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Abstract: High-throughput, non-destructive and accurate seed measurement is critical to assess seed quality 

and improve agricultural production. To do this, we developed a new comprehensive platform called 

HyperSeed, which provides hyperspectral seed data. As a test case, hyperspectral images of rice seeds are 

obtained with a high-performance line-scan imaging spectrograph covering the spectral range 600-1700 nm. 

Acquired images are processed using graphical user interface (GUI) based open source software for 

background removal and seed segmentation. The output is generated for each seed in the form of a 

hyperspectral cube and curve. In our experiment, we presented the visual results of seed segmentation of 

different seed species. In addition, we performed classification of seeds grown in heat stress and control 

environments using both traditional machine learning models and neural network models. The results show 

that the proposed 3D convolutional neural network (3D CNN) model has the highest accuracy of 97.5% for 

seed-based classification and 94.21% for pixel-based classification, compared to 80.0% and 85.67% for 

seed-based classification. in a seed-based classification of a support vector machine (SVM) model. In 

addition, our pipeline enables the systematic analysis of spectral curves and the identification of biologically 

interesting wavelengths. 

Keywords: hyperspectral imaging system; high-throughput seed phenotyping; phenotyping soft- ware; 

seed heat stress; 3D convolutional neural network (CNN); support vector machine (SVM); light gradient 

boosting machine (LightGBM); hyperspectral analysis 

1. Introduction 

Seeds are essential for the modern agricultural industry since they are not only an important source 

for food supply but are also closely related to crop yield [1]. To obtain a precise quantitative evaluation 

of seed quality, plant scientists have studied various phenotyping methods. Traditionally, the seeds 

traits are measured manually. However, the manual measurement often involves error-prone, laborious, 

and time-consuming procedures for tackling massive number of seeds. Thus, there is a growing need for 

high- throughput phenotyping methods to generate a more precise quantitative measurement of seeds. 

With the rapid development of sensors and computer vision technology, various methods have been 

presented for phenotyping. Based on 2D images captured by regu- lar red–green–blue (RGB) cameras, 

researchers proposed various imaging systems [2–5]. Computer vision algorithms were also explored to 

obtain the traits of seeds. For example, Tanabata et al. proposed a software SmartGrain to obtain seed size 

and shape [6]. Zhu et al. developed an open-source software SeedExtractor for seed phenotyping using seed 

shape and color [7]. Besides RGB camera imaging, X-ray-based imaging has also proved a great 

potential for seed phenotyping. X-ray-based methods have been presented to obtain the structure of the 

seeds and to predict the germination capacity [8,9]. However, these meth- ods have some limitations. For 

example, the X-ray assessment is usually time-consuming, potentially harmful, and not scalable for large-

scale operations [10]. The methods based on RGB cameras can only capture the surface characteristics. 

Moreover, since RGB cameras only acquire three wavelengths (red, green, and blue), the spectral 

information on other wavelengths that potentially indicate the chemical composition traits are not measured 

[11]. To overcome some of these issues, plant scientists are exploring the hyperspectral imaging (HSI) 

technique that captures both spatial and spectral information.  With a hyperspectral sensor, a wide 

range of wavelengths, including the ultraviolet (UV), visible (VIS), and near-infrared (NIR) spectra, can 

be obtained [12]. Due to its easy-to-operate advantages and scalability, HSI is becoming a popular 

tool to explore seed traits. For example, Wu et al. introduced an imaging system to determine seed 

viability by capturing the hyperspectral images from two sides of wheat seeds [13]. Hyperspectral 
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imaging has also been applied to identify specific rice cultivars using deep learning techniques [14]. 

NIR hyperspectral images have been used to quantify the seed starch content [15]. 

Although various solutions have been developed for hyperspectral analysis of seeds, there are still 

unsolved problems. First, the existing software tools to process hyperspectral images are usually designed for 

general purposes rather than seed phenotyping. They are not directly suitable for tackling high-throughput 

phenotyping of seeds since they do not consider the unique features of seeds, such as shape. Second, the 

existing software tools developed by the vendors selling the hyperspectral cameras (e.g., Headwall and 

Middleton Spectral Vision) are proprietary, which makes it challenging to customize. Third, the cost of 

solutions, including imaging platforms and analytic software, is a limiting factor for many research 

laboratories in the public domain. 

Moreover, climate change is driving the rising trend in temperature and posing a challenge for 

sustaining agricultural productivity. The mean annual temperature has increased by 1 ◦C for major regions 

in the past century [16]. The impact of high temperature 

has been well-documented for rice, which is estimated to suffer a 10% reduction in yield for every 1 ◦C 

increment in the growing season minimum temperature [17]. Besides yield, supranormal temperatures 

also decrease seed quality, as heat stress (HS) during the seed development phase drastically reduce the 

seed agronomic properties [18,19]. Poor seed quality under high temperature is a consequence of 

alteration in metabolic and transcriptomic signatures of seed development. For instance, phytohormones 

auxin, cytokinin, and ABA mediate the grain filling by regulating several genes that catalyze starch 

biosynthesis [20]. However, genes that fine-tune these biochemical pathways are impaired under HS [21]. A 

net effect of changes in the metabolic flux at the seed developmental phase leads to the production of 

low-quality seeds. Along with the reduction in seed size, abnormalities in grain filling pathways trigger 

distortion in the starch granule packing, thus rendering an opaque white appearance at the center of the 

endosperm, termed as grain chalkiness. While translucent grain fetches a maximum market price, chalky 

grains with low milling and cooking quality have less consumer acceptance [22]. The development of 

rice cultivars that can maintain seed quality under HS has become a key target for rice improvement. A 

similar scenario is just as pertinent for other major crops, which are relatively less characterized for heat 

sensitivity but are equally likely to suffer loss of yield and quality. 

To address the challenges of HSI, we propose an end-to-end solution named HyperSeed 

that is designed for high-throughput seed phenotyping using HSI techniques. Moreover, to explore the 

rice seeds under HS and illustrate the application of HyperSeed, we also conducted an experiment as a 

case study. The proposed solution includes a lab-based imaging system coupled to an application with a 

graphical user interface (GUI) for hy- perspectral analysis on seeds. The imaging system, which is cost-

effective and easy to build, can capture the hyperspectral images of seeds at a large scale. The 

application is designed to process the images and extract the averaged hyperspectral reflectance for each seed 

in the form of comma-separated values (CSV) files that can be opened and viewed 

using conventional spreadsheet software tools. Hypercubes for each seed are generated for pixel-based 

analysis. This software removes the background, segments every single seed in an image, and calibrates 

the output. The general shape of seeds is considered in the process of seed segmentation so that the 

application can process seeds with overlapping regions, thus saving effort and time to spatially separate 

individual seeds. HyperSeed allows users to explore and modify parameters for better performance of their 

own datasets. Our experiments demonstrate that the system can be adapted to evaluate seeds from different 

plant species without any major modifications. Moreover, the application is implemented in MATLAB, 

which is open-source and available for researchers with an institutional li- cense. For the users without a 

MATLAB license, we also provide a standalone version of HyperSeed, which only requires the free 

accessible MATLAB Compiler Runtime (MCR) for its operation. 

In our case study on rice seeds, we performed an experiment for seed classification and 

hyperspectral analysis. We used heat-stressed rice seeds as the test case since the seeds developed under 

higher temperatures undergo morphological and biochemical changes that otherwise are challenging to 

quantify using manual methods. For this, two groups of rice seeds were utilized as samples; the seeds in 
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the first group (control) were harvested from plants grown under a ambient temperature, while the seeds in 

the second group were harvested at maturity from plants exposed to a transient HS during seed 

development. Then, we applied a 3D convolutional neural network (3D CNN) [23] to classify the two 

groups and compared it with support vector machine (SVM) [24]. These popular supervised models 

differ in training sample generation and spatial information extraction. The experiment showed that the 

proposed 3D CNN achieved high accuracy in the classification of the two groups, probably by extracting 

the spectrum of neighboring pixels in the spatial direction. Moreover, we implemented a spectral analysis 

using a light gradient boosting machine (LightGBM) model [25]. The wavelengths of biological interest were 

identified. 

2. Materials and Methods 

The workflow of the proposed hyperspectral imaging system—HyperSeed—is illus- trated in Figure 

1. The seed samples (Figure 1a) are placed in the imaging system, and hyperspectral images are 

generated in the form of a hypercube (Figure 1b). The software processes the hypercube and segments 

each seed (Figure 1c). Finally, seed-based and pixel-based reflectance are extracted for further analysis. 

The seed-based reflectance is shown in Figure 1d, and each curve represents a single seed. 

 

Figure 1. The overall workflow of proposed platform: (a) seed sample placement; (b) hypercube 

generation; (c) seed segmentation; (d) reflectance curves extraction. 

 Sample Preparation 

Seeds were dehusked and surface sterilized with bleach (40% v/v) for 40 min and soaked in sterile 

water overnight. The sterilized seeds were germinated for 2 days in dark and followed by 4 days in light on 

half-strength Murashige and Skoog media. Seedlings were then moved to the greenhouse in 4-inch (101.6 

mm) pots filled with pasteurized soil. These plants were grown in the greenhouse under a diurnal condition 

with temperature 8/25 2 ◦C, light/dark 16/8 h, and relative humidity of 55–60% until flowering. At 

flowering, open florets were marked for tracking the flowering time.  Half of the plants at 1 day after the 

fertilization stage were moved and maintained in the high day and night temperature (HDNT) chamber 

(36/32 2 ◦C) for 5 days to impose HS. HS-treated plants were then transferred to control conditions and 

grown until maturity. Mature and dehusked seeds from the control group and seeds of these HS-treated plants 

were used for HSI and further analysis. 

 Imaging System 

Figure 2a demonstrates our imaging system. A metal frame is assembled using aluminum profile 

extrusion to hold the hyperspectral camera and the light source. A high- performance line-scan image 

spectrograph (Micro-Hyperspecr Imaging Sensors, Extended VNIR version, Headwall Photonics, Fitchburg, 

MA, USA) is fixed on the top of the frame, which covers the spectral range from 600 to 1700 nm, with a 

5.5 nm spectral resolution. The focal length and the minimum working distance of the camera lens are 25 

mm and 300 mm, respectively. A two-line lighting unit with four 20 W tungsten–halogen bulbs for each line 

(MRC-920-029, MSV Series Illumination, Middleton Spectral Vision, Middleton, WI, USA) is fixed in the 

middle of the frame to illuminate the seed samples. The emission spectrum of the light source spans from 350 

to 3000 nm. A camera slider with a track is placed on the bottom of the frame, and a square platform driven 

by a motor is installed on the track. Seed samples are placed on the platform and scanned line by line. The 

platform is painted black to reduce noise and facilitate the extraction of the seeds for downstream analysis. 
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The whole system is placed in a dark chamber to eliminate external and varying light source. The chamber is 

installed in a room where the temperature and the humidity are controlled in the range of 66 to 74 °F, and 16% 

to 20%, respectively. A computer (Intel(R) Core (TM) i7-9700K CPU @ 3.60 GHz (Santa Clara, CA, USA), 

RAM 8 G) is located next to the dark chamber, and camera-controlling software (HyperSpecrIII, 

Headwall Photonics, Fitchburg, MA, USA) is installed to set parameters for image acquisition. 

 

(a) (b) 

Figure 2. Hyperspectral imaging (HIS) system: (a) HyperSeed platform; (b) a generated hypercube of test-

case seed samples. 

 

 Image Acquisition 

Before image acquisition, the camera is turned on and warmed up to avoid baseline drift [26]. 

Subsequently, the controlling software developed by Headwall Photonics is used to adjust the parameters of 

the camera, such as exposure time, and take hyperspectral images. Other settings, such as the distance 

between the camera and the platform, are also calibrated to acquire the best quality images without 

distortion. For this study, the distance, exposure time, and frame period are set to 15 cm, 12 ms, and 18 ms, 

respectively. Rice samples are placed on the platform, and the image acquisition process is initiated. On 

average, it takes 15 s to capture one image, and the images are obtained in the form of three-dimensional (x, y, 

and λ) hypercubes. In this study, the hypercube includes 640 pixels 

in the x direction and 268 wavelength bands in the λ direction, respectively. The number of pixels in the y 

direction depends on the duration of imaging, and it varies from 1100 to 1600 in our experiment. As an 

example illustrated in Figure 2b, one captured hyperspectral image dataset in the form of a hypercube is 

shown in pseudocolor. A pixel on the x–y plane corresponds to a spectrum curve. A sliced image at a specific 

wavelength in the λ direction of the hypercube is shown in grayscale. 

 Software Implementation 

The HyperSeed software is utilized for the analysis of hyperspectral images. This open-source 

software is developed in MATLAB, and its standalone version can be operated without a MATLAB license. 

It has a GUI with multiple adjustable parameters for flexibility to process seed images shown in Figure 3. 

Users can process their seed samples follow- ing these steps: (1) path specification, (2) data 

visualization, (3) parameters setting, and 

(4) hypercube processing. 
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Figure 3. The GUI of HyperSeed software: (1) path region to define the path for input and output 

files; (2) loading region to load the dataset of interest for visualization; (3) setting region for parameter 

setting; (4) log region to display progress information; (5) visualization region for the sliced image and 

the corresponding histogram; (6) slider to specify wavelength for visualization; (7) visualization region 

for segmentation results; (8) buttons for initiating the image processing. 

 

 Path Specification 

HyperSeed application is compatible with hyperspectral images in the ENVI format consisting of pairs of 

raw images and header files. As shown in region 1 (Figure 3), the path of header files (*.hdr) and data filesof 

the hyperspectral image needs to be specified in input data path. HyperSeed is designed for batch processing, 

and a path with a regular expression is supported. As an example, [EXAMPLE PATH]/ .hdr loads all the 

hyperspectral images in the given path. Users also need to specify a path to output results in the output path 

box. 

 Data Visualization 

After specifying the data path, users can visualize the hypercube. By clicking the Load button in region 2 

(Figure 3), a sliced 2D image is extracted and demonstrated in region 5 (Figure 3) for visualization. A slider 

under the image in region 6 (Figure 3) can be used to  

 

specify the wavelength for the visualized image. A corresponding histogram for image intensity is also 

generated and displayed on the right of the sliced image. 

 Parameters Setting 

A set of default parameters are automatically loaded when the application is launched. In region 3 (Figure 

3), the checkbox remove bands in beginning/end is used to decide whether the software removes the bands at 

the beginning and end to increase accuracy. The checkbox enable overwriting decides whether the software 

overwrites the existing result files. The checkbox enable ellipse fitting decides whether an ellipse fitting 

algorithm, RFOVE, is included (Section 2.4.6). The dropdown box input data type controls whether the 

software generates intensity or reflectance. If intensity mode in the dropdown box is selected, only the path of 

hyperspectral images in region 1 (Figure 3) needs to be specified. Otherwise, if reflectance mode is selected, 

the paths of white and dark reference also need to be specified. The parameters of band id, min intensity and 

max intensity are utilized to create a mask for background removal. The parameter of min pixel for clustering 
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decides the threshold for the minimal pixels of one seed in segmentation (Section 2.4.5). 

 Hypercube Processing 

Once all the parameters are set, the batch processing is ready to start. The application has no assumption 

about the position of the seeds, so that seeds do not need to be placed in the center. Moreover, results can be 

correctly generated even if there are overlapping regions between seeds. The users can start the batch 

processing by clicking the Run button in region 8 (Figure 3). The seed-based averaged reflectance and pixel-

based reflectance are extracted if reflectance mode (Section 2.4.3) are selected in GUI. Otherwise, image 

intensity instead of reflectance is generated. All the results are sent to the output path for further analysis. The 

critical information, such as the total number of images and the path of current image being processed, is 

displayed in the log region, region 4 (Figure 3) for users to visualize the progress. In general, there are 

four main steps to process a hypercube: 

(1) initial seed segmentation, (2) refined seed segmentation, (3) spectral data extraction, and (4) image 

calibration. In the first two steps, we generate masks using image processing algorithms (Sections 2.4.5 and 

2.4.6) on a sliced image with band id specified in region 3 (Figure 3). In this work, various bands are tested, 

and band 20 is utilized due to the clear contrast between our seeds and the black background. The 

corresponding wavelength for band 20 is 675 nm. Then, the segmentation is achieved by utilizing the 

generated masks to the x–y plane of the hypercube. Segmentation results are visualized in region 7 (Figure 

3). 

 Initial Seed Segmentation 

The first step to process the hypercube is background removal in the sliced image. To achieve this, 

we firstly filter out pixels using intensity thresholding techniques. The application loads the parameters 

minimal intensity (Imin) and maximal intensity (Imax) in region 3 (Figure 3) for thresholding. More 

specifically, a pixel with an intensity I will be kept if Imin < I < Imax. The default minimal and maximal 

intensities are set to 400 and 2000, respectively. After background removal, a components searching 

algorithm [27] is used to find all the connected regions to further remove the remaining background. The 

searching algorithm, which is integrated with MATLAB function bwlabel, extracts the connected sets of 

pixels and labels each set with a unique number. After all the connected components are located, the 

number of pixels for each component is computed. The components are removed if their pixel count is 

less than the threshold. In this work, the threshold is set to 

500. Examples of the raw image and the results of initial segmentation are illustrated in Figure 4a,b, 

respectively. 

  

 Refined Seed Segmentation 

Though the seed candidates are obtained after the initial segmentation, the results still need to be 

improved since some pixels in seeds may be mistakenly treated as background and removed. Moreover, 

multiple seeds may be considered as a single entity due to possible overlapping. To improve the 

segmentation results, we utilize a morphological- reconstruction-based algorithm [28] to repopulate the 

erroneously removed seed pixels on the initial segmentation results. The algorithm is integrated with 

MATLAB function imfill and considers the pixels as seed pixels if they are fully enclosed by seed pixels. 

Furthermore, if the seeds are overlapped and mainly ellipse-shaped, we further conduct a fitting 

algorithm named RFOVE [29]. RFOVE fits ellipses to each initial component, and the components with 

multiple overlapped seeds are further segmented. Finally, we obtain a series of masks, and each mask 

represents only one seed. An example of refined segmentation result using RFOVE rendered in pseudo color 

is shown in Figure 4c, and all the seeds are labeled with the corresponding index. 

 Spectral Data Extraction 

The results of the refined seed segmentation are in the form of a series of masks. By utilizing these masks 

to the x–y plane of the hypercube, the spectra of pixels in each seed sample are extracted. The pixel-based 

intensityof each seed is outputted in the form of a hypercube, and the number of hypercubes matches the 

number of seeds. To further obtain the seed-based intensity, the spectra of these pixels are averaged as the 

mean spectrum for the corresponding seed. Eventually, each seed will generate one corresponding record of 
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the averaged intensity. In addition, due to the low sensitivity of the camera sensors at the beginning and 

end of the spectrum, outliers caused by random noises usually appear. Therefore, these bands could be 

omitted for better accuracy [30]. If the checkbox Remove bands in beginning/end is selected, the application 

will remove 5% of bands in the beginning and end. In this work, the spectral bands with a wavelength not in 

the range of 655–1642 nm are filtered out. 

 Results Calibration 

After the spectral data extraction, spectra are obtained in the form of intensity (Io), which is easily 

affected by the inconstant factors, such as the varying light source and temperature-dependent hot pixels 

[31,32]. To solve this, a white reference image (Iw) and a dark reference image (Id) is acquired for calibration. 

The white reference image with nearly 100% reflectance is captured using a standard white Teflon tile. The 

dark reference image with reflectance close to 0% is collected with the light source turned off and the 

camera lens covered by an opaque cap. Subsequently, the calibrated images (Ic), which are also known as 

reflectance, are calculated using Equation (1) [31]. Moreover, the calibration step 

can be skipped if intensity mode is selected (Section 2.4.3). If so, the intensity instead of reflectance will 

be directly generated as the final results. 

Ic =
 Io − Id 

Iw − Id 

 Seed Classification and Wavelength Analysis 

As a case study, wavelength analysis and classification are conducted using the extracted spectrum. 

The support vector machine (SVM) models [24] and a neural network model are utilized to classify the 

seeds between control and HS groups. LightGBM [25] is used for wavelength importance analysis. 

 Support Vector Machine (SVM) 

SVM is a widely used supervised learning model to analyze spectral data due to its capability to 

process both linear and nonlinear data [13,14]. With a kernel function, SVM maps the input data into a 

high-dimensional space, in which the mapped data is linearly separable. Then, a linear classifier in the 

form of a hyperplane (or a set of hyperplanes for multiple-class classification) is created to separate the 

mapped data in high-dimensional space. In this work, the radial bias function (RBF) is selected as the 

kernel function. 

 Neural Network Models—3D Convolutional Neural Network (3D CNN) 

Neural network models have been used for processing hyperspectral images [33]. One of the essential 

neural networks in processing RGB images and hyperspectral images is convolutional neural network 

(CNN), which is widely used for classification. In this work, our network is adapted from the 3D CNN 

[23]. Compared to 1D or 2D networks, in which either spatial or spectral neighborhood is not considered, 

3D CNN directly processes the sub-hypercubes and thus works on the spatial and spectral dimensions 

simultaneously. The 3D CNN has three main steps. The first step is sample extraction, as shown in Figure 

5a. Given an original hypercube with a size of M    N     L in the x, y, and λ dimensions, S  S   L sub-

cubes are extracted as samples.  The extraction is implemented for each pixel of the seeds, and the group 

labels of these sub-cubes are the same as the labels of their central pixels. In this work, S and L are set to 

5 and 239, respectively. The second step is spectral-spatial feature extraction. Figure 5b shows the 

network architecture. The S S L sub-cubes are fed to the first 3D convolution layer C1 with two 3D 

kernels. Then, the output is sent to the second 3D convolution layer C2 convoluted with four 3D kernels. 

After that, all the output features are flattened and sent to a fully connected layer. The third step is feature-

based classification. The features in the last layer are used for classification. The parameters of the network 

are optimized using the stochastic gradient descent (SGD) algorithm by minimizing the Softmax loss [34]. 
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(a) (b) 

Figure 5. (a) Sample extraction and (b) network architecture of 3D CNN. 

 

 

 Dataset for Classification 

Two datasets extracted by HyperSeed software are used to train models for comparison. The first one is 

the seed-based reflectance for the seed-based SVM model. One sample represents one seed, and the 

dataset is divided into two parts: 80% of seeds for training and 20% of seeds for testing. The second one is the 

pixel-based reflectance for the pixel-based SVM model and the 3D CNN model. The test set of the second 

dataset consists of the corresponding pixels of the seeds in test set of the first dataset. The rest of the 

pixels are further divided into two sets: 95% of pixels for the training set and 5% of pixels for the 

validation set. The number of the samples of the two datasets for classification are listed in Table 1. 

Table 1. Number of samples in each dataset. 

 

Reflectance 

Total 

Training Set Validation Set Test Set 

Type Number Control HS Control HS Control HS 

Seed-based 200 80 80 N/A N/A 20 20 

Pixel-

based 

274,641 104,517 104,719 5501 5512 27,527 26,865 

 

 Metrics for Classification 

In this work, the models are evaluated using four metrics on the test samples: Accuracy, Precision, Recall, 

and F-score, as shown in Table 2. These metrics are popular for machine learning model evaluation and a 

higher value usually represents better performance. The formula of the four metrics is shown in Equation (2): 

Accuracy =
 TP + TN 

 

TP + TN + FP + FN 

Precision =
 TP 

 

TP + FP 

Recall =
 TP 

 

TP + FN 

F-score =
 2 × TP 

 

2 × TP + FP + FN 

(2) 

where true positive (TP) is the number of samples in the HS group predicted as HS group; true negative 

(TN) is the number of samples in the control group predicted as the control group; false positive (FP) is the 

number of samples in the control group but predicted as HS group; false negative (FN) is the number of 

samples in the HS group but predicted as the control group. Moreover, the model is also evaluated using 

seed group prediction accuracy for a fair comparison, which presents the percentage of correctly predicted 

seeds in the test set. 

Table 2. The metrics of each model. 

 

Model 
Metrics on Test Samples Seed Group 

 

 

 

 Accuracy Precision Recall F-score Prediction Accuracy 

Seed-based SVM 80.00% 75.00% 83.33% 78.94% 80.00% 

Pixel-based SVM 85.67% 86.36% 84.30% 85.32% 92.50% 

3D CNN 94.21% 90.83% 98.18% 94.37% 97.50% 
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2.5.5. LightGBM for Feature Importance Analysis 

LightGBM is a gradient boosting framework widely used to solve machine learning tasks such as 

feature selection, ranking, regression, and classification. As a decision-tree- based model, LightGBM 

highly improves the strategy for tree construction. Unlike other 

 

 

similar tree-based models in which level-wise strategy is adopted, LightGBM implements a leaf-wise method 

with depth constraints. The leaf-wise strategy chooses a leaf that leads to the most significant decrease in loss 

and thus improves the accuracy. The depth constraints limit the depth of the tree, which avoids overfitting. 

In addition, instead of searching for the best node for splitting, LightGBM proposes an algorithm for 

nodes selection based on the histogram. Since searching is usually time- and memory-consuming, 

LightGBM with histogram improves the efficiency and reduces memory consumption. Moreover, parallel 

GPU learning is supported in LightGBM. In summary, LightGBM is designed for high accuracy, low 

memory cost, and parallel learning and, therefore, has the better potentiality to analyze large-scale data. 

With the LightGBM, the importance of features in the form of tree nodes in the model can be evaluated 

using various metrics. In this work, the number of times for which a node is used for splitting is 

calculated as importance. 

3. Results 

 Performance Testing 

To test the performance of HyperSeed, we evaluated the time required to capture the segmented seeds 

from hyperspectral images. The computing platform we used is an Intel(R) Core (TM) i7-8700 K CPU 

@3.70 GHz (Santa Clara, CA, USA) and 16 GB DDR4 random-access memory. Generally, more seeds 

in one image indicates a more time-costly procedure. On average, one additional seed in the image led to 

an extra 3.8 s in time cost, which showed the potential in high-throughput processing. 

 Segmentation Results Using Seeds from Various Plant Species 

To evaluate the effectiveness of the software on seeds with different shapes, we captured the 

hyperspectral images of seeds from various plant species and conducted the segmentation using 

HyperSeed. The first row in Figure 6a–d shows the 2D images of seeds of maize, rice, sorghum, and 

wheat, respectively. The second row in Figure 6e–h demonstrates the corresponding segmentation results 

in which each seed are labeled with the corresponding index. In general, HyperSeed is capable of accurately 

segmenting seeds with various shapes. 

 Spectral Analysis 

The averaged hyperspectral reflectance of control and heat stress (HS) groups were obtained by 

averaging the reflectance of seeds in the two groups, respectively. As shown in Figure 7, each curve presents 

the averaged reflectance of 100 seeds in the responding group. The two curves illuminate similar patterns, and 

the HS group exhibited higher reflectance than the control group on average. However, at the wavelength 

of 671–771 nm, curves with similar reflectance were observed between the two groups. The differences 

indicate that the transient HS might have modified the content of the seeds and thus influenced the 

corresponding reflectance. 

 Classification 

In this section, we utilized multiple models for the classification of control and HS groups. The 

classification results are described in Figure 8. For better visualization, all the 40 seeds in the test set are 

demonstrated in one figure. In each subfigure, the first two rows and last two rows are the seeds from the 

control and HS groups, respectively. The seeds or pixels are marked red if they are in the control group as 

ground truth (Figure 8a) or predicted as control group (Figure 8b–d). In contrast, the blue color represents 

the HS group in each subfigure. 
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Figure 6. The 2D images of seeds of maize, rice, sorghum, and wheat (a–d); and the corresponding 

segmentation results with each seed labeled with the corresponding index (e–h). 

 

Figure 7. The averaged spectral curves of seeds in control and HS groups (n = 100 seeds for each 

group). 
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(a) Ground Truth (b) Seed-based SVM 

 

(c) Pixel-based SVM (d) 3D CNN 

Figure 8. The ground truth and the predicted results using different models: (a) the ground truth; (b) 

the seed-based prediction results using SVM; (c) the pixel-based prediction results using SVM; and 

(d) the pixel-based prediction results using 3D CNN. 

 Seed-Based Support Vector Machine (Seed-Based SVM) 

To extend the machine learning applications in determining seed viability and seed varieties detection 

[13,35], we implemented seed-based classification using the SVM model. The averaged reflectance of each 

seed was fed to the model for training, and the number of training samples matched the number of seeds. 

Since the number of training samples (160) in this work was limited compared to the number of features 

(239), the SVM model was expected to suffer from underfit if all the features are to be used in the model. 

Moreover, the extracted spectral reflectance is usually redundant. Some bands as features for training are 

highly correlated with each other. Therefore, the features can be preprocessed to reduce the dimension of 

feature space without affecting the accuracy of classification [35,36]. To achieve this, we implemented 

principal component analysis (PCA) [37]. PCA treated the bands as initial features and mapped them to 

orthogonal components by implementing a linear transformation. These components, which were the 

linear combination of initial features, were utilized as the new features and ranked according to their 

corresponding eigenvalues. By selecting the top-ranked new features, the correlation problem was solved. In 

this work, 50 features were finally selected to train the SVM model. The accuracy of the model on test 

samples was 80.0%, and since one seed represented one sample, the seed group prediction accuracy was 

also 80.0%. The classification results and other metrics are shown in Figure 8b and Table 2, respectively. 

 Pixel-Based Support Vector Machine (Pixel-Based SVM) 

The performance of the seed-based SVM was limited as the number of training samples were not 

sufficient. To address this issue, we fed the model with pixel-based reflectance, in which each pixel, 

rather than each seed, was considered as one sample. As shown in Table 1, the number of training samples 

increased from 160 to 209,236. Then, we classified a seed by comparing the number of predicted pixels in the 

two groups. For example, a seed was considered to be in the control group if more than half of pixels in this 

seed were in the control group. Afterwards, the seed group prediction accuracy was calculated by counting the 

number of correctly predicted seeds. Therefore, the issues of the number of samples were solved, and the 

performance was improved. In the classification results shown in 

Figure 8c and the metrics shown in Table 2, we observed that the accuracy of seed-based classification 

increased from 80.0% to 92.5%. 

 3D Convolutional Neural Network (3D CNN) 

Compared to seed-based methods, the pixel-based SVM increased the accuracy in seed-based 
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classification. However, it could be observed that the pixel-based SVM still had space for improvement 

since it included many mispredicted pixels. One of the issues with the pixel-based SVM was that it only 

considered each pixel as separate samples and ignored the connection between them. Therefore, the spatial 

information of the seeds was lost in the SVM model. In contrast, the 3D CNN proposed in this work 

processed the pixels in the spatial and spectral dimensions simultaneously. As shown in Figure 8d and 

Table 2, 3D CNN has better performance than the pixel-based SVM. The accuracy of 3D CNN increases 

from 85.67% to 94.21% in the pixel-based classification. The accuracy of seed-based classification 

calculated using the same methods as pixel-based SVM increases from 92.5% to 97.5%. 

 Wavelengths Analysis 

The extracted spectrum includes 239 wavelengths after calibration. In this section, we considered each 

wavelength as a feature and utilized LightGBM to analyze the importance with respect to group labels. By 

building a LightGBM model using the spectral data of pixels, the wavelengths are used as nodes in the 

model. All the wavelengths are fed to the model, and the importance of these wavelengths is evaluated 

by calculating the number of times for which a spectral band is used to split the data across all trees. 

Then, the importance is normalized by dividing the total number of splitting to rescale the range to 0–1. 

The wavelengths are sorted with respect to normalized importance, and the wavelengths with top 12 

importance are shown in Figure 9. These wavelengths also match our observation in Section 3.3 where the 

differences of reflectance for these wavelengths is clear. Moreover, Figure 9 showed that most of the top 

important wavelengths for classification ranged from 1000 to 1600 nm. Based on this analysis, the NIR 

component of the hyperspectral camera capturing 900–1700 nm could be selected for cost-effective 

imaging in future studies. 

 

Figure 9. The wavelengths sorted by normalized importance, which is computed and scaled based on the 

number for splitting the trees in the LightGBM model. 

 

4. Discussion 

The proposed system HyperSeed has provided an end-to-end solution to hyperspectral imaging of seeds. 

The system is specially designed for seed imaging and has achieved high accuracy and efficiency. The cost-

effective imaging system and the open-source MATLAB software facilitate easy access and customized 

modifications. Our experiments on rice seeds have shown the data analytic capabilities of HyperSeed. 

Though HyperSeed has demonstrated its capability to process hyperspectral images 

in a high-throughput manner, there is still space for improvement. First, the current version of HyperSeed 

software is single-threaded. Since the initial segmentation has already detected the potential individual 

seeds, it is possible to apply the refined segmentation to these seed candidates simultaneously using 

multithread techniques. As a result, the time cost to process each hyperspectral image can be further 
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reduced if the software is implemented in a multithreaded manner. Second, we only explored the labeled seed 

samples and use them for wavelength analysis and classification. In HSI, compared to the labeled samples, 

unlabeled samples are usually much easier to access. More applications should be achievable if unsupervised 

machine learning methods with unlabeled samples are applied. Third, though the 3D CNN method already 

has high accuracy on seed-based classification, it still has the potential to be improved on pixel-based 

classification. In the sample extraction step of 3D CNN, only the local spatial information is extracted to 

generate training samples for fast training and easy convergence. The model performance could be further 

improved if the global spatial traits such as shape are captured by the model. Moreover, since the focus of 

this work is the end-to-end solution, we did not explore the relationship between the seed composition and 

wavelengths. Due to the same reason, the analysis of the activation maps in 3D CNN is not included. 

5. Conclusions 

We propose a novel end-to-end system called HyperSeed to process the hyperspec- tral images of 

seeds in a high-throughput manner and provide details to establish both hardware and software 

components. The system can be used on seeds from various plant species. The cost-effective hardware is 

capable of capturing hyperspectral images of multiple seeds. The open-sourced software with GUI 

extracts the calibrated hyper- spectral reflectance of the segmented seeds effectively. The software’s 

output includes seed-based averaged reflectance and pixel-based reflectance for each seed. To demonstrate 

the potential of the proposed tool for biological interest, we performed experiments on classification and 

hyperspectral analysis using the extracted reflectance data of control and HS seeds. By comparing various 

machine learning models, the proposed 3D CNN showed a high classification accuracy (94.21% at the 

pixel level and 97.5% at the seed level). The spectral curves of the seeds were analyzed, and the 

wavelengths with top importance were identified. Our future work will aim to implement the software in a 

multithreaded manner to further improve efficiency. We will also explore the hidden layers in 3D CNN 

and the relationship between the seed composition and wavelengths. 
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