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Abstract—As the core counts increase in each chip multiproces- 

sor generation, coherence protocols should improve scalability in 
performance, area, and energy consumption to meet the demands 
of larger core counts. Directory-based protocols constitute the 
most scalable alternative. A conventional directory, however, 
suffers from an inefficient use of storage and energy. First, the 
large, non-scalable, sharer vectors consume unnecessary area and 
leakage, especially considering that most of the blocks tracked 
in a directory are cached by a single core. Second, although 
increasing directory size and associativity could boost system 
performance, it would come at expenses of energy consumption. 
This paper proposes the Dynamic Way Partitioning (DWP) 
Directory, a directory structure that exploits three main workload 
characteristics to achieve area and energy reductions. First, it is 
widely known that even in parallel workloads most of the accessed 
cache blocks are private. Second, most directory accesses target 
the small number of shared blocks. Third, the shared/private 
ratio of entries in the directory varies across applications and 
across different execution phases within the applications. To take 
advantage of these three characteristics, DWP-Directory reduces 
the number of ways with storage for shared blocks and it allows 
this storage to be powered off or on at run-time according to the 
dynamic requirements of the applications. 

DWP-Directory is compared to a conventional directory cache 
with different associativity degrees and with two state-of-the-art 
schemes: PS-Directory and Hybrid Representation. Experimental 
results for 32-core CMPs show   that   DWP-Directory   achieves 
the best of both worlds: similar performance as a traditional 
directory with high associativity, and similar area as recent state-of-
the-art schemes. In addition, DWP-Directory reduces static and 
dynamic power consumption by 38.0% and 67.4%, respectively 
compared to conventional sparse directories. 

 

I. INTRODUCTION 

As transistor technology miniaturizes, silicon resources be- 
come more abundant. Consequently, the core count is con- 

tinually increasing in current chip-multiprocessors (CMP). 

These systems usually implement a shared memory program- 
ming model and a cache coherence protocol to maintain 

data coherence along the CMP memory hierarchy. Directory- 

based protocols are the common approach used in current 

systems over other alternatives such as snoop-based protocols, 
which generate an important traffic overhead due to the use 

of broadcast messages. Much research has concentrated on 

improving the performance and energy of directory protocols, 
both from the academia [1], [2], [3], [4], [5] and from the 

industry in modern processors [6], [7], [8], [9], [10]. Directory- 

based protocols require additional structures to keep track of 
the cached block. Two main approaches can be followed: 

Duplicate Tags [7] and Sparse Directories [11]. 

Sparse directories, implemented as a cache-like structure 
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with a relatively low associativity degree, are the preferred 

design choice for a mid to high number of cores, since 

Duplicate Tags require highly associative lookups to build 
the sharer vector on each directory access and entail a high 

energy consumption. The limitation of sparse directories 
is that replacements are needed due to space constraints. 

Upon a directory entry eviction, all copies of the block 

—being tracked by such entry— in the cores’ private caches 
are invalidated, regardless of whether the block is being used 

or not. Therefore, subsequent accesses to these invalidated 

blocks will rise the so-called coverage misses [12], which 
degrade system performance. 

An entry in a conventional sparse directory mainly 
stores the owner of the block, required to find the provider 
of the block, and a sharer vector, required to track all 
copies of a shared block. While the owner field just 

requires log2C bits, where C represents the number of cores, 

the sharer vector typically utilizes one bit per core which is 
set when the core’s cache holds a copy of the block. Thus, 
the size of the sharer vector, and so that of the directory, 
grows linearly with the number of cores. Consequently, as 
the current industry trend is to increase the core count in 
each CMP generation, it is expected that the directory size 
will present a worth on-chip area and leakage overhead in 
future CMPs [13]. Therefore, there is a need for new 
directory schemes that scale in terms of area and power. 

The key challenge when addressing scalability in sparse 
directories lies on reducing the overhead in area and power 

introduced by the sharer vector. This fact has been effectively 

addressed based on the characteristics of the blocks being 
tracked. Some previous works [3], [14] have realized that 

most blocks are accessed by a single core. That is, a high 

amount of blocks are fetched into the cache of a given 
core and then no other core accesses it. These blocks are 

referred to as private blocks in contrast to shared blocks, 
which are accessed by multiple cores. This behavior means 

that most directory entries keep track of private blocks, 

which do not require from coherence actions, thus these 
entries do not use the sharer vector field at all. Based on this 

finding, recent proposals [15], [16], implement two kinds of 

entries in the directory: shared and private. The former 
include storage for a shared vector and can potentially track 

shared blocks, while the latter save storage by not 
including sharing information and are limited to track 

private blocks. The main drawback of these schemes is that 

the number of private and shared entries is fixed by design. 
However, as we show in this work 
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the requirements of private and shared directory entries widely 
varies both across applications and intra application. To face 

the mentioned drawback this paper proposes a directory that 

adapts the number of shared entries according to the run-time 
demands of each application. 

This paper makes the following contributions: 

• We perform a workload characterization and find that the 
number of shared blocks widely varies at run-time both 
intra and inter applications. 

• We propose the Dynamic Way Partitioning (DWP) direc- 
tory, to the best of our knowledge, the first directory that 
dynamically chooses the proper number of shared entries 
at run-time according to the workload requirements at 
each phase of its execution. 

• DWP-Directory achieves better performance than state- 
of-the-art directory schemes that exploit asymmetric stor- 
age for block tracking. Experimental results for 16- and 
32-core CMPs show that compared to conventional di- 
rectory schemes with the same number of entries, DWP- 
Directory is able to achieve important area, dynamic and 
static energy consumption reductions, while having an 
almost negligible impact on performance. 

II. BACKGROUND AND MOTIVATION 

A. Asymmetric Storage for Handling Shared and Private 
Blocks 

Different approaches have been proposed to reduce the 
directory size. Recently, some works [17], [15], [16], [18], [19] 

have focused on providing asymmetric storage for handling 

shared and private blocks. Area savings come from making the 
directory narrower by using shorter entries —the sharer vector 

is not implemented— to track private blocks. These works 

demonstrate that actively differentiating shared and private 
entries can yield the system to area and energy improvements 

over a conventional one-type entry directory. 

The PS-Directory [15], [18] provides a fast and small (low 
number of entries) directory in SRAM for the reduced number 

of frequently accessed shared entries, and a larger (more 
entries) and slower directory in a denser eDRAM cache for 

infrequently accessed private entries. This approach allows 

entries to move from the private directory to the shared 
one, which is the most frequently accessed. Once one entry 

becomes shared, however, it does not return to the private 

directory even if the block being tracked is only stored in a 
single core. The rationale behind this design feature is that 

a block that has been shared has a high probability of being 
shared again, and moving it from one directory to the other 

consumes extra energy and does not translate into performance 

improvements. 
The Hybrid Representation directory [16], [19] also consid- 

ers a different representation for private and shared entries. The 

key difference, however, is that the latter approach proposes 

a single-cache directory and both types of entries are mingled 

in the same cache structure. Unlike the previous scheme, the 

contents of a private entry are permitted to move to a shared 
one and vice versa, according to the state of the block. 

Both aforementioned approaches conclude that, based on 
the average workload behavior, the most efficient directory is 

that providing a quarter of its entries to track shared blocks and 
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three quarters to track private ones. The main drawback in 
both approaches is that both shared and private entries are 

limited by design, that is, private blocks compete among 

them for private ways and analogously shared blocks for 
shared ways. Therefore, if the run-time requirements of a 

given application exceeds the budget of ways available for a 

given type of block, that requirement cannot be satisfied by 
design so yielding the system to performance drops. 

In summary, although discerning among shared and 
private entries can bring important benefits in terms of area 

and energy, static designs like PS-Directory or Hybrid 

Represen- tation cannot adapt to the different shared-private 
ratio of parallel applications and to every execution phase 

within the application, thus providing sub-optimal 

performance. 

B. Motivation 

This section characterizes the applications used in our 

eval- uation (Section IV) by studying the dynamic 

requirements of shared entries at run-time. The study shows 
that while at some point in time some applications may 

require a single shared entry in a set, some others may 

require almost all the entries in a set to track shared 
blocks. To deal with this behavior, this paper proposes a 

flexible structure that dynamically varies the number of active 

shared entries according to the run-time demands of the 
workloads. 

As a first design step, we analyze the dynamic 
requirements of shared directory entries across a 

representative subset of parallel workloads in order to find 

out how many shared entries should be supported to achieve 
the same performance as a conventional directory. For this 

purpose, we ran parallel workloads and for each of them 

we measured the number of entries actually tracking shared 
blocks along the execution time (see Section IV for 

simulation details). 
According to dynamic variability in the run-time demands 

of shared entries, there are some differences between ap- 

plications, yet some general observations can be concluded. 
Figure 1 plots the dynamic evolution of the number of shared 

entries averaged across all the directory sets and banks, 

and the maximum number of shared entries in any set for 
each application assuming a 8-way directory cache. 

It can be observed that, a static approach with S  = 2 and 

P = 6, the best one in PS-Directory and Hybrid Represen- 

tation, fails to adequate to specific directory sets at a given 
point in time, since typically there is always one (i.e. labelled 
as Max in the plots) or some sets that require more than 

two ways for shared entries. Yet, most of the applications 
have scarce set requirements, on average, to track shared 
blocks. Only Radiosity and LU require on average more 

associativity to track shared blocks than the deployed in 

the aforementioned proposals, but only during a small fraction 
of its execution time. This will inevitably lead to 
performance losses. Therefore, the solution to improve 
performance lies on adding extra shared entries. However, this 
way also would be at cost of area and energy expenses, thus, 
key challenge lies on investigating the number of entries an 
efficient directory should deploy in order to achieve the best 
area and energy savings while sustaining the performance of 
a conventional all shared-entry directory. On the other hand, 
notice that there are also many other applications which do not 
need more than one 
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Fig. 2: Fraction of time with # shared entries in a set. 

than four shared entries are in demand. Regarding maximum 
requirements in individual sets, it can be appreciated that, on 

average, during 76.8% of the execution time, there are no 

individual sets requiring more than four shared entries. This 
value makes sense since by definition, a shared block must be 
stored in at least two L1 caches, but since workloads are not 
ideally balanced, sometimes the accesses may concentrate on 
specific directory banks or sets. We experimentally found that 
these happens in some workloads like Radiosity. 

The previous analysis, as well as experimental results will 
confirm, shows that a directory with a quarter or half of 

its ways providing storage for shared blocks are the most 
interesting design choices, and can provide the best tradeoff 

between performance, area and energy. 
In accordance to these results, we analyze two approaches in 

which a quarter or half of the cache ways in a 8-way directory 

provide support for shared entries, while the remaining ways 
only support private entries. Since most of the time at most 

two shared ways are required, this only incurs performance 

losses during a negligible percentage of time. This results 
in important benefits in terms of area and energy, especially 

leakage, as discussed in the next section. 

III. DWP-DIRECTORY 

The design of DWP-Directory is mainly motivated by two 
observations discussed in Section II: i) there are applications 

that need more than 3 or 4 shared ways during some phases 
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Directory is to provide support for both of them. Figure 

3 depicts the structure of a generic DWP-Directory. Two 

types of entries are deployed: those having storage space to 

Fig. 1: Average and maximum number of shared entries per 

set over the execution time across all the directory banks. 

shared entry per set for most of its execution time (i.e. FFT, 

Ocean, Radix, Tomcatv and Waternsq). The additional 

shared associativity in the directory is not required in these 
cases, which in turn brings additional energy consumption and 
area that could be otherwise avoided. 

To provide deeper insights in the most adequate number 

of ways, we quantified the fraction of time the directory is 

keeping track any given number of shared blocks. Figure 2 
shows the results across the studied benchmarks. 

It can be seen that, on average, two or less directory cache 

ways able to keep track of shared blocks are required during 

93.8% of the execution time, while only during a 3% of it more 
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contain the sharer vector and those lacking the sharer vector. 

The directory deploys N shared entries and M − N private 

entries per set, where M is the total associativity. Three areas 
can be appreciated: the most-left way is always shared, 

the M − N most-right ways are always private and the 

rest of the ways in the middle may contain shared or private 
entries (i.e. repartitionable area, highlighted in gray). An 
entry in the repartitionable area include the On/Off bit 

that is set when 
the associated way is tracking shared blocks and reset 
when it tracks private blocks. 

When the bit is reset, the voltage supply to the sharer 

vector is disabled since private blocks do not need it. Notice 
that this allows energy savings, mainly leakage, with no 

performance penalty. In other words, with this design i) the 
private blocks do not consume the energy dissipated to hold 

the sharer 
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Fig. 3: The DWP-Directory architecture. 

coherence. In a traditional directory, all the cache ways in the 

directory are accessed in parallel which translates into highly 

consuming searches. 
To reduce dynamic energy consumption, the first lookup 

in DWP-Directory only accesses the subset of ways tracking 

shared blocks. The reason to look up first these ways is that 
most of the accesses to the directory are to shared blocks [18]; 

thus, it is more likely to find the required block in the shared 

entries. Moreover, as discussed in Section II, the number of 
active shared entries in the directory is on average lower or 

much lower than the number of private ways, so important 
energy savings can be achieved. 

Upon a miss in the first lookup, DWP-Directory searches 

the target block in the remaining entries, i.e. private entries. 
If there is a hit in any of these ways, this means that the 

requesting core differs from the owner of the block, thus the 

block should become shared and the entry moved to a shared 
way. In case no shared entry is available, an entry should 

be evicted and all the copies of the block in the processor 
Fig. 4: DWP-Directory working flow chart. 

 

vector, and ii) the directory size becomes smaller due to the 
removal of the sharer vector in part of its ways. An entry in 
a traditional directory for a MOESI protocol, apart from the 
tags, is comprised of an owner and a sharer vector field that 

require (log2(C)+C) bits, being C the number of cores in the 

CMP. The higher the number of cores the larger the number 

bits that can be saved with our proposal, i.e. (M −N )×C bits 

per set. To this amount, we should subtract a few N bits per 
set required for On/Off bits. The higher the number of 
cores the wider the sharer vector field since it requires one bit 
per core. Hence, DWP-Directory scales much better in terms 

of energy and area than sparse directories. 
In summary, unlike existing proposals, which hardly limit 

the number of shared ways to 2 and private ways to 6, DWP- 

Directory implements a flexible sparse directory that can use 
all the ways to track private blocks, and is able to track as 

many shared blocks as deployed sharer vectors. 

A. Basic Working Behavior 

DWP-Directory includes two types of entries: private and 

shared. Private entries are short, do not include the sharer 

vector, and are only able to keep track of private blocks. Shared 

entries are wider, implement the sharer vector, and can 
keep track of either shared and private blocks. Figure 4 

depicts a flow chart that summarizes how DWP-Directory 

handles private and shared entries. On a miss in the L1 cache 
of a given core, the directory is accessed in order to maintain 
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caches should be invalidated. Even though DWP-Directory has 
potentially no limitation in the minimum number of shared 
ways, this work does not evaluate the option of supporting no 

shared ways since the complexity of the coherence protocol 

increases. Notice that if there is no active shared way 
(i.e. all sharer vectors are deactivated), the previous owner of 

the block is invalidated and the new owner updated 
accordingly. New transitions are required in the protocol to 

take this case into account, while DWP-Directory ensuring 

at least one shared way can work directly with the 
conventional coherence protocol. This case would be 

accounted as a shared entry eviction for the repartitioning 

algorithm as explained below. 
If both directory lookups miss, a new entry is allocated. 

This entry is set as private since it only tracks a single copy. If 
the directory has an available entry, the new entry is 

allocated on it, prioritizing private entries over shared entries 

in case there are several available entries. If all the entries are 
busy, the directory controller has to evict one of them. In 

such a case, the least recently used way, independently of 

being private or shared, is selected for eviction. 

B. Repartitioning Approach 

DWP-Directory dynamically repartitions the number of 

shared entries enabled to keep track of shared and private 
blocks considering the run-time application needs. In other 

words, some of the shared entries by design are 

considered as private and its sharer vector field powered off 
for leakage savings. After a given number of accesses to the 

directory, DWP-Directory analyzes the eviction ratio between 
shared and 
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private blocks and the number of private ways is readjusted 

taking into account the physical constraints. 
The repartitioning mechanism is implemented with neg- 

ligible hardware with only three main parameters. These 

parameters help the algorithm in decision taking about when 
a repartitioning should be triggered as a consequence of an 

increase or decrease of the demand of shared ways: a interval 

length (IL), a shared threshold (ST) and a private threshold 
(PT). The selection of IL is quantified in number of accesses 

to the directory. 
Algorithm 1 summarizes the pseudocode of the reconfigu- 

ration mechanism. This algorithm is called on every directory 

access. Two global counters are used: directory accesses and 
ctr. The former accounts for the number of accesses to the 

directory. The latter is an up/down counter that saturates at 

an upper threshold PT and at a lower threshold ST. Small 
top/down counters have a low implementation complexity and 

have been widely applied in the past, hence this design choice 
has been selected. 

 

 
Algorithm 1: Repartitioning algorithm 

The algorithm works as follows. When the directory is 

accessed for IL times, the repartitioning logic checks the value 

of the ctr counter to decide if the number of shared ways 
should be increased, decreased or remain in its actual value. 

• Each time a private entry is evicted from the directory, 
the ctr counter is increased and is decreased each time a 
shared entry is evicted. 

• When the directory accesses counter reaches IL: 

– If the counter saturates at its lower threshold ST, 
then additional shared entries are required. Thus, 
the most-left shared entry tracking a private block 
(Figure 3) is set as shared and its shared vector 
activated. 

– If the counter saturates at PT, then directory needs 
additional private ways in detriment of shared ones. 

In such a case, the most-right shared way in the 
repartitionable area (Figure 3) is set to private. Thus, 
its sharer vector is powered down and all sharers but 
the owner are sent an invalidation message. 

– If the counter is not saturated, then the system 
remains in its actual state for further IL accesses. 

– ctr and directory accesses are reset to 0. 

/ / For e v e r y a c c e s s  t o t h e  d i r e c t o r y 
d i r e c t o r y a c c e s s e s ++; 
i f ( c t r   ! = PT && c t r   ! = ST )   { / / Ctr  not  s a t u r a t e d 

i f ( p r i v a t e e v i c t i o n r e q u i r e d ) { 
c t r ++; 

} e l s e   i f   ( s h a r e d   e v i c t i o n   r e q u i r e d )   { 
c t r −−; 

} 
} 
 

i f ( d i r e c t o r y a c c e s s e s == IL ) { 
i f ( c t r   == PT && shared  ways > 1 )   { 

p r i v a t e w a y s ++; 
shared ways −−; 

} e l s e i f ( c t r == ST && shared ways < N) { 
p r i v a t e w a y s −−; 
shared ways ++; 

} 
r e s e t ( ) ; / / R e s e t s  a l l  c o u n t e r s 

} 
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TABLE I: System parameters 

Memory Parameters 
 

Cache hierarchy Non-inclusive 
Cache block size 64 bytes 
Split L1 I & D caches 64KB, 4-way (256 
sets) L1 cache hit time 2 cycles 
Shared single L2 cache 512KB/tile, 8-way (1024 
sets) L2 cache hit time 2 (tag) and 6 (tag+data) 
cycles Single directory cache 256 sets, 4 ways (same as 
L1) Single directory cache hit time 2 cycles 
Memory access time 160 cycles 

 

  Network Parameters  
Topology 2-dimensional mesh (4x4) 
Routing technique Deterministic X-Y 
Flit size 16 bytes 
Data and control message size 5 flits and 1 flit 
Routing, switch, and link time 2, 2, and 2 cycles 

 

This algorithm allows the proposal to dynamically 

adapt to the application phases, providing leakage savings 
without affecting performance. The reconfiguration of a 

way is done in all sets of the directory simultaneously in 

order to minimize complexity and to guarantee a very simple 
first lookup in the directory. Notice that the cost of evicting 

shared entries is higher than the cost of evicting private 
entries, but that is taken into consideration when choosing 

the PT and ST values. 

 

IV. SIMULATION   ENVIRONMENT 

DWP-Directory is evaluated using full-system simulations 

with Simics [20] and GEMS [21], which enables detailed 

simulation of multiprocessor systems. The interconnection 
network is modeled using GARNET [22]. We evaluate both 

16- and a 32-core CMPs comprised of a cache hierarchy with 
private L1 caches and a shared L2 NUCA distributed among 

all tiles. A MOESI directory-based cache coherence protocol 

keeps coherence for the data within the private caches. L1 
and L2 caches are non-inclusive, that is, some blocks stored 

in the L1 caches may not have an entry in the L2 cache but 

they will have in the directory. Our base directory scheme is 
an on-chip distributed sparse directory with a bit-vector 

sharing code in each entry. Other baseline system parameters 
are shown in Table I. We use CACTI 6.5 [23] to estimate 

access time, area requirements and power consumption of the 

different cache structures for a 32nm technology node. 

DWP-Directory is evaluated using a wide range of scien- 
tific applications. FFT (64K complex doubles), FMM (16K 

particles), LU (512×512 matrix), Ocean (514×514 ocean), 

Radiosity (room, -ae 5000.0 -en 0.050 -bf 0.10), Radix 
(512K keys, 1024 radix), Volrend (head), and Water-Nsq 

(512 molecules) are from the SPLASH-2 benchmark suite 
[24]. Tomcatv (256 points) and Unstructured (Mesh.2K) are 

two scientific benchmarks. The experimental results reported 

in this work correspond to the parallel phase of the evaluated 

benchmarks. 

DWP-Directory is sensitive to both the directory config- 

uration and the threshold parameters. We have tested many 

configurations, however, given the analysis shown in Section 

II-B only results for two most effective configurations are 
presented. One configuration implements half of its 8 ways 

without the sharer vector field, hereby noted as DWP-Directory 
(4:4), while the other implements the sharer vector in two of 
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(b) Execution Time 

Fig. 5: Performance normalized with respect to a single-cache directory with 4 ways and 16 cores. 

them, hereby noted as DWP-Directory (2:6). Both configura- 
tions share an interval length (IL) of 500 directory accesses, 

a shared threshold (ST) of 10 and a private threshold (PT) of 

100. These thresholds were tuned to the studied workloads, 
showing minor differences for thresholds relatively high, but 

due to space constraints no sensitivity analysis is presented. 

V. EXPERIMENTAL EVALUATION 

This section evaluates DWP-Directory against a 4-way 
conventional or single-cache directory (which acts as the 

baseline), a 8-way conventional directory, and two state-of- 

the-art architectures: PS-Directory and Hybrid Representation. 
Unlike our proposal, the directory space assigned to each 

type of block in the aforementioned approaches is fixed and 

cannot be changed at run-time according to the needs of each 
particular workload during its execution. 

Notice that all evaluated schemes, with the only exception 

of the baseline, implement a 8-way directory associativity. 
Both state-of-the-art architectures dedicate two ways to track 

shared blocks and the remaining ones to track private blocks 
(2:6 configuration). Since some workloads require a single 

shared way most of its execution time, as shown in the 

next section, a 1:7 configuration is also implemented for 
comparison purposes. 

A. Impact on Performance 

The impact of the proposal on performance has been eval- 
uated by analyzing the L1 Misses per kilocycles (MPKC) and 

the execution time. Every time a directory entry is evicted, 
invalidation messages are sent to the corresponding processor 

caches keeping a copy of the block being tracked in order 

to be able to maintain cache coherence. These invalidations 

1. Single Dir 1x 4w      3. PS-Directory (2:6)      5. Hybrid Representation (2:6)      7. DWP-Directory (2:6) 
2. Single Dir 1x 8w      4. PS-Directory (1:7)      6. Hybrid Representation (1:7)      8. DWP-Directory (4:4) 
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Coherence_Miss 
Coverage_Miss 

Single Dir 1x 4w     PS-Directory (2:6)     Hybrid Representation (2:6)     DWP-Directory (2:6) 
Single Dir 1x 8w    PS-Directory (1:7)    Hybrid Representation (1:7)    DWP-Directory (4:4) 
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will cause coverage misses upon a subsequent memory 

request to those blocks, thus impacting on the final 
performance. Figure 5a shows the L1 MPKC, which 

matches the number of directory accesses per kilocycles, 
with respect to a 4-way single-cache directory in the studied 

16-core CMP. The misses have been categorized in three 

types: 3C (capacity, compulsory and conflict), coherence and 
coverage. 

The different evaluated schemes have negligible impact on 

3C and coherence misses over the baseline. On the other 

hand, the aggregated associativity degree of the directory, as 

ex- pected, has a big impact on the number of coverage 
misses. An increase from 4 to 8 ways in a single cache greatly 

decreases the number of coverage misses, approaching to the 
optimum performance that an ideal directory can achieve. The 

additional associativity allows more flexibility when keeping 

track of both shared and private entries in a set. Notice that 
even though most of the blocks are private and would hence 

require a higher number of entries, they are scarcely 

accessed, in comparison to shared ones, so they can be 
prematurely evicted due to an LRU replacement policy, 

when space constraints problems arise. Thus, additional 
associativity mitigates this problem. 

Regarding the state-of-the-art schemes, the PS-Directory 
reduces the number of misses by 34.5% and 40.6% for the 2:6 

and 1:7 configurations, respectively. Hybrid Representation 
re- duces this number by 34.3% and 38.2%. These reductions 

are achieved due to the different treatment of private and 
shared blocks. Since the associativity degree is 
partitioned, entries do not have the same allocation flexibility 
as a single-cache directory with the same associativity. 
Notice that configuration 1:7 obtains the best results, since as 
discussed above, most of the applications present a low 
associativity requirement for 
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(b) Execution Time 

Fig. 6: Performance normalized with respect to a single-cache directory with 4 ways and 32 cores. 
 

shared entries. Yet, there are some exceptions in which the 
2:6 configuration works best, e.g. in LU and Unstructured for 

the Hybrid Representation. Hence it can be seen that there is 

no optimal static configuration that satisfies every workload. 

DWP-Directory, which unlike the aforementioned schemes 
has the ability to adapt the private-shared partition size dy- 
namically at run-time, obtains better results, reducing the 

number of misses by 49.8%   and 50.4%   in the 2:6 and 

4:4 configurations, respectively. It performs similar as an 8- 

way single cache, with only 1% degradation. Notice that 

following the characterization presented in section II-B, those 
applications with a higher maximum number of shared ways 
benefit the most from our proposal, compared to the state- of-
the-art schemes. On the other hand, applications with low 
shared requirements, do not benefit as much. The dynamic 
adaptability allows DWP-Directory a similar flexibility as the 
single-cache directory, while also keeping or improving most 
of the benefits that provide the differentiation between shared 
and private entries in terms of area and energy reduction, as 
will be discussed below. 

Reducing the number of L1 misses translates into a lower 
execution time of the applications, as shown in Figure 5b. 
The reduction of misses achieved by the 8-way single-cache 
directory improves the execution time by 12.3%. The PS- 

Directory and Hybrid Representation both reduce the appli- 

cations average execution time by 8.9%. Meanwhile, DWP- 

Directory reduces the execution time by 12.1% and 12.7% 
in the 2:6 and 4:4 configurations, respectively. As expected, 
applications with low MPKC values are the ones that have a 
lesser improvement in their execution time. Power-up and 
power-down delays of the proposal are taken into account in 

1. Single Dir 1x 4w      3. PS-Directory (2:6)      5. Hybrid Representation (2:6)      7. DWP-Directory (2:6) 
2. Single Dir 1x 8w      4. PS-Directory (1:7)      6. Hybrid Representation (1:7)      8. DWP-Directory (4:4) 

3C_Miss 
Coherence_Miss 
Coverage_Miss 

Single Dir 1x 4w     PS-Directory (2:6)     Hybrid Representation (2:6)     DWP-Directory (2:6) 
Single Dir 1x 8w    PS-Directory (1:7)    Hybrid Representation (1:7)    DWP-Directory (4:4) 
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these results. 

To explore how the proposal behaves on a higher 
number of cores, we launched experiments for a CMP with 32 
cores. Figure 6a and Figure 6b show the L1 MPKC and the 
execution time, respectively. Results are similar as those 
presented for 16 cores. While the 8-way single cache reduces 
misses by 51%, DWP-Directory 2:6 and 4:4 reduce them 

by 50.4% and 50.1%, respectively. The difference between 

our proposal and the 8-way single cache is smaller. In terms 
of execution time it translates into a reduction of 7.9%, 7.7% 
and 7.7%, respectively. The state-of-the-art architectures 

achieve lower reductions, but as with 16 cores, a 1:7 shared-
to-private way ratio performs on average slightly better than 
a 2:6 one. 

 

B. Impact on Energy Consumption 

Typically, static or leakage energy dominates the total 

energy consumption of the directory structure. Figure 7a 

shows the normalized leakage energy consumed by the 
directory structure with respect to the 4-way single cache. 

As can be seen, the 8-way single-cache directory reduces 

leakage by 7.1%, mainly due to the smaller execution time of 

the applications. The PS-Directory and the Hybrid 

Representa- tion (2:6) achieve better energy savings by 20.3% 
and 27.2%, respectively, even though their execution time is 

slightly worse than the 8-way single-cache directory. These 
energy savings are the result of both schemes lacking the 
sharer vector field in some ways, namely those designated to 
keep track of private blocks, regardless if they are in a 
separate structure, like in the PS-Directory, or in the same set, 
as in Hybrid Representation. This allows the directories to 
consume less static energy, while the execution time of the 
application is not severely harmed as 
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Fig. 7: Normalized energy consumed with respect to a single-cache directory with 4 ways and 16 cores 

 
 

shown in the previous section. For this reason, configurations 
1:7 consume even less energy, since the sharer vector is present 
in one way less. DWP-Directory reduces the static energy 

consumed by 31.5% and 28.9% for 2:6 and 4:4 configurations, 

respectively, which are the highest reductions of the evaluated 
directories. Notice that these leakage savings over state-of-the- 
art proposal come thanks to its repartitioning mechanism that 
allows DWP-Directory provisioning more shared ways when 
needed of even actually using none of them. 

Results for the dynamic energy are shown in Figure 7b, 
also normalized with respect to a 4-way single cache. All 
the studied schemes, apart from DWP-Directory, achieve on 
average a similar energy savings falling in between 44% 
and 50% over the baseline. The best scheme regarding this 

parameter greatly fluctuates between the applications, so there 
is no definitive best approach. Meanwhile, with the only 
exception of FFT, DWP-Directory always achieves the better 
results. The consumption is reduced by 59.9% and 59.5% for 

the 2:6 and 4:4 configurations, respectively. 

With 32 cores, in addition to maintaining similar perfor- 
mance ratio as in 16 cores, the proposal is able to achieve 
even better energy savings, offering a much scalable solution. 
Figure 8a and Figure 8b show the static and dynamic energy 

consumed in the 32 core CMP and normalized with respect 
to the 4-way single-cache. The leakage energy consumed by 
the 8-way single cache is only 1.1% better, despite the lower 

execution time. Meanwhile, the PS-Directory and Hybrid 
Representation 2:6 are able to reduce up to 29.3% and 31.3%, 

respectively, of this consumption. The energy savings are 
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higher than those of the 16 core CMP mainly due to the 
larger amount of deployed sharer vectors. Since the 
mentioned schemes rely on the removal of the shared entry 
field, and this field increases its size with the number of 
cores, the overall number of bits that are eliminated is also 

higher. Lastly, DWP- Directory is able to reduce up to 38% 
and 34.6% of the leakage energy consumed by the directory 

structure for the 2:6 and 4:4 configurations, respectively. 

Regarding dynamic energy, DWP-Directory is able to re- 
duce up to 67.4% and 66.2% for the 2:6 and 4:4 config- 

urations, respectively, of the dissipated power, which is the 
highest across all the evaluated schemes. 

 
C. Impact on Area Requirements 

The on-chip area required to implement these directory 

structures is also analyzed in this section. Results obtained 
with CACTI are shown in Figure 9 for a conventional or 
single directory cache, the PS-Directory, Hybrid Representa- 
tion and the proposal. With a higher number of cores, 
the area requirement difference between the single cache and 
the proposal grows more and more. DWP-Directory 4:4 

requires only the 82.9%, 74.4% and 66.8% area that a single 

cache would need. The PS-Directory, Hybrid Representation 
and DWP-Directory 2:6 scale better and similar to each other, 
specially with 64 cores, than the 4:4 configuration, though. 
This is mainly because DWP-Directory 4:4 evaluated has a 
maximum of 4 shared ways, while the others only have 
2. As results have shown, for a lower number of cores (i.e. 16 
cores) 4 shared ways offer the best best performance 
albeit 
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Fig. 8: Normalized energy consumed with respect to a single-cache directory with 4 ways and 32 cores 

with a small energy and area penalty with respect to a DWP- 
Directory with just 2 shared ways. Overall, DWP-Directory 

with the 2:6 configuration offers the best tradeoff between 

performance, energy and area. 

VI. RELATED WORK 

In shared memory systems where multiple cores are allowed 

to access the same memory blocks, cache coherence is a 

necessity. This work focuses on directory-based protocols, 
which are the commonly adopted solution for a medium to 

large core count. 

Traditional directory schemes do not scale properly with 
the number of cores. One of today’s major design concerns 

is the implementation of directories that scale to hundreds of 
cores in terms of power and area. Directory implementations, 

both in academia and industry, follow two main approaches: 

duplicate-tag directories and sparse directories. 
Duplicate-tag directories keep a copy of the tags of all 

tracked blocks. Therefore, this approach does not raise any 

directory-induced invalidation nor coverage miss. Duplicate- 
tag directories have been implemented in modern small CMP 

systems [6], [8] and is the focus of recent research works 
[25], [13]. Although being area-efficient, obtaining the sharer 

vector requires multiple directory entry lookups, equal to the 

product of the number of core caches by the associativity of 

such caches [26]. That means that in a system with 64 8-way 

L1 caches, a directory access requires a 512-associative search. 
Hence, this approach becomes prohibitive for a larger number 

of cores. 
Sparse directories [11] are organized as a set-associative 

cache like structure indexed by the block address. By reducing 
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Fig. 9: Area required for the different directories with an 
increasing number of cores. 

the directory associativity, this approach becomes more 

power- efficient than duplicate-tag directories. Sparse 

directories can reduce area by reducing the number of 
directory entries. This is done at the expense of performance, 

since each directory eviction due to lack of space, forces 
invalidations at the core caches of the blocks being tracked. 

Some works [27] employ block replication and migration to 

enhance performance. 

Previous research works have focused on reducing the 
direc- tory area by focusing on the entry size. Some 

approaches have used compression [28], [29], [30], [31] to 

shorten the entry size. In [28], [32] a two-level cache 
directory is proposed. In the first level, the typical sharer 

vector is stored as usual, while the second level uses a 
compressed code instead. In these schemes, area is saved at 

expenses of using an inexact representation of the sharer 

vector when using compression. This induces potential 
performance losses. 

Guo et al. [33] proposed a hierarchical representation of 

the sharer vector, also for entry size reduction purposes. 

Latency increases in these hierarchical organizations 
however, since they impose additional lookups on the 

critical path. 
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Others, like SCD [4], use different entry formats of the same 
length in order to solve the scalability problem. Unlike typical 

sparse directories where all lines share the same format, lines 

with one or few sharers use a single directory entry while 
shared lines employ several cache lines (multi-tag format) 

using hierarchical bit vectors. The proposed scheme entails 

extra complexity and directory accesses for managing the 
dynamic changes (expanding/contracting) in the entry format. 

Multi-grain directories (MGD) [5] also use different entry 
formats of same length and track coherence at multiple differ- 

ent granularities in order to achieve scalability. Each entry in 

the MGD tracks either a single cache block with any number 
of sharers, as usual, or a temporarily private memory region. 

Finally, Coherence Deactivation [3], [34], [35], [36], [37] 

improves the efficiency of the directory through OS-, TLB-, 
and compiler-based techniques, by removing the need of track- 

ing private data at the directory. Differently, DWP-Directory 

focuses on shared entries and is transparent to these aspects. 

VII. CONCLUSIONS 

This work has identified that the current needs of multi- 

threaded applications, regarding shared and private data access 

from the directory point of view, varies dynamically with 

execution time. Static private-shared structures are not able to 
properly adapt to this dynamic variation and, instead, dynamic 

strategies are in demand. Based on these observations, we have 
introduced the Dynamic Way Partitioning(DWP) Directory, a 

sparse directory that sacrifices the sharer vector field from part 

of its ways in order to gain in both area and energy scalability. 
Furthermore, the implemented sharer vectors can be powered 

off or on as required according to wether the need of more 

shared ways rises or drops at run time, respectively. 
Experimental results for a 16-core CMP show that, com- 

pared to a conventional directory cache with the same number 
of entries, DWP-Directory reduces the static and dynamic en- 

ergy consumed by 31.5% and 59.9%, respectively, while hav- 

ing an almost negligible performance penalty when compared 
to a more energy and area demanding 8-way conventional 
cache, and having a lower execution time than a more power- 
efficient 4-way directory. 
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