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1. Introduction 

In the present work, we shall be particularly interested in a potential well as the one shown in 

figure (1). 

characterize the quantum numbers of such possible solutions using these potentials. 

Let us consider, for example, a relativistic charged spinless particle m in a field of a fixed 

(quantum ) magnetic moment   →  [11], or alterentivly, a charged spin 1/2 particle of mass  m and  

magntic  moment   →,  in  the field  of a  fixed charge [12,13]. In both cases the radial equation has 

the form 

[−  
2   

+   −  2
] ( ) = 0 (1) 

   
Where the effective potential is given, 

apart from the 

  

Coulomb potential 
 
, by 

 ( ) =   +   +   

   
 

  2   3   4 
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Figure (1). The relation between the potential V(r) and the distance r at different distances 

Magnetic forces between spin 1/2 particles lead to the effective radial potentials of this type [1-3], 

with one or more deep narrow wells. Magnetic interactions are studied for various problems ranging 

from macroscopic to microscopic scales [4-10]. The purpose of our work is to use analytic 

techniques to study the eigenvalues and eigenfunctions for such cases. Effective potentials between 

two-fermions taking into account form factors and full relativistic spinor kinematics have similar 

shapes. The motivation for doing that is as we shall show later on the existence of such 

potentials in several physical applications. In such cases, one would need to understand better 

the existence and to 

Clearly, if one solves the same problem with a Dirac equation  and  give  also  an  anomalous 

magnetic  moment   → to the particle, then additional terms are added to equation (2). 

Further models may also treat the magnetic moment of both particles. The potential in 

equation (2) is treated in atomic phenomena as well as in the quark models as a perturbation. This 

is justified only if the energies are of the order of the Coulomb energies. At very short distances, 

the form of the potentials is quite uncertain, and these potentials must be modified by form factors. 

Form factors must then be calculated in a non-perturbative and self-cosistent method from the 

wave functions which are localized around each well. In the next section, we will sketch some of 

the physical problems in which case such a form of this potential appears. In section (3) we will 

give a short description of the relativistic two -body equation which is used to describe two-

body systems, and finally, in section (4), we will show a method for solving equation (1) over the 

whole range of the 

   independent variable. 
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2. Dynamical Models 

 Magnetic Interactions in Nonrelativistic Quantum Theory 

 

 

Consider two charged particles  1      2 

with magntic moments    1→          2→   

respectivly  the  Hamiltonain  in  this case is 

  =    
1
 

2  
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[     1→ −  1 

     2→ × (  1→ −   2→)  
2
 

|  → −    →|3 ]
 

1 1 

+   
1 

2  

2 

[   2→ −  2 

 1→ × (  2→ −   1→)  
2
 

|   → −   →|3      ] 

2 2 1 

+ 
    1 2         

+   → 

|  2→ −   1→| 
1
 

⋅      → 
(3     1→ ∙   1→)(3   2→ ∙   2 →) −     1→ ⋅   2→ 

2  3 

+ 
8  

(  → ⋅      →) (    → ⋅   →) (  → −    →)   (3) 

3 1 2 1 2 1 2 

 

Or In the center of mass frame 

  =  
1
   2

 −     ⋅   →× → +     +  
1 ∙ 2

 −  1 ⋅  2  12( →) (4) 

    
 

Figure (2). The trend of the potential V(r) with distance r at maxima and minima for different 

regions 

2  

  3 

  4   

Where    → = 
 1
       → +  

  2
    →,     =  

2      1→− 1     2→, 

2.3. The 4-Component Neutrino with a Magnetic 

  1     2 

  2     1 

  1+  2 

Moment 

 12 
2
 

  =  1 
 2 
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  3 3 

 2
2
 2 1 1 1 

+ 
 2 

 1 , 
  

= 
 1 

+ 
 2

 

An interesting limit of the equation in the previous section is when 

And  12( →)   is  the  so-called  tensor  and  dipole-dipole 

interaction potential 

In some special cases, the problem becomes easier to solve e.g. 

  → 0,   → 0 such that 
  

=   = magntic moment 

  

One gets an equation which is exactly solvable [14,15]; 

viz, 

a)  2 ≫  1 . 1 = 0    
 

−   +      − − 

  2 

 

 
 

2 ( +1) 

 

2( +1) 1   

b)  2 =  1 (  ⋅     ,    ,   
  ,     
, … ) 

[ 

   

2 +   − [ 

  2 +   

  3 + 

  4]] = 0 (8) 

 The Dirac Particle with an Anomalous Magnetic 

Where   = ±(  + 
1
) 

Moment in a Dipole Field 

Also for a 

2 

   system, we have the Hamiltionian which 

Consider now a relativistic Dirac particle with an anomalous magnetic moment a, charge e 

in the field of a 

includes the recoil and spin-spin terms 

  = 
(1)

 ∙     → + 
(2)

 ∙    → 

fixed   quantum   dipole   moment        2→   and   charge    2    the 1  2 
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    3 

equation ( in natural units) [1,2] is 

[   (    −     ) −  ] = −   
1
         

(5) 

+ 
3(     1→⋅ →)(      2→∙ →)−     1→∙      2→ 

+ 
8      1→ ∙     2→  ( →) (9)

 

  1     

4  

   

This Hamiltonian is interesting to study. To this one may 

With     = ( 
2
 ,  2 

  →× →) 

add also the Hamiltonian for a dyonium i.e two objects having each a magnetic and an electric 

charge 

Or in the Hamiltonian form 

→   

       1  

  = 
(1)

 ∙ (    1→ −  1      1→) + 
(2)

 ⋅ (  2→ −  2      2→) (10) 

[ →. ( → −  1 ) − [  −   ] +   ] = −   2     2       (6) 
(2)

 ×  → 
(1)

 ×  → 

Where   =      (  
⋅   )       

=  
  →⋅ → 

 
    1→ =  2 

3 .      2→ =  1 

 

 

 3 

1 2     

When  → = 0,  the  above  equation  can  be transformed  to two- uncoupled second order Sturm-

Liouville eigen value equations [1,15]; viz; 

Magnetic monopoles have not yet been seen [17,18]. They have influenced fields like high 

energy physics e.g. quark confinement, superstring theory and supersymmetric 

[ 
2   

+  2
 −   ( )] 

 

 
= 0 (7) 

quantum field theories. This has guided condensed matter 

   2 

Where  2
 =  2

 −  2
 

    

physicists to discover anomalous states and excitations 
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in systems such as Bose-Einstein condensates [19] and 

And the effective energy and angular momentum potential ( ) will have the same shape as 

shown in figure (2) 

Next   one   must   include   the   dipole   field    →   and   the spin-spin terms due to the anomalous 

magnetic moment. In such case one obtains 4 -coupled first order equations [16]. 

spinices [20]. 

The above-mentioned models may be treated within the framework of relativistic two-body 

problem in the so-called one-time formulation [21]. Also one must add the various potentials 

obtained from the Behe-Salpeter type of 

 

 

equations which should be treated in a nonperturbative manner. In the next section, we will discuss 

the two-body equations. 

 

3. The Relativistic Two-Body Equations 

In a previous works, we derived a new set of the relativistic radial equations for two spin 1/2 

particles [22,23]. The 16 amplitudes are re-expressed in terms of four scalars and four vectors which 

satisfy coupled differential equations. These equations are reduced further to sets of coupled 

differential equations according to parity and total angular momentum. 

The equations are solved in the positronium case and the results obtained are similar to that of 

Schrödinger equation for the hydrogen-like atom. 

In quantum field theory, the work on the two-body problem is based on two approaches. The 

first approach is a covariant formulation (the so-called Bethe-Salpeter equation ) for describing the 

relativistic two-body systems [24], but owing to the complex structure of this equation no general 

solution has been found as yet [25-31]. Other approaches have been used by several authors (the 

one-time formulation) in order to give a physical interpretation for the two-body amplitudes. The 

reason for using our equations is that they are exactly solvable. A simplification and reduction of the 

system of coupled equations for the 16 amplitudes were achieved by the explicit imposition of 

Lorentz and charge conjugation invariance and parity conservation. 

The number of the coupled equations is not more than eight and can be fewer depending on the 

interaction used. For instantaneous potential, the equations reduce to three- sets of tractable coupled 

differential equations. These equations are easier and analytically solvable [23]. 

Physically the use of the concept of potential for the relativistic problems at short distances may 

be questionable, however, one must remember that we are dealing with interactions of highly 

localized states. In such case for the bound state, the potential concept is proven to be superior to 

4. Methods of Solution 

In general one may recourse to the numerical solution to any of the above-mentioned problems 

but, here we will sketch the method for the simple case i.e equations (1) and (2) as shown in figure 

(3) 

For such a potential, we have three zeros at 

( ) = 0 (11) 

and the positions of minima and maxima can be obtained from the equation 

  ̇( ) = 0 (12) 

Equations (11)and (12) are a cubic equations in the general form, viz; 

 ́ 3
 +  '  2

 +  ́  +  '  = 0 (13) By replacing   by   +  , this can be 
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2 

transformed into 

 3
 +    +   (14) 

For which the three roots are 

−  −   . −  2
 −  . −   −   2

 (15) Where  3
 = 1 . 1 +   +  2

 = 0 (16) 

 

 

2 3
 =   + √ 2 + 

4
  3 (17) 

27 

 

2 3
 =   − √ 2 +

 4
  3 (18) 

27 

And from here one can proceed to find the solutions around the extremum points and the WKB 

like solutions as in a previous work [33,34]. For the solutions around the zeros one can use a 

generalized procedure which has been adopted by Shorupski [35]. 

In the present work, we will use the Nikiforov -Uvarov method as described in the next section. 

 The Nikiforov -Uvarov Method [36-38] 

The Nikiforov-Uvarov (NU) method is based on solving the hypergeometric-type second-order 

differential equation. 

 ̈  ( ) +  ̃
( )

  ̇  ( ) +   ̃
( )

   ( ) = 0 . (19) 

  
the use of the perturbation theory [32]. The interset in such 

 ( ) 

  2( ) 

class of interactions stems from the existence of high mass resonances e.g. the superpositrium in 

QED. 

The effective static potential between two fermions is known and leads to the Briet- equation 

which is valid for weak binding. However, because of the strong binding nature of the potentials 

one may need some extrapolation of such potentials. 

To do that one may introduce form factors at the vertices to take into account the self-energy and 

radiative corrections in an already renormalized form. Such a program has been discussed 

previously [19], where they incorporated form 

Where  ( )  and  ̃ ( )  are  second-degree  polynomials, 

 ̃( )  is a first-degree polynomial and ψ(s) is a function of the hypergeometric-type. 

By taking ( ) = ( ) ( ) (20) And substituting in equation (19), we get 

 ̈  ( ) + [2 
 ˙ ( ) 

+ 
 ̃( )

]  ( ) 

 ( )  ( ) 

+ [
 ¨ ( ) 

+ 
 ˙ ( )  ̃ ( )  

+  
 ̃ ( ) 

]  ( ) = 0 . (21)
 

 ( )  ( )  ( )  ( ) 

By taking  2 
 ˙ ( ) 

+ 
 ̃ ( )  

=  
 ( )        

 ˙ ( )  
= 
 ( ) 

. (22)
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( ) ( )    ( ) 2 ( ) 2 ( ) 

factors for both particles using a relativistic two-body 

 ( ) 

 ( ) 

 ( ) 

 ( ) 

 ( ) 

one-time formalism. The effective potential is given by equation (2.12) in that reference. The effect 

of form factors has been derived in previous works [22,23]. 

We get ( ) =  ̃( ) + 2 ( ) . (23) 

Where both,  ( ) and τ(s) are polynomials of degree at most one. 

 

 

Also one can take  
¨ ( ) 

+ 
 ˙ ( )  ̃ ( )  

+  
 ̃ ( )   

=  
  ( )   

. (24)
 

                            

Applying the same systematic way for equation (28), we get 

Where 
 ¨ ( ) 

= [
 ˙ ( )

]
. 

+ [
 ˙ ( )

]
2 

= [
 ( )

]
. 

+ [
( )

]
2
. (25)

 

ƛ = −  ˙( ) −  
( −1)

  ¨ ( ) (33) 

 ( ) 

 ( ) 

 ( ) 

 ( ) 

 ( ) 

  2 

And   ( ) =  ̃ ( ) +  2( ) +  ( )[ ̃( ) −  ˙( )] 

+ ˙ ( ) ( ) . (26) 

So equation (21) becomes 

 ̈  ( ) + 
( )

 ( ) +   
 ( )

   ( ) = 0 . (27) 

  
Where   is the principle quantum number. 

By comparing equations (31) and (33), we get the energy eigenvalues equation. 

To get the eigenfunction ( ), one must know ( ) and 

 ( ). 

 ( ) 

  2( ) 

We can obtian ( ) from equation (22). 

An   algebraic   transformation   from equation   (19)   to Now, we will obtian ( ) by 

equation (27) is systematic. Hence one can divide   ( )  by 

( ) =       
    

[   ( ) ( )] (34) 

 

 
( ) to obtain a constant ƛ . i.e. 

  ( ) =  ƛ  ( ) . (28) Equation (27) can be reduced to a 

hypergeometric 
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2 

 ( )     

We can use the Rodrigues‘ formula of the associated Laguerre polynomials, where 

equation in the form 

   ( ) ≡ ( ) and     = 
1
 

 
(35) 

    

  ! 

( ) ¨ ( ) + ( ) ( ) + ƛ  ( ) = 0 . (29) If one substitutes from equation (28) in equation 

(26) and 

   is a normalization constant and the weight function 

( ) must satisfy the condition below 

solve the quadratic equation for  ( ), we get 

 ˙ ( ) 
= 
 ( )− ˙ ( ) 

(36) 

 ( )   ( ) 

 2( ) +  ( )[ ̃( ) −  ˙( )] +  ̃ ( ) −   ( ) = 0 .   (30) 

Where   = ƛ−   ̇( ) . (31) 

Now, we will apply this method to solve equation (1) in our case. 

( ) = 
 ˙ ( )− ̃ ( ) 

± √(
 ˙ ( )− ̃ ( )

)
2  
−  ̃( ) 

2 2 

+ ( ) (32) 

First, we will give the solution for a general inverse polynomial potential form using Nikiforov-

Uvarov (NU) 

The possible solutions for ( ) depend on the parameter 

  according to the plus and minus signs of  ( ). Since π(s) 

method. 

let    ( ) =    ( ) 

 

and subtituting   in   equation   (1) 

is a polynomial of degree at most one, so the expression under the square root must be the square of 

a polynomial. In this case, an equation of the quadratic form is available for 

[39-47], we get 

 

  2  
+ 

2
 ∗    + [ 2

 − ( )] = 0 (37) 

        

the constant  . To determine the parameter   one must set the discriminant of this quadratic 

expression to be equal to zero. After determining the values of   one can find the values of ( ), 

    ( ). 

The generalized potential 
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ℎ 

( ) = ∑  −ℎ  
−ℎ

 =  0  +  −1  
−1

 +  −2  
−2

 +  −3  
−3

 +  −4  
−4

 + ⋯
 (

38) 

ℎ=0 

Substituting into equation (37), one gets 

  2   
+ 

2
 ∗    + [ 2

 − ∑
ℎ
   

 

   
 −ℎ ] = 0 (39) 

    2 

     
ℎ=0     −ℎ 

  2   
+ 

2 
∗ 
   

+ 
 1 ( ) 

  = 0

 

(40) 

    
 

Where 

    2 

     

  2 

 1( ) = −[ 0 
2
 +  −1  +  −2 +  −3 

−1
 +  −4 

−2
 +  −5 

−3
 + ⋯ ]

 

(41) 

And  0 = − 2
 +  0 

By substituting equation (41) in equation (40), we get 

 2  

2       1 

ℎ 
1 ℎ

 

  2 + 
  
∗
 

 

 
   

+ 
 
 

2 [− 0 
2
 −  −1  −  −2 − ∑  −ℎ−2  (  

ℎ=1 

) ]   = 0 (42) 

Let   =   +  0 (where  0 is the smallest distance from the origin to the particle) and take 

Maclurin expansion for the summation terms to the second order, one gets 
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0 

0 

 

ℎ 
1 ℎ ℎ 

 
 

ℎ 

    −ℎ 

∑  −ℎ−2 ( ) 

 

=  ∑ −ℎ−2      = ∑  −ℎ−2 [1 + ] 

 
(43) 

 

ℎ=1 

  

ℎ=1 

(  +  0)ℎ 

 

ℎ=1 

 0ℎ 

 0 

ℎ ℎ 

    −ℎ   
ℎ ℎ(ℎ + 1) 

∑  −ℎ−2 [1 + 

  ℎ 

ℎ=1 

 0
] 

≈ ∑  −ℎ−2 [1 − 

  ℎ 

ℎ=1 

 

 
 0 

  + 

2 0
2 

 2
] (44) 

ℎ 
1 ℎ ℎ    

 
 

(ℎ + 2)(ℎ + 1) 

ℎ(ℎ + 2) 

ℎ(ℎ + 1) 

∑  −ℎ−2 ( ) 

ℎ=1 
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0 

0   ℎ 

≈  ∑  −ℎ−2 [[ 

  ℎ 2 

ℎ=1 

] − [ 

 0 

]   + 

2 0
2 

 2
 ] 

(45) 

By substituting equation (45) into equation (42), we get 

 2  

2       1 
ℎ
     (ℎ + 2)(ℎ + 1) 

ℎ(ℎ + 2) 

ℎ(ℎ + 1) 

  2 

+   
∗ 

   

+ 
 2 

[− 0 
2
 −  −1  −  −2 − ∑

 
  
−ℎ−2

 [[ 

ℎ=1 

 − [ 

 0 

]   + 

2 0
2 

 2
 ]]   = 0 (46) 

Rearranging equation (46), we get 

 2  

2       1 

1 
ℎ    

(ℎ + 2)(ℎ + 1)   
ℎ
   ℎ(ℎ + 2)   

+    ∗ + 

   
[− ( −2 + 

 

∑ −ℎ−2 ) + (∑ −ℎ−2 −  −1)   

 

  2 

     
1 

2 
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0 

 2 

ℎ 

 

ℎ(ℎ + 1)  
2 

ℎ=1 

 0ℎ 

 

ℎ=1 

 0ℎ+1 

− ( 0 + 

∑ [ 
−ℎ−2

])  2]   = 0 (47) 

2   ℎ+2 

ℎ=1 

1 
ℎ    

(ℎ + 2)(ℎ + 1)   
ℎ
   ℎ(ℎ + 2)   

1 
ℎ 
ℎ(ℎ + 1)  

let  −2 + 

∑
 −ℎ−2  

=  , ∑
 −ℎ−2 

−  −1 =  ,  0 + 

 

∑ [ −ℎ−2] =   

 
 

we obtain 

2 

ℎ=1 

 0ℎ 

 

ℎ=1 

 0ℎ+1 

2 

ℎ=1 

 0ℎ+2 

  2  
+ 

2
 ∗    + 

1
 [−  +    −   2] = 0

 

(48) 

    

   2        2 
Now, we follow Nikiforov -Uvarov method 
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 ̃ = 2,   =  ,  ̃  = −  +    −  2  

Equation (32) is used to obtain ( ) 

 

 
( ) = − 

1
 ± √ 2  + (  −  ) +   + 

1
 

 

 

 

(49) 

2 

Now, we calculate the value of the parameter   

2 

4 

 

 

( )2 1
 

 

 
∆=     − 4   = 0 → 

  −   − 4  (  + 
4
) = 0 

 

 
(  −  )

2
 = 4  (  + 

1
) →   = ±√4  (  + 

1
) + w

 

(50) 

4 4 

In equation (50), we will deal with two cases of  . 

By substituting the values of   in equation (49) and take the negative value of ( ), one gets 

     2    

( ) = − 
1 
− √(√   ± √  + 

1
)   = − 

1 
− √   ∓ √  + 

1
 

(51) 

2 4 2 4 

 

Using equation (23), one obtains the value of ( ) 

 

  

( ) = 2 − 1 − 2√   ∓ 2√  + 
1 

= 1 − 2√   ∓ 2√  + 
1
 

 

(52) 

4 4 

Also using equation (31) to get ƛ 

ƛ =   +  ˙ ( ) = ±√4  (  + 
1
) + w − √  = w ± √4  (  + 

1
) − √ 
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4 

 

(53) 
4 4 

ƛ   can be obtained from equation (33) 

ƛ   = 2 √ 

 

(54) 
 

 

Comparing equations (53) and (54), one gets the energy eigenvalue equation, hence 

  = 
w
2

 

[1+2 ±2√( +
1
) ] 

 

 

(55) 

By substituting the values of  ,        , we get the energy eigenvalue equation for a general 

inverse polynomial potential 

1 
ℎ 
ℎ(ℎ + 1)  

 

ℎ 

ℎ=1 

ℎ(ℎ + 2)  −ℎ−2 

  ℎ+1 

2 

−  −1) 

 2
 =  0 + 

∑ [ −ℎ−2] − 0  

 

2  0ℎ+2     2 

ℎ=1 

[(2  + 1) ± 2√(  

+ 
1 
∑
ℎ
 

(ℎ + 2)(ℎ + 1)  −ℎ−2 1 

−2 2 

ℎ=1 

 0ℎ 

+ 4) ] 

 

One can also calculate the eigenfunctions for the general inverse polynomial potential from 

equation (20) using the negative value of  . So first, we calculate φ(s) from equation (22) 

 

 φ(r) 

   2 

(∑ 
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4 

2 4 

∫ √ 

 

 

−1+√ +1 

  
 

 
∫ φ(r) 

= [−     +   
2
 

  
4
]    (56) 

 

 
φ(r) = 

 
−1+√ +1 

 −√   
Second, we calculate Ƴ (r) from equation (36) and equation (34) 

 ρ(r) 
 

 

 

2√ +1 

 
∫ ρ(r) 

= ∫ [−2√  + 
4
] dr (58) 

  
 

 
 

Ƴ (r) = Ƴ 

ρ(r) =  
2√ +1 

 −2√   

 

  

( ) =    −2√ +1 
 2√            

[  +2√ +1 
 −2√ ]

 

  

  
 

(57) 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 51, Issue 03, March : 2022 
 

UGC CARE Group-1,                                                                                                                      556              

 

 

  

  

(59) 

    

4 4 

    

(60) 

where    is a normalization constant of Ƴ (r) which can be expressed as an associated Laguerre 

polynomial, where 
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From equation (20), the eigenfunction becomes 
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Ψ(r) = φ(r)Ƴ (r) =      2 

4     −√      
4( ) (62) 

Where    is a normalization constant of the eigenfunction Ψ(r) 

By substituting the values of  ,        , we get the eigenfunction for a general inverse 

polynomial potential 

Ψ(r) = ( ) 
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Hence, 
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4 

( ) 

For the potential in equation (2) 

( ) 
        

    
    =   

+  2 +  3 +  4 

Where  −1 =  ,  −2 = A,  −3 = B,  −4 = C and the rest of the summation parameters in 

1(r) i equal to zero The energy eigenvalues become 
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[(2  + 1) ± 2√(A + [3  0
−1  + 6  0

−2] + 
1
) ] 

 

And, the state eigenfunctions are given as 
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−√[    −3+3   −4]− 2   
 

 

√ +[3  0−1+6  0−2]+1 
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0 0 +4   0 0 

   
4( ) 

 

5. Conclusions 

In the present paper, we discussed some special cases of the two-body potentials which have an 

oscillatory shape. The energy eigenvalues and eigenfunctions for bound states of such potentials 

have been obtained by Nikiforov-Uvarov method. The obtained results are useful in nuclear 

physics and quantum mechanics for magnetic interactions. 
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