r th
e w

o
rk

lo
ad

s in

th
ese categ

o
ries w

h
ile A

L
L

 is th
e av

erag
e o

f all 1
4
 w

o
rk

lo
ad

s. W
e

u
se arith

m
etic m

ean
 fo

r cach
e p

erfo
rm

an
ce an

d
 g

eo
m

etric m
ean

 fo
r

sy
stem

 p
erfo

rm
an

ce. F
ig

u
re 6

a sh
o

w
s th

at S
R

R
IP

-F
P

 red
u

ces M
P

K
I

b
y
 5

-1
8
%

. T
h

e red
u

ctio
n

s in
 M

P
K

I allo
w

 S
R

R
IP

-F
P

 to
 o

u
tp

erfo
rm

4
0

4

0

N
R

U
 (M

=
1
)

M
=

2

M
=

3

M
=

4

M
=

5

3
0

3

0

2
0

2

0

1
0

1

0

0

0

-1
0

-1

0

(a) S
R

R
IP

-F
P

 C
ach

e P
erfo

rm
an

ce
(b

) S
R

R
IP

-H
P

 C
ach

e P
erfo

rm
an

ce
-2

0

-2
0

2
0

2

0

(c) S
R

R
IP

-F
P

 S
y

stem
 P

erfo
rm

an
ce

(d
) S

R
R

IP
-H

P
 S

y
stem

 P
erfo

rm
an

ce

1
5

1

5

1
0

1

0

5

5

0

0

-5

-5

F
ig

u
re

 6
: S

R
R

IP
 S

e
n

s
itiv

ity
 to

 W
id

th
 o

f M
-b

it re
g

is
te

r.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 711

Figure 7: SRRIP-HP Sensitivity to Cache Size.

LRU by an average of 2.5% across all workloads (Figure 6c). PC
games receive the most benefit where SRRIP-FP outperforms LRU
by 4% on average. On the other hand, SRRIP-HP reduces MPKI by
5-15% for eight of the fourteen workloads (Figure 6b). The
reductions in MPKI allow SRRIP-HP to outperform LRU by 5%
across all workloads (Figure 6d). PC games and multimedia
workloads receive the most benefit over LRU by 8-11%. These
results are consistent with Figure 2 where PC games and multimedia
workloads benefitted the most from scan-resistance.

On average, SRRIP is insensitive to the width of the RRPV
register when M>3. Some workloads experience performance
degradation when the width of the RRPV register increases. This is
because wider RRPV registers retain stale blocks in the cache for
long periods of time (after their last hit) and reduce the effective
cache capacity. For the workloads in this study, 2-bit or 3-bit RRPV is
sufficient to be scan-resistant.

Finally, both SRRIP-HP and SRRIP-FP outperform LRU. NRU
(M=1) almost always performs worse than LRU. Additionally,
SRRIP-HP provides twice the performance benefits of SRRIP-FP.
This implies that the first order benefit of a scan-resistant
replacement algorithm is not from precisely detecting frequently
referenced data in the cache but from preserving data that receives
cache hits, i.e., the active working set. For the rest of the paper, unless
otherwise stated, we only provide results for SRRIP-HP.

 SRRIP Sensitivity to Cache Configuration
Figure 7 presents SRRIP performance for the different workload
categories on different LLC sizes: 512KB, 1MB, 2MB, 4MB, and
8MB. All LLCs are 16-way set associative. The y-axis shows the
performance relative to LRU replacement of the respective LLC. The
figure shows that NRU (M=1) always performs similar to LRU for
all cache sizes. However, SRRIP outperforms LRU by 5-20% for

various cache sizes. We also conducted a SRRIP sensitivity study by
varying the cache associativity from 4-way to 128-way. Our studies
yielded results comparable to Figure 6. These results show that
SRRIP is scalable to different cache configurations. Since the
majority of performance gains is achieved by a 3-bit RRPV register,
we focus only on 2-bit and 3-bit SRRIP.

 DRRIP Performance
Figure 8 presents the performance of 2-bit and 3-bit DRRIP6. Figure
8a shows that DRRIP significantly improves cache performance for
SPEC CPU2006 workloads sphinx3, hmmer, and mcf. These
workloads have a knee in the working set that is slightly larger than a
2MB cache (see Figure 4). PC games and multimedia workloads also
benefit from a reduction in cache misses. Server workloads on the
other hand have no knee in the working set, hence observe no benefit
from DRRIP. Across most workloads, DRRIP has similar or better
performance than SRRIP. DRRIP only hurts photoshop performance
despite the 10% reduction in cache misses. Further analysis showed
that photoshop is extremely sensitive to a region of memory that is
frequently referenced between scans. Since DRRIP optimizes for the
cache miss metric and not the throughput metric, DRRIP can degrade
performance when the cost of a miss varies in an application.
Enhancing DRRIP to optimize for throughput instead of cache misses
can address the problem for photoshop. Nonetheless, on average,
DRRIP improves performance by an additional 5% above SRRIP.
Since both 2-bit and 3-bit DRRIP perform similarly, we conclude that
2-bit DRRIP is sufficient for scan-resistance and thrash-resistance.
Thus, for the remainder of the paper we only focus on 2-bit RRIP.

6. We use 32-entry SDMs, 10-bit PSEL counter and =1/32. [11, 25]

20

15

10

M=1 (NRU)

M=2

M=3

M=4

M=5

5

0

-5

512KB 1MB 2MB 4MB 8MB

(a) PC games

512KB 1MB 2MB 4MB 8MB

(a) multimedia

512KB 1MB 2MB 4MB 8MB

(a) server

512KB 1MB 2MB 4MB 8MB

(a) SPEC CPU2006

60%
20

40

15

SRRIP (M=2)

SRRIP (M=3)

DRRIP (M=2)

DRRIP (M=3)

71%

30

10
20

10

5

0 0

(a) Cache Performance (b) System Performance
-10 -5

SRRIP (M=2)

SRRIP (M=3)

DRRIP (M=2)

DRRIP (M=3)

C
h
an

g
e

in
 P

er
fo

rm
an

ce
 (

%
)

C
h

a
n

g
e
 I

n
 M

is
se

s
(%

)

C
h

a
n

g
e
 I

n
 P

e
rf

o
rm

a
n
c
e
 (

%
)

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 712

Figure 8: DRRIP Performance.

h
a
lf

li
fe

2

h
a
lo

g
u

n
m

e
ta

l2

fi
n
al

-f
a
n
ta

sy

p
h

o
to

sh
o

p

re
n

d
e
rm

a
n

sa
p

tp
c
-c

a
p

p
-s

e
rv

e
r

c
a
ct

u
sA

D
M

sp
h

in
x

3

h
m

m
e
r

m
c
f

b
zi

p
2

G
A

M
E

S

M
U

L
T

IM
E

D
IA

S
E

R
V

E
R

S
P

E
C

0
6

A
L

L

h
a
lf

li
fe

2

h
a
lo

g
u

n
m

e
ta

l2

fi
n
al

-f
a
n
ta

sy

p
h

o
to

sh
o

p

re
n

d
e
rm

a
n

sa
p

tp
c-

c

a
p

p
-s

e
rv

e
r

ca
ct

u
sA

D
M

sp
h

in
x

3

h
m

m
e
r

m
c
f

b
z
ip

2

G
A

M
E

S

M
U

L
T

IM
E

D
IA

S
E

R
V

E
R

S
P

E
C

0
6

A
L

L

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 713

Table 3: Comparison of Replacement Policies on Single Core

Replacement

Policy

% Performance

Improvement Over LRU

Hardware

Overheada

LRU — nlog2n

NRU -1.19 n

peLIFO 2.85 2nlog2n + 2n

SRRIP 3.69 2n

DIP 5.43 n

HYBNRU/LFU 7.57 5n

DRRIP 10.18 2n

BOIP 8.13 N/A

Figure 9: RRIP Performance on a Shared Cache.

 RRIP on Shared Caches
Figure 9 presents the s-curve for the performance of SRRIP and TA-
DRRIP compared to LRU for the throughput metric. The x-axis
represents all 1001 multi-programmed workloads while the y-axis
represents the performance relative to LRU. SRRIP improves
performance up to 25% on the 4-core CMP while TA-DRRIP
improves performance by as much 2.1X. Across all workloads in the
study, SRRIP does not degrade performance for any of the workloads
while TA-DRRIP degrades performance by 2-5% for less than 25
workloads due to cost of experimenting with the BRRIP SDMs. On
average, across the 1001 multi-programmed workloads, SRRIP
improves performance by 7% while TA-DRRIP improves
performance by 10%. Thus, these results show that both SRRIP and
TA-DRRIP are both robust and high performing.

 RRIP at Different Cache Levels
We compared the performance of SRRIP to LRU when applied at the
L1 and L2 caches of our three-level hierarchy. At the L1 cache,
SRRIP provides no opportunity to improve performance because the
cache size is too small and the temporal locality is too high. At the L2
cache, SRRIP provides no significant performance gains because the
L2 cache is small (256KB in our study). SRRIP did not degrade
performance of the L1 or L2 caches. To ensure that SRRIP performs
well at the LLC, we modified our hierarchy from a 3-level to a 2-
level hierarchy by removing the L2 cache. For this 2-level hierarchy,
both SRRIP and DRRIP outperform LRU by 4.8% and 10%
respectively. Thus, RRIP is most applicable at the LLC where the
temporal locality is filtered by smaller levels of the hierarchy7.

 Hardware Overhead and Design Changes
RRIP requires a 2-bit register per cache block. RRIP integrates into
the existing NRU implementation with minor modifications to the
victim selection hardware. The NRU victim selection policy searches
for the first block with nru-bit value of ‘1’. SRRIP on the other hand
searches for the first cache block whose re-reference interval is
furthest in the future, i.e., the block whose RRPV is the largest in the

a. Assuming an n-way set associative cache, HW overhead

is measured in number of bits required per cache set.

set. The search can be implemented by replicating the Find First One
(FFO) logic. For 2-bit RRIP, four FFO circuits (with appropriate
inputs) are required to find pointers to the first ‘0’, ‘1’, ‘2’, and ‘3’
RRPV registers. A priority MUX chooses the output of the
appropriate FFO circuit as the victim. In the event that a block with
distant RRIP is not found, RRIP also requires additional logic to age
the RRPV registers. NRU ages cache blocks by simply inverting all
the nru-bits in the set. SRRIP requires state machine logic to age all
the RRPV registers in the set. DRRIP and TA-DRRIP merely require
the per-thread 10-bit policy selection (PSEL) counter and the logic
for choosing SDMs. The design changes for SRRIP and DRRIP are
not on the critical path and thus do not affect the cache access time.

 Comparing RRIP to Other Policies
For the 14 workloads in our study, Table 3 compares the performance
of the following replacement policies to LRU replacement: NRU,
SRRIP, peLIFO [8], DIP, HYBLRU/LFU, DRRIP, and BOIP. Figure 10
presents the performance comparison of these replacement policies
on a per application basis. DIP uses set dueling to dynamically select
between near-immediate and distant re-reference interval
predictions. Both DIP and peLIFO use NRU replacement as the
baseline replacement policy. HYBNRU/LFU also uses set dueling to
dynamically choose between NRU and LFU replacement. BOIP uses
offline profiling information to determine the best static insertion
position on the RRIP chain suitable to the application. peLIFO tracks
cache hits on the fill stack to guide cache replacement. SRRIP, a non-
adaptive policy, outperforms LRU replacement while DRRIP
outperforms the best performing scan-resistant hybrid cache
replacement policy (HYBNRU/LFU) and also a policy that requires
profiling information (BOIP).

7. Recent studies [7, 18] have evaluated cache configurations where the

linesize of the LLC is larger than the linesize of the L1 and L2 caches.

For such configurations, DIP and RRIP require modifications to the hit

promotion policy to filter the “false temporal locality” observed by the

1.50
2.1

1.40

1.30

TA-DRRIP

1.20

1.10

SRRIP
1.00

0 200 400 600

Workloads

800 1000

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 L
R

U

%
 C

h
an

g
e
 i

n
 P

er
fo

rm
an

ce
 C

o
m

p
a
re

d
 t

o
 L

R
U

5
8

6
1

4
1

5
0

7
0

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 714

LLC. For example, re-references to different sectors of the large LLC

cache line (due to spatial locality) should not update the LRU state while

re-references to the same sector of the line should update the LRU state.

Figure 10: Comparison of Replacement Policies.

20

15

peLIFO
DIP
HYBLRU/LFU

BOIP
DRRIP

10

5

0

-5

h
al

fl
if

e2

h
al

o

g
u

n
m

et
al

2

fi
n

al
-f

an
ta

sy

p
h

o
to

sh
o

p

re
n

d
e
rm

a
n

sa
p

tp
c
-c

ap
p

-s
e
rv

e
r

ca
ct

u
sA

D
M

sp
h

in
x

3

h
m

m
e
r

m
c
f

b
zi

p
2

G
A

M
E

S

M
U

L
T

IM
E

D
IA

S
E

R
V

E
R

S
P

E
C

0
6

A
L

L

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 715

We also compared the performance of SRRIP and TA-DRRIP on
shared caches to peLIFO and TA-DIP. Both peLIFO and TA-DIP use
NRU as the baseline replacement policy. For the 1001 multi-
programmed workloads in our study, we found that TA-DIP
improved performance relative to LRU by 4% while peLIFO
improved performance relative to LRU by 1.5%. SRRIP and TA-
DRRIP on the other hand improve performance by 7% and 9%
respectively. We believe that our results for peLIFO differ from [8]
because we evaluate across a much broader selection of workloads.

RRIP requires less hardware than LRU replacement yet
outperforms LRU replacement on average. For an n-way associative

cache, LRU replacement requires nlog2n bits per cache set, while
RRIP only requires 2n bits per cache set. Compared to HYBNRU/LFU,

the LFU component policy requires hardware for the frequency
counter and the NRU component requires hardware for tracking
recency. Assuming four bits for the LFU frequency counter,
HYBNRU/LFU requires 5n bits per cache set. In addition, hybrid

replacement also requires verification overhead for designing two
different replacement policies. Comparatively, SRRIP and DRRIP
provide scan-resistance and thrash-resistance in a single replacement
policy. RRIP requires 2.5X less hardware than HYBNRU/LFU,.

7. SUMMARY
Practical cache replacement policies attempt to emulate optimal
replacement by predicting the re-reference interval of a cache block.
The commonly used LRU replacement policy always predicts a near-
immediate re-reference interval on misses and hits. However, the
prediction of near-immediate re-reference interval inefficiently
utilizes the cache when the actual re-reference interval of the missing
block is in the distant future. When the re-reference interval of all
blocks referenced by an application is in the distant future, dynamic
insertion policies [25] avoid cache thrashing by preserving some of
the blocks in the cache. However, when the re-reference interval of
blocks accessed by an application consist of mixed access patterns,
dynamic insertion policies cannot preserve blocks with near-
immediate re-reference interval in the cache. This paper shows that
many real world game, server, and multimedia applications exhibit
such mixed access patterns. Specifically, such applications
experience bursts of references to non-temporal data (called scans)
that discards their active working set from the cache. This paper
improves the performance of such real world applications by making
the following contributions:

1. We propose cache replacement using Re-reference Interval
Prediction (RRIP). RRIP statically predicts the re-reference
interval of all missing cache blocks to be an intermediate re-
reference interval that is between a near-immediate re-
reference interval and a distant re-reference interval. RRIP
updates the re-reference prediction to be shorter than the
previous prediction upon a re-reference. We call this policy as
Static RRIP (SRRIP). We show that SRRIP is scan-resistant
and only requires 2-bits per cache block.

2. We propose two SRRIP policies: SRRIP-Hit Priority (SRRIP-
HP) and SRRIP-Frequency Priority (SRRIP-FP). SRRIP-HP
predicts that any cache block that receives a hit will have a
near-immediate re-reference and thus should be retained in the
cache for an extended period of time. SRRIP-FP on the other
hand predicts that frequently referenced cache blocks will have
a near-immediate re-reference and thus they should be retained

in the cache for an extended period of time. We show that
SRRIP-HP performs significantly better than SRRIP-FP and
conclude that scan-resistance is not from precisely detecting
frequently referenced blocks but from preventing blocks that
receive hits from getting evicted by blocks that do not receive
hits (i.e., scan blocks).

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 716

3. We propose Dynamic RRIP (DRRIP) as an enhancement to
SRRIP-HP. DRRIP provides both scan-resistance and
thrash- resistance by using set dueling to dynamically select
between inserting all missing cache blocks with an
intermediate re- reference interval or with a distant re-
reference interval. In addition to the hardware overhead of
SRRIP, DRRIP does not require any additional hardware
overhead besides a single saturating counter.

We show that SRRIP and DRRIP outperform LRU by an average
of 4% and 10% on a single-core processor with a 16-way 2MB
LLC. We also show that SRRIP and DRRIP outperform LRU by
an average of 7% and 9% on a 4-core CMP with a 16-way 8MB
shared LLC. We also show that RRIP outperforms LFU, the state-
of the art scan-resistant replacement algorithm to-date, by 2.5%. For
the cache configurations under study, RRIP requires 2X less
hardware than LRU and 2.5X less hardware than LFU.

In this study, we have applied re-reference interval prediction
on cache misses and learn the re-reference interval of the missing
block without any external information. Re-reference interval
prediction on cache hits ideally requires knowledge of when a cache
block receives its last hit. RIPP can use such information to update
the re-reference prediction of the re-referenced cache block to
intermediate, long or distant re-reference interval. Automatically
learning the last reference on a cache hit is more challenging
without any external information. Predicting re-reference interval
on cache hits in the absence of external information or in the
presence of dead block and last touch predictors [18, 16] is part of
our on-going work.

8. ACKNOWLEDGEMENTS
The authors would like to thank Eric Borch, Malini Bhandaru,
Paul Racunas, Krishna Rangan, Samantika Subramaniam and
the anonymous reviewers for their feedback in improving this
paper.

9. REFERENCES
[1] “Inside the Intel Itanium 2 Processor”, HP Technical White

Paper, July 2002.

[2] “UltraSPARC T2 supplement to the UltraSPARC

architecture 2007”, Draft D1.4.3. 2007.

[3] Intel. Intel Core i7 Processor.

http://www.intel.com/products/

processor/corei7/specifications.htm

[4] H. Al-Zoubi, A. Milenkovic, M. Milenkovic. “Performance

evaluation of cache replacement policies for the SPEC

CPU2000 benchmark suite.” In ACMSE, 2004.

[5] S. Bansal and D. S. Modha. “CAR: Clock with

Adaptive Replacement”, In FAST, 2004.

[6] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, J. Martinez.

“Scavenger: A New Last Level Cache Architecture with

Global Block Priority”. In Micro-40, 2007.

[7] L. A. Belady. A study of replacement algorithms for a virtual-

storage computer. In IBM Systems journal, pages 78–101, 1966.

[8] M. Chaudhuri. “Pseudo-LIFO: The Foundation of a New Family

of Replacement Policies for Last-level Caches”. In Micro, 2009.

[9] F. J. Corbat´o, “A paging experiment with the multics system,”

In Honor of P. M. Morse, pp. 217–228, MIT Press, 1969.

[10] A. Jaleel, R. Cohn, C. K. Luk, B. Jacob. CMP$im: A Pin-Based

On- The-Fly Multi-Core Cache Simulator. In MoBS, 2008.

[11] A. Jaleel, W. Hasenplaugh, M. K. Qureshi, S. C. Steely Jr., J. Emer.

“Adaptive Insertion Policies for Managing Shared Caches”. In

PACT, 2008.

[12] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference

recency set replacement policy to improve buffer cache

performance,” In Proc. ACM SIGMETRICS Conf., 2002.

[13] T. Johnson and D. Shasha, “2Q: A low overhead high performance

buffer management replacement algorithm,” In VLDB Conf., 1994.

http://www.intel.com/products/

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 717

[14] S. Kaxiras, Z. Hu, M. Martonosi. “Cache decay: exploiting

generational behavior to reduce cache leakage power.” In ISCA-28.

[15] G. Keramidas, P. Petoumenos, S. Kaxiras. “Cache replacement based

on reuse-distance prediction”. In ICCD, 2007

[16] A. Lai, C. Fide, B. Falsafi. Dead-block prediction & dead-block

correlating prefetchers. In ISCA-28, 2001

[17] D. Lee, J. Choi, J. Kim, S. H. Noh, S. Lyul Min, Y. Cho, C. Sang

Kim. “LRFU: A spectrum of policies that subsumes the least

recently used and least frequently used policies,” IEEE Trans.

Computers, vol. 50, no. 12, pp. 1352–1360, 2001.

[18] W. Lin and S. K. Reinhardt. “Predicting last-touch references under

optimal replacement.” Technical Report CSE-TR-447-02, U. of

Michigan, 2002.

[19] H. Liu, M. Ferdman, J. Huh, D. Burger. “Cache Bursts: A New

Approach for Eliminating Dead Blocks and Increasing Cache

Efficiency.” In Micro-41, 2008.

[20] G. Loh. “Extending the Effectiveness of 3D-Stacked DRAM Caches

with an Adaptive Multi-Queue Policy”. In Micro, 2009.

[21] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.

Wallace, V. J. Reddi, K. Hazelwood. “Pin: building customized

program analysis tools with dynamic instrumentation”. In PLDI,

pages 190–200, 2005.

[22] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead

replacement cache,” in FAST, 2003.

[23] E. J. O’Neil, P. E. O’Neil, G. Weikum. “The LRU-K page

replacement algorithm for database disk buffering,” in Proc. ACM

SIGMOD Conf., pp. 297–306, 1993.

[24] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, A. Karunanidhi.

“Pinpointing Representative Portions of Large Intel Itanium

Programs with Dynamic Instrumentation”. In MICRO-37, 2004.

[25] M. Qureshi, A. Jaleel, Y. Patt, S. Steely, J. Emer. “Adaptive Insertion

Policies for High Performance Caching”. In ISCA-34, 2007.

[26] K. Rajan and G. Ramaswamy. “Emulating Optimal Replacement

with a Shepherd Cache”. In Micro-40, 2007.

[27] J. T. Robinson and M. V. Devarakonda, “Data cache management

using frequency-based replacement,” in SIGMETRICS Conf, 1990.

[28] S. Srinath, O. Mutlu, H. Kim, Y. Patt. “Feedback Directed

Prefetching: Improving the Performance and Bandwidth-Efficiency

of Hardware Prefetcher”. In HPCA-13, 2007.

[29] R. Subramanian, Y. Smaragdakis, G. Loh. “Adaptive caches:

Effective shaping of cache behavior to workloads.” In MICRO-39,

2006.

[30] Y. Xie and G. Loh. “PIPP: Promotion/Insertion Pseudo-Partitioning

of Multi-Core Shared Caches.” In ISCA-36, 2009

[31] Y. Zhou and J. F. Philbin, “The multi-queue replacement algorithm

for second level buffer caches,” in USENIX Annual Tech. Conf,

2001.

10. Appendix
Cache replacement is not a problem for workloads that have a
working set that fits in the available cache or for workloads that have
a working set that is much larger than the available cache.
Nonetheless we conducted a thorough study of SRRIP and DRRIP
using a broader set of memory intensive and non-memory intensive
workloads for the baseline single-core configuration. The study
covers 28 SPEC CPU2006 workloads and 47 workloads from PC
games, multimedia, server, and other categories. Table 4 compares
the performance and hardware overhead of several replacement
policies compared to LRU. Note that the average performance
improvement compared to LRU across all workload categories is
small (< 2%) because the study also includes workloads that do not
benefit from cache replacement. We also compare against two
additional hardware LRU approximations: PLRU [4] and CLOCK
[5]. DIP provides competitive performance compared to SRRIP for
SPEC workloads while SRRIP consistently outperforms LRU, DIP,
PLRU, CLOCK, and NRU for PC games, multimedia, and server
workloads. This shows the potential pitfalls of using SPEC
workloads as a proxy for real world workloads. SRRIP outperforms
LRU while requiring 2X less hardware. DRRIP outperforms scan-
resistant replacement HYBNRU/LFU with 2.5X less hardware.

Table 4: Hardware Overhead and Performance of Replacement Policies

Replacement Policy LRU DIPLRU PLRU CLOCK NRU DIPNRU SRRIP DRRIP HYBNRU/LFU

 [25] [4] [5] [1] [25]

HW Overheada
 nlog2n nlog2n n – 1 n + log2n n n 2n 2n 5n

HW for 16-way cachea
 64 64 15 20 16 16 32 32 80

ALL Workloadsb

1.0000

1.0081

0.9973

1.0024

0.9952

1.0061

1.0075

1.0172

1.0097

PC Gamesb
 1.0000 0.9975 0.9982 1.0101 0.9869 1.0071 1.0294 1.0366 1.0343

Multimediab
 1.0000 0.9975 0.9966 1.0037 0.9950 0.9963 1.0287 1.0173 1.0243

Serverb
 1.0000 0.9985 0.9882 1.0069 0.9818 0.9896 1.0153 1.0138 0.9883

CPU2006 - FPb
 1.0000 1.0325 1.0005 0.9989 0.9989 1.0278 0.9965 1.0320 1.0182

CPU2006 - INTb
 1.0000 1.0140 0.9939 1.0022 0.9960 1.0141 1.0031 1.0232 1.0127

Otherb
 1.0000 0.9990 0.9990 1.0004 0.9986 0.9949 1.0013 0.9988 0.9953

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 718

Max Relative Perf

N/A

1.6589

1.0207

1.0360

1.0079

1.6158

1.1381

1.7112

1.4128

Min Relative Perf N/A 0.9687 0.9706 0.9806 0.9507 0.9135 0.9853 0.9656 0.9394

a. Assuming an n-way set associative cache, hardware overhead is measured in number of bits required per cache set.

b. Performance is relative to LRU and is reported as geomean across 75 memory intensive and non-memory intensive workloads from server,

multimedia, PC games, and the entire SPEC CPU2006 benchmark suite.

