

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 675

Using Dynamic Private-Shared Partitioning

in a Directory Cache
 Dr. Dhaneswar Parida1*, Mr.Gandhi Rath2

 1* Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

dhaneswarparida@thenalanda.com*, gandhirath@thenalanda.com

Abstract—As the core counts increase in each chip multiproces-

sor generation, coherence protocols should improve scalability in
performance, area, and energy consumption to meet the demands
of larger core counts. Directory-based protocols constitute the
most scalable alternative. A conventional directory, however,
suffers from an inefficient use of storage and energy. First, the
large, non-scalable, sharer vectors consume unnecessary area and
leakage, especially considering that most of the blocks tracked
in a directory are cached by a single core. Second, although
increasing directory size and associativity could boost system
performance, it would come at expenses of energy consumption.
This paper proposes the Dynamic Way Partitioning (DWP)
Directory, a directory structure that exploits three main workload
characteristics to achieve area and energy reductions. First, it is
widely known that even in parallel workloads most of the accessed
cache blocks are private. Second, most directory accesses target
the small number of shared blocks. Third, the shared/private
ratio of entries in the directory varies across applications and
across different execution phases within the applications. To take
advantage of these three characteristics, DWP-Directory reduces
the number of ways with storage for shared blocks and it allows
this storage to be powered off or on at run-time according to the
dynamic requirements of the applications.

DWP-Directory is compared to a conventional directory cache
with different associativity degrees and with two state-of-the-art
schemes: PS-Directory and Hybrid Representation. Experimental
results for 32-core CMPs show that DWP-Directory achieves
the best of both worlds: similar performance as a traditional
directory with high associativity, and similar area as recent state-of-
the-art schemes. In addition, DWP-Directory reduces static and
dynamic power consumption by 38.0% and 67.4%, respectively
compared to conventional sparse directories.

I. INTRODUCTION

As transistor technology miniaturizes, silicon resources be-
come more abundant. Consequently, the core count is con-

tinually increasing in current chip-multiprocessors (CMP).

These systems usually implement a shared memory program-
ming model and a cache coherence protocol to maintain

data coherence along the CMP memory hierarchy. Directory-

based protocols are the common approach used in current

systems over other alternatives such as snoop-based protocols,
which generate an important traffic overhead due to the use

of broadcast messages. Much research has concentrated on

improving the performance and energy of directory protocols,
both from the academia [1], [2], [3], [4], [5] and from the

industry in modern processors [6], [7], [8], [9], [10]. Directory-

based protocols require additional structures to keep track of
the cached block. Two main approaches can be followed:

Duplicate Tags [7] and Sparse Directories [11].

Sparse directories, implemented as a cache-like structure

mailto:dhaneswarparida@thenalanda.com
mailto:gandhirath@thenalanda.com

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 676

with a relatively low associativity degree, are the preferred

design choice for a mid to high number of cores, since

Duplicate Tags require highly associative lookups to build
the sharer vector on each directory access and entail a high

energy consumption. The limitation of sparse directories
is that replacements are needed due to space constraints.

Upon a directory entry eviction, all copies of the block

—being tracked by such entry— in the cores’ private caches
are invalidated, regardless of whether the block is being used

or not. Therefore, subsequent accesses to these invalidated

blocks will rise the so-called coverage misses [12], which
degrade system performance.

An entry in a conventional sparse directory mainly
stores the owner of the block, required to find the provider
of the block, and a sharer vector, required to track all
copies of a shared block. While the owner field just

requires log2C bits, where C represents the number of cores,

the sharer vector typically utilizes one bit per core which is
set when the core’s cache holds a copy of the block. Thus,
the size of the sharer vector, and so that of the directory,
grows linearly with the number of cores. Consequently, as
the current industry trend is to increase the core count in
each CMP generation, it is expected that the directory size
will present a worth on-chip area and leakage overhead in
future CMPs [13]. Therefore, there is a need for new
directory schemes that scale in terms of area and power.

The key challenge when addressing scalability in sparse
directories lies on reducing the overhead in area and power

introduced by the sharer vector. This fact has been effectively

addressed based on the characteristics of the blocks being
tracked. Some previous works [3], [14] have realized that

most blocks are accessed by a single core. That is, a high

amount of blocks are fetched into the cache of a given
core and then no other core accesses it. These blocks are

referred to as private blocks in contrast to shared blocks,
which are accessed by multiple cores. This behavior means

that most directory entries keep track of private blocks,

which do not require from coherence actions, thus these
entries do not use the sharer vector field at all. Based on this

finding, recent proposals [15], [16], implement two kinds of

entries in the directory: shared and private. The former
include storage for a shared vector and can potentially track

shared blocks, while the latter save storage by not
including sharing information and are limited to track

private blocks. The main drawback of these schemes is that

the number of private and shared entries is fixed by design.
However, as we show in this work

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 677

the requirements of private and shared directory entries widely
varies both across applications and intra application. To face

the mentioned drawback this paper proposes a directory that

adapts the number of shared entries according to the run-time
demands of each application.

This paper makes the following contributions:

• We perform a workload characterization and find that the
number of shared blocks widely varies at run-time both
intra and inter applications.

• We propose the Dynamic Way Partitioning (DWP) direc-
tory, to the best of our knowledge, the first directory that
dynamically chooses the proper number of shared entries
at run-time according to the workload requirements at
each phase of its execution.

• DWP-Directory achieves better performance than state-
of-the-art directory schemes that exploit asymmetric stor-
age for block tracking. Experimental results for 16- and
32-core CMPs show that compared to conventional di-
rectory schemes with the same number of entries, DWP-
Directory is able to achieve important area, dynamic and
static energy consumption reductions, while having an
almost negligible impact on performance.

II. BACKGROUND AND MOTIVATION

A. Asymmetric Storage for Handling Shared and Private
Blocks

Different approaches have been proposed to reduce the
directory size. Recently, some works [17], [15], [16], [18], [19]

have focused on providing asymmetric storage for handling

shared and private blocks. Area savings come from making the
directory narrower by using shorter entries —the sharer vector

is not implemented— to track private blocks. These works

demonstrate that actively differentiating shared and private
entries can yield the system to area and energy improvements

over a conventional one-type entry directory.

The PS-Directory [15], [18] provides a fast and small (low
number of entries) directory in SRAM for the reduced number

of frequently accessed shared entries, and a larger (more
entries) and slower directory in a denser eDRAM cache for

infrequently accessed private entries. This approach allows

entries to move from the private directory to the shared
one, which is the most frequently accessed. Once one entry

becomes shared, however, it does not return to the private

directory even if the block being tracked is only stored in a
single core. The rationale behind this design feature is that

a block that has been shared has a high probability of being
shared again, and moving it from one directory to the other

consumes extra energy and does not translate into performance

improvements.
The Hybrid Representation directory [16], [19] also consid-

ers a different representation for private and shared entries. The

key difference, however, is that the latter approach proposes

a single-cache directory and both types of entries are mingled

in the same cache structure. Unlike the previous scheme, the

contents of a private entry are permitted to move to a shared
one and vice versa, according to the state of the block.

Both aforementioned approaches conclude that, based on
the average workload behavior, the most efficient directory is

that providing a quarter of its entries to track shared blocks and

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 678

three quarters to track private ones. The main drawback in
both approaches is that both shared and private entries are

limited by design, that is, private blocks compete among

them for private ways and analogously shared blocks for
shared ways. Therefore, if the run-time requirements of a

given application exceeds the budget of ways available for a

given type of block, that requirement cannot be satisfied by
design so yielding the system to performance drops.

In summary, although discerning among shared and
private entries can bring important benefits in terms of area

and energy, static designs like PS-Directory or Hybrid

Represen- tation cannot adapt to the different shared-private
ratio of parallel applications and to every execution phase

within the application, thus providing sub-optimal

performance.

B. Motivation

This section characterizes the applications used in our

eval- uation (Section IV) by studying the dynamic

requirements of shared entries at run-time. The study shows
that while at some point in time some applications may

require a single shared entry in a set, some others may

require almost all the entries in a set to track shared
blocks. To deal with this behavior, this paper proposes a

flexible structure that dynamically varies the number of active

shared entries according to the run-time demands of the
workloads.

As a first design step, we analyze the dynamic
requirements of shared directory entries across a

representative subset of parallel workloads in order to find

out how many shared entries should be supported to achieve
the same performance as a conventional directory. For this

purpose, we ran parallel workloads and for each of them

we measured the number of entries actually tracking shared
blocks along the execution time (see Section IV for

simulation details).
According to dynamic variability in the run-time demands

of shared entries, there are some differences between ap-

plications, yet some general observations can be concluded.
Figure 1 plots the dynamic evolution of the number of shared

entries averaged across all the directory sets and banks,

and the maximum number of shared entries in any set for
each application assuming a 8-way directory cache.

It can be observed that, a static approach with S = 2 and

P = 6, the best one in PS-Directory and Hybrid Represen-

tation, fails to adequate to specific directory sets at a given
point in time, since typically there is always one (i.e. labelled
as Max in the plots) or some sets that require more than

two ways for shared entries. Yet, most of the applications
have scarce set requirements, on average, to track shared
blocks. Only Radiosity and LU require on average more

associativity to track shared blocks than the deployed in

the aforementioned proposals, but only during a small fraction
of its execution time. This will inevitably lead to
performance losses. Therefore, the solution to improve
performance lies on adding extra shared entries. However, this
way also would be at cost of area and energy expenses, thus,
key challenge lies on investigating the number of entries an
efficient directory should deploy in order to achieve the best
area and energy savings while sustaining the performance of
a conventional all shared-entry directory. On the other hand,
notice that there are also many other applications which do not
need more than one

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 679

Average Shared Ways
Max Shared Ways

1. Avg. Shared Ways
2. Max Shared Ways

U
s
e

d
 S

h
a

re
d

 W
a

y
s
 (
a

v
g

.)

8

7

6

5

4

3

2

1

0

0 1 2 3 4

5 6 7 8 9

8

7

6

5

4

3

2

1

0
0 13 26 39 52 65

78 91 104 117

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Time in MCycles

(a) FFT

8

7

6

5

4

3

2

1

0

0 4 8 12 16 20 24 28 32 36 40 44

Time in MCycles

(c) LU

Average Shared Ways
8 Max Shared Ways

7

6

5

4

3

2

1

0

0 9 18 27 36 45 54 63 72 81 90

Time in MCycles

(e) Radiosity

8

7

6

5

4

3

2

1

0
0 3 6 9 12 15 18 21 24 27 30 33

Time in MCycles

(g) Tomcatv

Time in MCycles

(b) FMM

8

7

6

5

4

3

2

1

0

0 37 74 111 148 185 222 259 296 333 370

Time in MCycles

(d) Ocean

Average Shared Ways
8 Max Shared Ways

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time in MCycles

(f) Radix

8

7

6

5

4

3

2

1

0

0 56 112 168 224 280 336 392 448 504 560

Time in MCycles

(h) Unstructured

Average Shared Ways

Fig. 2: Fraction of time with # shared entries in a set.

than four shared entries are in demand. Regarding maximum
requirements in individual sets, it can be appreciated that, on

average, during 76.8% of the execution time, there are no

individual sets requiring more than four shared entries. This
value makes sense since by definition, a shared block must be
stored in at least two L1 caches, but since workloads are not
ideally balanced, sometimes the accesses may concentrate on
specific directory banks or sets. We experimentally found that
these happens in some workloads like Radiosity.

The previous analysis, as well as experimental results will
confirm, shows that a directory with a quarter or half of

its ways providing storage for shared blocks are the most
interesting design choices, and can provide the best tradeoff

between performance, area and energy.
In accordance to these results, we analyze two approaches in

which a quarter or half of the cache ways in a 8-way directory

provide support for shared entries, while the remaining ways
only support private entries. Since most of the time at most

two shared ways are required, this only incurs performance

losses during a negligible percentage of time. This results
in important benefits in terms of area and energy, especially

leakage, as discussed in the next section.

III. DWP-DIRECTORY

The design of DWP-Directory is mainly motivated by two
observations discussed in Section II: i) there are applications

that need more than 3 or 4 shared ways during some phases
8 8 Max Shared Ways

7 7

6 6

5 5

4 4

3 3

2 2

1 1

of their execution and ii) there are applications that require

nearly all the ways to track private blocks. These observations

are not supported for state-of-the-art directory approaches.
Keeping these observations in mind, the main goal of DWP-

0

0 1 2 3 4 5

Time in MCycles

(i) Volrend

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time in MCycles

(j) WaterNsq

Directory is to provide support for both of them. Figure

3 depicts the structure of a generic DWP-Directory. Two

types of entries are deployed: those having storage space to

Fig. 1: Average and maximum number of shared entries per

set over the execution time across all the directory banks.

shared entry per set for most of its execution time (i.e. FFT,

Ocean, Radix, Tomcatv and Waternsq). The additional

shared associativity in the directory is not required in these
cases, which in turn brings additional energy consumption and
area that could be otherwise avoided.

To provide deeper insights in the most adequate number

of ways, we quantified the fraction of time the directory is

keeping track any given number of shared blocks. Figure 2
shows the results across the studied benchmarks.

It can be seen that, on average, two or less directory cache

ways able to keep track of shared blocks are required during

93.8% of the execution time, while only during a 3% of it more

Average Shared Ways
Max Shared Ways

Average Shared Ways
Max Shared Ways

Average Shared Ways
Max Shared Ways

Average Shared Ways
Max Shared Ways

Average Shared Ways
Max Shared Ways

Average Shared Ways
Max Shared Ways

U
s
e

d
 S

h
a

re
d

 W
a

y
s
 (

a
v
g

.)

U
s
e
d
 S

h
a
re

d
 W

a
y
s
 (
a
v
g
.)

U

s
e

d
 S

h
a

re
d

 W
a

y
s
 (
a

v
g

.)

U
s
e

d
 S

h
a

re
d

 W
a

y
s
 (
a

v
g

.)

U
s
e

d
 S

h
a

re
d

 W
a

y
s
 (

a
v
g

.)

U
s
e

d
 S

h
a

re
d

 W
a

y
s
 (

a
v
g

.)

U
s
e

d
 S

h
a

re
d

 W
a

y
s
 (
a

v
g

.)

U
s
e

d
 S

h
a

re
d

 W
a

y
s
 (
a

v
g

.)

U
s
e
d
 S

h
a
re

d
 W

a
y
s
 (
a
v
g
.)

F
ra

c
ti
o

n
 o

f
ti
m

e
 w

it
h

 #
 s

h
a

re
d

 w
a

y
s

0

3 6

2 5 8

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 680

contain the sharer vector and those lacking the sharer vector.

The directory deploys N shared entries and M − N private

entries per set, where M is the total associativity. Three areas
can be appreciated: the most-left way is always shared,

the M − N most-right ways are always private and the

rest of the ways in the middle may contain shared or private
entries (i.e. repartitionable area, highlighted in gray). An
entry in the repartitionable area include the On/Off bit

that is set when
the associated way is tracking shared blocks and reset
when it tracks private blocks.

When the bit is reset, the voltage supply to the sharer

vector is disabled since private blocks do not need it. Notice
that this allows energy savings, mainly leakage, with no

performance penalty. In other words, with this design i) the
private blocks do not consume the energy dissipated to hold

the sharer

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 681

Fig. 3: The DWP-Directory architecture.

coherence. In a traditional directory, all the cache ways in the

directory are accessed in parallel which translates into highly

consuming searches.
To reduce dynamic energy consumption, the first lookup

in DWP-Directory only accesses the subset of ways tracking

shared blocks. The reason to look up first these ways is that
most of the accesses to the directory are to shared blocks [18];

thus, it is more likely to find the required block in the shared

entries. Moreover, as discussed in Section II, the number of
active shared entries in the directory is on average lower or

much lower than the number of private ways, so important
energy savings can be achieved.

Upon a miss in the first lookup, DWP-Directory searches

the target block in the remaining entries, i.e. private entries.
If there is a hit in any of these ways, this means that the

requesting core differs from the owner of the block, thus the

block should become shared and the entry moved to a shared
way. In case no shared entry is available, an entry should

be evicted and all the copies of the block in the processor
Fig. 4: DWP-Directory working flow chart.

vector, and ii) the directory size becomes smaller due to the
removal of the sharer vector in part of its ways. An entry in
a traditional directory for a MOESI protocol, apart from the
tags, is comprised of an owner and a sharer vector field that

require (log2(C)+C) bits, being C the number of cores in the

CMP. The higher the number of cores the larger the number

bits that can be saved with our proposal, i.e. (M −N)×C bits

per set. To this amount, we should subtract a few N bits per
set required for On/Off bits. The higher the number of
cores the wider the sharer vector field since it requires one bit
per core. Hence, DWP-Directory scales much better in terms

of energy and area than sparse directories.
In summary, unlike existing proposals, which hardly limit

the number of shared ways to 2 and private ways to 6, DWP-

Directory implements a flexible sparse directory that can use
all the ways to track private blocks, and is able to track as

many shared blocks as deployed sharer vectors.

A. Basic Working Behavior

DWP-Directory includes two types of entries: private and

shared. Private entries are short, do not include the sharer

vector, and are only able to keep track of private blocks. Shared

entries are wider, implement the sharer vector, and can
keep track of either shared and private blocks. Figure 4

depicts a flow chart that summarizes how DWP-Directory

handles private and shared entries. On a miss in the L1 cache
of a given core, the directory is accessed in order to maintain

L1 Miss

Access to Shared Ways

Update metadata if required

(owner or sharer vector)

Yes No
Hit? Access to Private Ways

Yes No
Hit?

Evict entry from Private Ways

No Yes
Available?

Yes No
Available?

Allocate entry in

Shared Ways

Allocate entry in

Private Ways

End

Fetch block from the NUCA
Check Private Ways availability

Check Shared Ways

availability

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 682

caches should be invalidated. Even though DWP-Directory has
potentially no limitation in the minimum number of shared
ways, this work does not evaluate the option of supporting no

shared ways since the complexity of the coherence protocol

increases. Notice that if there is no active shared way
(i.e. all sharer vectors are deactivated), the previous owner of

the block is invalidated and the new owner updated
accordingly. New transitions are required in the protocol to

take this case into account, while DWP-Directory ensuring

at least one shared way can work directly with the
conventional coherence protocol. This case would be

accounted as a shared entry eviction for the repartitioning

algorithm as explained below.
If both directory lookups miss, a new entry is allocated.

This entry is set as private since it only tracks a single copy. If
the directory has an available entry, the new entry is

allocated on it, prioritizing private entries over shared entries

in case there are several available entries. If all the entries are
busy, the directory controller has to evict one of them. In

such a case, the least recently used way, independently of

being private or shared, is selected for eviction.

B. Repartitioning Approach

DWP-Directory dynamically repartitions the number of

shared entries enabled to keep track of shared and private
blocks considering the run-time application needs. In other

words, some of the shared entries by design are

considered as private and its sharer vector field powered off
for leakage savings. After a given number of accesses to the

directory, DWP-Directory analyzes the eviction ratio between
shared and

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 683

private blocks and the number of private ways is readjusted

taking into account the physical constraints.
The repartitioning mechanism is implemented with neg-

ligible hardware with only three main parameters. These

parameters help the algorithm in decision taking about when
a repartitioning should be triggered as a consequence of an

increase or decrease of the demand of shared ways: a interval

length (IL), a shared threshold (ST) and a private threshold
(PT). The selection of IL is quantified in number of accesses

to the directory.
Algorithm 1 summarizes the pseudocode of the reconfigu-

ration mechanism. This algorithm is called on every directory

access. Two global counters are used: directory accesses and
ctr. The former accounts for the number of accesses to the

directory. The latter is an up/down counter that saturates at

an upper threshold PT and at a lower threshold ST. Small
top/down counters have a low implementation complexity and

have been widely applied in the past, hence this design choice
has been selected.

Algorithm 1: Repartitioning algorithm

The algorithm works as follows. When the directory is

accessed for IL times, the repartitioning logic checks the value

of the ctr counter to decide if the number of shared ways
should be increased, decreased or remain in its actual value.

• Each time a private entry is evicted from the directory,
the ctr counter is increased and is decreased each time a
shared entry is evicted.

• When the directory accesses counter reaches IL:

– If the counter saturates at its lower threshold ST,
then additional shared entries are required. Thus,
the most-left shared entry tracking a private block
(Figure 3) is set as shared and its shared vector
activated.

– If the counter saturates at PT, then directory needs
additional private ways in detriment of shared ones.

In such a case, the most-right shared way in the
repartitionable area (Figure 3) is set to private. Thus,
its sharer vector is powered down and all sharers but
the owner are sent an invalidation message.

– If the counter is not saturated, then the system
remains in its actual state for further IL accesses.

– ctr and directory accesses are reset to 0.

/ / For e v e r y a c c e s s t o t h e d i r e c t o r y
d i r e c t o r y a c c e s s e s ++;
i f (c t r ! = PT && c t r ! = ST) { / / Ctr not s a t u r a t e d

i f (p r i v a t e e v i c t i o n r e q u i r e d) {
c t r ++;

} e l s e i f (s h a r e d e v i c t i o n r e q u i r e d) {
c t r −−;

}
}

i f (d i r e c t o r y a c c e s s e s == IL) {
i f (c t r == PT && shared ways > 1) {

p r i v a t e w a y s ++;
shared ways −−;

} e l s e i f (c t r == ST && shared ways < N) {
p r i v a t e w a y s −−;
shared ways ++;

}
r e s e t () ; / / R e s e t s a l l c o u n t e r s

}

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 684

TABLE I: System parameters

Memory Parameters

Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split L1 I & D caches 64KB, 4-way (256
sets) L1 cache hit time 2 cycles
Shared single L2 cache 512KB/tile, 8-way (1024
sets) L2 cache hit time 2 (tag) and 6 (tag+data)
cycles Single directory cache 256 sets, 4 ways (same as
L1) Single directory cache hit time 2 cycles
Memory access time 160 cycles

 Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 5 flits and 1 flit
Routing, switch, and link time 2, 2, and 2 cycles

This algorithm allows the proposal to dynamically

adapt to the application phases, providing leakage savings
without affecting performance. The reconfiguration of a

way is done in all sets of the directory simultaneously in

order to minimize complexity and to guarantee a very simple
first lookup in the directory. Notice that the cost of evicting

shared entries is higher than the cost of evicting private
entries, but that is taken into consideration when choosing

the PT and ST values.

IV. SIMULATION ENVIRONMENT

DWP-Directory is evaluated using full-system simulations

with Simics [20] and GEMS [21], which enables detailed

simulation of multiprocessor systems. The interconnection
network is modeled using GARNET [22]. We evaluate both

16- and a 32-core CMPs comprised of a cache hierarchy with
private L1 caches and a shared L2 NUCA distributed among

all tiles. A MOESI directory-based cache coherence protocol

keeps coherence for the data within the private caches. L1
and L2 caches are non-inclusive, that is, some blocks stored

in the L1 caches may not have an entry in the L2 cache but

they will have in the directory. Our base directory scheme is
an on-chip distributed sparse directory with a bit-vector

sharing code in each entry. Other baseline system parameters
are shown in Table I. We use CACTI 6.5 [23] to estimate

access time, area requirements and power consumption of the

different cache structures for a 32nm technology node.

DWP-Directory is evaluated using a wide range of scien-
tific applications. FFT (64K complex doubles), FMM (16K

particles), LU (512×512 matrix), Ocean (514×514 ocean),

Radiosity (room, -ae 5000.0 -en 0.050 -bf 0.10), Radix
(512K keys, 1024 radix), Volrend (head), and Water-Nsq

(512 molecules) are from the SPLASH-2 benchmark suite
[24]. Tomcatv (256 points) and Unstructured (Mesh.2K) are

two scientific benchmarks. The experimental results reported

in this work correspond to the parallel phase of the evaluated

benchmarks.

DWP-Directory is sensitive to both the directory config-

uration and the threshold parameters. We have tested many

configurations, however, given the analysis shown in Section

II-B only results for two most effective configurations are
presented. One configuration implements half of its 8 ways

without the sharer vector field, hereby noted as DWP-Directory
(4:4), while the other implements the sharer vector in two of

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 685

14

12

10

8

6

4

2

0

(a) L1 Misses per kilocycles and per core

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

(b) Execution Time

Fig. 5: Performance normalized with respect to a single-cache directory with 4 ways and 16 cores.

them, hereby noted as DWP-Directory (2:6). Both configura-
tions share an interval length (IL) of 500 directory accesses,

a shared threshold (ST) of 10 and a private threshold (PT) of

100. These thresholds were tuned to the studied workloads,
showing minor differences for thresholds relatively high, but

due to space constraints no sensitivity analysis is presented.

V. EXPERIMENTAL EVALUATION

This section evaluates DWP-Directory against a 4-way
conventional or single-cache directory (which acts as the

baseline), a 8-way conventional directory, and two state-of-

the-art architectures: PS-Directory and Hybrid Representation.
Unlike our proposal, the directory space assigned to each

type of block in the aforementioned approaches is fixed and

cannot be changed at run-time according to the needs of each
particular workload during its execution.

Notice that all evaluated schemes, with the only exception

of the baseline, implement a 8-way directory associativity.
Both state-of-the-art architectures dedicate two ways to track

shared blocks and the remaining ones to track private blocks
(2:6 configuration). Since some workloads require a single

shared way most of its execution time, as shown in the

next section, a 1:7 configuration is also implemented for
comparison purposes.

A. Impact on Performance

The impact of the proposal on performance has been eval-
uated by analyzing the L1 Misses per kilocycles (MPKC) and

the execution time. Every time a directory entry is evicted,
invalidation messages are sent to the corresponding processor

caches keeping a copy of the block being tracked in order

to be able to maintain cache coherence. These invalidations

1. Single Dir 1x 4w 3. PS-Directory (2:6) 5. Hybrid Representation (2:6) 7. DWP-Directory (2:6)
2. Single Dir 1x 8w 4. PS-Directory (1:7) 6. Hybrid Representation (1:7) 8. DWP-Directory (4:4)

3C_Miss
Coherence_Miss
Coverage_Miss

Single Dir 1x 4w PS-Directory (2:6) Hybrid Representation (2:6) DWP-Directory (2:6)
Single Dir 1x 8w PS-Directory (1:7) Hybrid Representation (1:7) DWP-Directory (4:4)

E
x
e

c
u

ti
o
n

 T
im

e

L
1
 M

P
K

C

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 686

will cause coverage misses upon a subsequent memory

request to those blocks, thus impacting on the final
performance. Figure 5a shows the L1 MPKC, which

matches the number of directory accesses per kilocycles,
with respect to a 4-way single-cache directory in the studied

16-core CMP. The misses have been categorized in three

types: 3C (capacity, compulsory and conflict), coherence and
coverage.

The different evaluated schemes have negligible impact on

3C and coherence misses over the baseline. On the other

hand, the aggregated associativity degree of the directory, as

ex- pected, has a big impact on the number of coverage
misses. An increase from 4 to 8 ways in a single cache greatly

decreases the number of coverage misses, approaching to the
optimum performance that an ideal directory can achieve. The

additional associativity allows more flexibility when keeping

track of both shared and private entries in a set. Notice that
even though most of the blocks are private and would hence

require a higher number of entries, they are scarcely

accessed, in comparison to shared ones, so they can be
prematurely evicted due to an LRU replacement policy,

when space constraints problems arise. Thus, additional
associativity mitigates this problem.

Regarding the state-of-the-art schemes, the PS-Directory
reduces the number of misses by 34.5% and 40.6% for the 2:6

and 1:7 configurations, respectively. Hybrid Representation
re- duces this number by 34.3% and 38.2%. These reductions

are achieved due to the different treatment of private and
shared blocks. Since the associativity degree is
partitioned, entries do not have the same allocation flexibility
as a single-cache directory with the same associativity.
Notice that configuration 1:7 obtains the best results, since as
discussed above, most of the applications present a low
associativity requirement for

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 687

14

12

10

8

6

4

2

0

(a) L1 Misses per kilocycles and per core

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

(b) Execution Time

Fig. 6: Performance normalized with respect to a single-cache directory with 4 ways and 32 cores.

shared entries. Yet, there are some exceptions in which the
2:6 configuration works best, e.g. in LU and Unstructured for

the Hybrid Representation. Hence it can be seen that there is

no optimal static configuration that satisfies every workload.

DWP-Directory, which unlike the aforementioned schemes
has the ability to adapt the private-shared partition size dy-
namically at run-time, obtains better results, reducing the

number of misses by 49.8% and 50.4% in the 2:6 and

4:4 configurations, respectively. It performs similar as an 8-

way single cache, with only 1% degradation. Notice that

following the characterization presented in section II-B, those
applications with a higher maximum number of shared ways
benefit the most from our proposal, compared to the state- of-
the-art schemes. On the other hand, applications with low
shared requirements, do not benefit as much. The dynamic
adaptability allows DWP-Directory a similar flexibility as the
single-cache directory, while also keeping or improving most
of the benefits that provide the differentiation between shared
and private entries in terms of area and energy reduction, as
will be discussed below.

Reducing the number of L1 misses translates into a lower
execution time of the applications, as shown in Figure 5b.
The reduction of misses achieved by the 8-way single-cache
directory improves the execution time by 12.3%. The PS-

Directory and Hybrid Representation both reduce the appli-

cations average execution time by 8.9%. Meanwhile, DWP-

Directory reduces the execution time by 12.1% and 12.7%
in the 2:6 and 4:4 configurations, respectively. As expected,
applications with low MPKC values are the ones that have a
lesser improvement in their execution time. Power-up and
power-down delays of the proposal are taken into account in

1. Single Dir 1x 4w 3. PS-Directory (2:6) 5. Hybrid Representation (2:6) 7. DWP-Directory (2:6)
2. Single Dir 1x 8w 4. PS-Directory (1:7) 6. Hybrid Representation (1:7) 8. DWP-Directory (4:4)

3C_Miss
Coherence_Miss
Coverage_Miss

Single Dir 1x 4w PS-Directory (2:6) Hybrid Representation (2:6) DWP-Directory (2:6)
Single Dir 1x 8w PS-Directory (1:7) Hybrid Representation (1:7) DWP-Directory (4:4)

E
x
e

c
u

ti
o
n

 T
im

e

L
1
 M

P
K

C

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 688

these results.

To explore how the proposal behaves on a higher
number of cores, we launched experiments for a CMP with 32
cores. Figure 6a and Figure 6b show the L1 MPKC and the
execution time, respectively. Results are similar as those
presented for 16 cores. While the 8-way single cache reduces
misses by 51%, DWP-Directory 2:6 and 4:4 reduce them

by 50.4% and 50.1%, respectively. The difference between

our proposal and the 8-way single cache is smaller. In terms
of execution time it translates into a reduction of 7.9%, 7.7%
and 7.7%, respectively. The state-of-the-art architectures

achieve lower reductions, but as with 16 cores, a 1:7 shared-
to-private way ratio performs on average slightly better than
a 2:6 one.

B. Impact on Energy Consumption

Typically, static or leakage energy dominates the total

energy consumption of the directory structure. Figure 7a

shows the normalized leakage energy consumed by the
directory structure with respect to the 4-way single cache.

As can be seen, the 8-way single-cache directory reduces

leakage by 7.1%, mainly due to the smaller execution time of

the applications. The PS-Directory and the Hybrid

Representa- tion (2:6) achieve better energy savings by 20.3%
and 27.2%, respectively, even though their execution time is

slightly worse than the 8-way single-cache directory. These
energy savings are the result of both schemes lacking the
sharer vector field in some ways, namely those designated to
keep track of private blocks, regardless if they are in a
separate structure, like in the PS-Directory, or in the same set,
as in Hybrid Representation. This allows the directories to
consume less static energy, while the execution time of the
application is not severely harmed as

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 689

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

(a) Static Energy

1.2

1.0

0.8

0.6

0.4

0.2

0.0

(b) Dynamic Energy

Fig. 7: Normalized energy consumed with respect to a single-cache directory with 4 ways and 16 cores

shown in the previous section. For this reason, configurations
1:7 consume even less energy, since the sharer vector is present
in one way less. DWP-Directory reduces the static energy

consumed by 31.5% and 28.9% for 2:6 and 4:4 configurations,

respectively, which are the highest reductions of the evaluated
directories. Notice that these leakage savings over state-of-the-
art proposal come thanks to its repartitioning mechanism that
allows DWP-Directory provisioning more shared ways when
needed of even actually using none of them.

Results for the dynamic energy are shown in Figure 7b,
also normalized with respect to a 4-way single cache. All
the studied schemes, apart from DWP-Directory, achieve on
average a similar energy savings falling in between 44%
and 50% over the baseline. The best scheme regarding this

parameter greatly fluctuates between the applications, so there
is no definitive best approach. Meanwhile, with the only
exception of FFT, DWP-Directory always achieves the better
results. The consumption is reduced by 59.9% and 59.5% for

the 2:6 and 4:4 configurations, respectively.

With 32 cores, in addition to maintaining similar perfor-
mance ratio as in 16 cores, the proposal is able to achieve
even better energy savings, offering a much scalable solution.
Figure 8a and Figure 8b show the static and dynamic energy

consumed in the 32 core CMP and normalized with respect
to the 4-way single-cache. The leakage energy consumed by
the 8-way single cache is only 1.1% better, despite the lower

execution time. Meanwhile, the PS-Directory and Hybrid
Representation 2:6 are able to reduce up to 29.3% and 31.3%,

respectively, of this consumption. The energy savings are

Owner
Sharers
Tag

1. Single Dir 1x 4w
2. Single Dir 1x 8w

7. DWP-Directory (2:6)
8. DWP-Directory (4:4)

5. Hybrid Representation (2:6)
6. Hybrid Representation (1:7)

3. PS-Directory (2:6)
4. PS-Directory (1:7)

Owner
Sharers
Tag

1. Single Dir 1x 4w
2. Single Dir 1x 8w

7. DWP-Directory (2:6)
8. DWP-Directory (4:4)

5. Hybrid Representation (2:6)
6. Hybrid Representation (1:7)

3. PS-Directory (2:6)
4. PS-Directory (1:7)

F
ra

c
ti
o

n
 o

f
d

y
n
a

m
ic

 e
n

e
rg

y
 c

o
n

s
u

m
e
d

F
ra

c
ti
o

n
 o

f
s
ta

ti
c
 e

n
e

rg
y
 c

o
n

s
u

m
e

d

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 690

higher than those of the 16 core CMP mainly due to the
larger amount of deployed sharer vectors. Since the
mentioned schemes rely on the removal of the shared entry
field, and this field increases its size with the number of
cores, the overall number of bits that are eliminated is also

higher. Lastly, DWP- Directory is able to reduce up to 38%
and 34.6% of the leakage energy consumed by the directory

structure for the 2:6 and 4:4 configurations, respectively.

Regarding dynamic energy, DWP-Directory is able to re-
duce up to 67.4% and 66.2% for the 2:6 and 4:4 config-

urations, respectively, of the dissipated power, which is the
highest across all the evaluated schemes.

C. Impact on Area Requirements

The on-chip area required to implement these directory

structures is also analyzed in this section. Results obtained
with CACTI are shown in Figure 9 for a conventional or
single directory cache, the PS-Directory, Hybrid Representa-
tion and the proposal. With a higher number of cores,
the area requirement difference between the single cache and
the proposal grows more and more. DWP-Directory 4:4

requires only the 82.9%, 74.4% and 66.8% area that a single

cache would need. The PS-Directory, Hybrid Representation
and DWP-Directory 2:6 scale better and similar to each other,
specially with 64 cores, than the 4:4 configuration, though.
This is mainly because DWP-Directory 4:4 evaluated has a
maximum of 4 shared ways, while the others only have
2. As results have shown, for a lower number of cores (i.e. 16
cores) 4 shared ways offer the best best performance
albeit

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 691

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

(a) Static Energy

1.2

1.0

0.8

0.6

0.4

0.2

0.0

(b) Dynamic Energy

Fig. 8: Normalized energy consumed with respect to a single-cache directory with 4 ways and 32 cores

with a small energy and area penalty with respect to a DWP-
Directory with just 2 shared ways. Overall, DWP-Directory

with the 2:6 configuration offers the best tradeoff between

performance, energy and area.

VI. RELATED WORK

In shared memory systems where multiple cores are allowed

to access the same memory blocks, cache coherence is a

necessity. This work focuses on directory-based protocols,
which are the commonly adopted solution for a medium to

large core count.

Traditional directory schemes do not scale properly with
the number of cores. One of today’s major design concerns

is the implementation of directories that scale to hundreds of
cores in terms of power and area. Directory implementations,

both in academia and industry, follow two main approaches:

duplicate-tag directories and sparse directories.
Duplicate-tag directories keep a copy of the tags of all

tracked blocks. Therefore, this approach does not raise any

directory-induced invalidation nor coverage miss. Duplicate-
tag directories have been implemented in modern small CMP

systems [6], [8] and is the focus of recent research works
[25], [13]. Although being area-efficient, obtaining the sharer

vector requires multiple directory entry lookups, equal to the

product of the number of core caches by the associativity of

such caches [26]. That means that in a system with 64 8-way

L1 caches, a directory access requires a 512-associative search.
Hence, this approach becomes prohibitive for a larger number

of cores.
Sparse directories [11] are organized as a set-associative

cache like structure indexed by the block address. By reducing

Owner
Sharers
Tag

1. Single Dir 1x 4w
2. Single Dir 1x 8w

7. DWP-Directory (2:6)
8. DWP-Directory (4:4)

5. Hybrid Representation (2:6)
6. Hybrid Representation (1:7)

3. PS-Directory (2:6)
4. PS-Directory (1:7)

Owner
Sharers
Tag

1. Single Dir 1x 4w
2. Single Dir 1x 8w

7. DWP-Directory (2:6)
8. DWP-Directory (4:4)

5. Hybrid Representation (2:6)
6. Hybrid Representation (1:7)

3. PS-Directory (2:6)
4. PS-Directory (1:7)

Single Dir 1x 8w PS-Directory (1:7) Hybrid Representation (1:7) DWP-Directory (4:4)
PS-Directory (2:6) Hybrid Representation (2:6) DWP-Directory (2:6)

F
ra

c
ti
o

n
 o

f
d

y
n
a

m
ic

 e
n

e
rg

y
 c

o
n

s
u

m
e
d

F
ra

c
ti
o

n
 o

f
s
ta

ti
c
 e

n
e

rg
y
 c

o
n

s
u

m
e

d

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 692

2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Fig. 9: Area required for the different directories with an
increasing number of cores.

the directory associativity, this approach becomes more

power- efficient than duplicate-tag directories. Sparse

directories can reduce area by reducing the number of
directory entries. This is done at the expense of performance,

since each directory eviction due to lack of space, forces
invalidations at the core caches of the blocks being tracked.

Some works [27] employ block replication and migration to

enhance performance.

Previous research works have focused on reducing the
direc- tory area by focusing on the entry size. Some

approaches have used compression [28], [29], [30], [31] to

shorten the entry size. In [28], [32] a two-level cache
directory is proposed. In the first level, the typical sharer

vector is stored as usual, while the second level uses a
compressed code instead. In these schemes, area is saved at

expenses of using an inexact representation of the sharer

vector when using compression. This induces potential
performance losses.

Guo et al. [33] proposed a hierarchical representation of

the sharer vector, also for entry size reduction purposes.

Latency increases in these hierarchical organizations
however, since they impose additional lookups on the

critical path.

A
re

a
 in

 m
m

^
2

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 693

Others, like SCD [4], use different entry formats of the same
length in order to solve the scalability problem. Unlike typical

sparse directories where all lines share the same format, lines

with one or few sharers use a single directory entry while
shared lines employ several cache lines (multi-tag format)

using hierarchical bit vectors. The proposed scheme entails

extra complexity and directory accesses for managing the
dynamic changes (expanding/contracting) in the entry format.

Multi-grain directories (MGD) [5] also use different entry
formats of same length and track coherence at multiple differ-

ent granularities in order to achieve scalability. Each entry in

the MGD tracks either a single cache block with any number
of sharers, as usual, or a temporarily private memory region.

Finally, Coherence Deactivation [3], [34], [35], [36], [37]

improves the efficiency of the directory through OS-, TLB-,
and compiler-based techniques, by removing the need of track-

ing private data at the directory. Differently, DWP-Directory

focuses on shared entries and is transparent to these aspects.

VII. CONCLUSIONS

This work has identified that the current needs of multi-

threaded applications, regarding shared and private data access

from the directory point of view, varies dynamically with

execution time. Static private-shared structures are not able to
properly adapt to this dynamic variation and, instead, dynamic

strategies are in demand. Based on these observations, we have
introduced the Dynamic Way Partitioning(DWP) Directory, a

sparse directory that sacrifices the sharer vector field from part

of its ways in order to gain in both area and energy scalability.
Furthermore, the implemented sharer vectors can be powered

off or on as required according to wether the need of more

shared ways rises or drops at run time, respectively.
Experimental results for a 16-core CMP show that, com-

pared to a conventional directory cache with the same number
of entries, DWP-Directory reduces the static and dynamic en-

ergy consumed by 31.5% and 59.9%, respectively, while hav-

ing an almost negligible performance penalty when compared
to a more energy and area demanding 8-way conventional
cache, and having a lower execution time than a more power-
efficient 4-way directory.

ACKNOWLEDGMENTS

This work has been jointly supported by MINECO

and European Commission (FEDER funds) under the

project TIN2015-66972-C5-1-R, TIN2015-66972-C5-3-R, and
TIN2014-62246-EXP, and by Fundación Seneca-Agencia de

Ciencia y Tecnologı́a de la Región de Murcia under the project

Jóvenes Lı́deres en Investigación 18956/JLI/13.

REFERENCES

[1] M. R. Marty and M. D. Hill, “Virtual hierarchies to support server
consolidation,” in 34th Int’l Symp. on Computer Architecture (ISCA),
Jun. 2007, pp. 46–56.

[2] A. Ros, M. E. Acacio, and J. M. Garc´ıa, Parallel and Distributing

Computing. IN-TECH, Jan. 2010, ch. Cache Coherence Protocols for
Many-Core CMPs, pp. 93–118.

[3] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increasing
the effectiveness of directory caches by deactivating coherence for
private memory blocks,” in 38th Int’l Symp. on Computer Architecture
(ISCA), Jun. 2011, pp. 93–103.

[4] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence direc- tory
with flexible sharer set encoding,” in 18th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2012, pp. 129–140.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 694

[5] J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-grain coherence
direc- tories,” in 46th IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO), Dec. 2013, pp. 359–370.

[6] L. A. Barroso, K. Gharachorloo, and R. McNamara, et al, “Piranha: A
scalable architecture based on single-chip multiprocessing,” in 27th
Int’l Symp. on Computer Architecture (ISCA), Jun. 2000, pp. 12–14.

[7] A. K. Nanda, A.-T. Nguyen, M. M. Michael, and D. J. Joseph, “High-
throughput coherence control and hardware messaging in Everest,”
IBM Journal of Research and Development, vol. 45, no. 2, pp. 229–
244, Mar. 2001.

[8] M. Shah, J. Barreh, and J. Brooks, et al, “UltraSPARC T2: A highly-
threaded, power-efficient, SPARC SoC,” in IEEE Asian Solid-State
Circuits Conference, Nov. 2007, pp. 22–25.

[9] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B.
Hughes, “Cache hierarchy and memory subsystem of the AMD opteron
proces- sor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, Apr. 2010.

[10] “Intel Xeon Phi Coprocessor,” Apr. 2013. [Online]. Available:
http://software.intel.com/en-us/mic-developer

[11] A. Gupta, W.-D. Weber, and T. C. Mowry, “Reducing memory traffic
requirements for scalable directory-based cache coherence schemes,”
in Int’l Conf. on Parallel Processing (ICPP), Aug. 1990, pp. 312–
321.

[12] A. Ros, B. Cuesta, R. Fernández-Pascual, M. E. Gómez, M. E. Acacio,

A. Robles, J. M. Garc´ıa, and J. Duato, “EMC2: Extending
magny- cours coherence for large-scale servers,” in 17th Int’l Conf. on
High Performance Computing (HiPC), Dec. 2010, pp. 1–10.

[13] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos, “A
tagless coherence directory,” in 42nd IEEE/ACM Int’l Symp. on
Microarchitec- ture (MICRO), Dec. 2009, pp. 423–434.

[14] H. Zhao, A. Shriraman, S. Dwarkadas, and V. Srinivasan, “SPATL:
Honey, i shrunk the coherence directory,” in 20th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Sep. 2011,
pp. 148– 157.

[15] J. J. Valls, A. Ros, J. Sahuquillo, M. E. Gómez, and J. Duato, “PS-
Dir: A scalable two-level directory cache,” in 21st Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Sep.
2012, pp. 451– 452.

[16] L. Fang, P. Liu, Q. Hu, M. C. Huang, and G. Jiang, “Building expressive,
area-efficient coherence directories,” in 22nd Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2013, pp.
299– 308.

[17] J. H. Kelm, M. R. Johnson, S. S. Lumettta, and S. J. Patel,
“WAYPOINT: Scaling coherence to thousand-core architectures,” in
19th Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2010, pp. 99–110.

[18] J. J. Valls, A. Ros, J. Sahuquillo, and M. E. Gómez, “PS directory:
a scalable multilevel directory cache for cmps,” The Journal of
Supercom- puting, vol. 71, no. 8, pp. 2847–2876, 2015.

[19] P. Liu, L. F. M. C. Huang, , Q. Hu, and G. Jiang, “Building expressive
and area-efficient directories with hybrid representation and adaptive
multi-granular tracking,” IEEE Transactions on Computers (TC), May
2015.

[20] P. S. Magnusson, M. Christensson, and J. Eskilson, et al, “Simics:
A full system simulation platform,” IEEE Computer, vol. 35, no. 2, pp.
50–58, Feb. 2002.

[21] M. M. Martin, D. J. Sorin, and B. M. Beckmann, et al, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
Computer Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[22] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A
detailed on-chip network model inside a full-system simulator,” in
IEEE Int’l Symp. on Performance Analysis of Systems and Software
(ISPASS), Apr. 2009, pp. 33–42.

[23] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0,”
HP Labs, Tech. Rep. HPL-2009-85, Apr. 2009.

[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in 22nd Int’l Symp. on Computer Architecture (ISCA), Jun.
1995, pp. 24–36.

[25] A. Ros, M. E. Acacio, and J. M. Garc´ıa, “Scalable directory organization
for tiled CMP architectures,” in Int’l Conference on Computer Design
(CDES), Jul. 2008, pp. 112–118.

[26] ——, “A scalable organization for distributed directories,” Journal of
Systems Architecture (JSA), vol. 56, no. 2-3, pp. 77–87, Feb. 2010.

[27] S. Bartolini, P. Foglia, C. A. Prete, and M. Solinas, “Coherence in
the cmp era: Lesson learned in designing a llc architecture,” WSEAS
Transactions on Computers, vol. 13, pp. 195–206, 2014.

[28] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato, “A new scalable
directory architecture for large-scale multiprocessors,” in 7th Int’l Symp.

http://software.intel.com/en-us/mic-developer

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

UGC CARE Group-1, 695

on High-Performance Computer Architecture (HPCA), Jan. 2001, pp.
97–106.

[29] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS directories:
A scalable cache coherence scheme,” in 4th Int’l Conf. on Architectural
Support for Programming Language and Operating Systems (ASPLOS),
Apr. 1991, pp. 224–234.

[30] G. Chen, “Slid - a cost-effective and scalable limited-directory scheme
for cache coherence,” in 5th Int’l Conf. on Parallel Architectures and
Languages Europe (PARLE), Jun. 1993, pp. 341–352.

[31] B. W. O’Krafka and A. R. Newton, “An empirical evaluation of two
memory-efficient directory methods,” in 17th Int’l Symp. on Computer
Architecture (ISCA), Jun. 1990, pp. 138–147.

[32] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato, “A two-level
directory architecture for highly scalable cc-NUMA multiprocessors,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 16,
no. 1, pp. 67–79, Jan. 2005.

[33] S.-L. Guo, H.-X. Wang, Y.-B. Xue, C.-M. Li, and D.-S. Wang, “Hi-
erarchical cache directory for cmp,” Journal of Computer Science and
Technology, vol. 25, no. 2, pp. 246–256, Mar. 2010.

[34] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increasing
the effectiveness of directory caches by avoiding the tracking of non-
coherent memory blocks,” IEEE Transactions on Computers (TC),
vol. 62, no. 3, pp. 482–495, Mar. 2013.

[35] A. Esteve, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Efficient
tlb-based detection of private pages in chip multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 27, no. 3,
pp. 748–761, Mar. 2016.

[36] A. Esteve, A. Ros, A. Robles, M. E. Gómez, and J. Duato, “TokenTLB:
A token-based page classification approach,” in International Conference
on Supercomputing (ICS), Jun. 2016, pp. 26:1–26:13.

[37] A. Ros and A. Jimborean, “A hybrid static-dynamic classification for
dual-consistency cache coherence,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), Feb. 2016.

