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This article proposes a solution to the problem of Dynamic Economic Distribution (DED) using 

a hybrid approach of Hopfield Neural Network (HNN) and Quadratic Programming (QP). The 

hybrid algorithm is based on the use of improved HNN; solve the static part of the task; QP 

algorithm for solving the dynamic part of DED. This technology ensures a solution thanks to a 

global optimal forecast. The new algorithm is implemented and tested on a literary example, and 

then the solution is compared with a solution obtained by another technique to show the 

superiority and efficiency of the proposed algorithm. 

 
  

 

1. Introduction 

 
Dynamic Economic Delivery (DED) is considered as one of the most 
important steps to obtain a perfect generation timing solution. The 

purpose of DED is to schedule the outputs of grid generators 
according to the predicted load demand for a certain period of time, so 
that the power system can be operated economically within its safety 
limits [1,2]. By solving the DED problem, the required total production 
is distributed among the available network heat generation devices 
during a certain period of time [3]. To solve the DED problem, it is 
assumed that the heat unit duty is determined in advance. 
Mathematically, the DED problem is considered a second-order dynamic 
optimization problem, which takes into account the constraints 
imposed on the system by the ramp speed limits of the generators [1]. 
What distinguishes DED from the traditional static Economic Load 
Dispatcher (ELD) problem is the mechanical limitation introduced to 
avoid shortening the life of turbines and boilers. The thermal gradients of 
the devices must be kept within safe limits. This mechanical limit is 
converted into a limit of the growth rate of electrical energy for each 
emitted unit. No unit may increase or decrease more than the number 
of megawatts specified by the unit's manufacturer at any time. 

Since the DED must be solved over a certain period of time with a 

predefined load profile, thus the overall cost of producing this load 

profile of electricity demand must be minimized over the whole 

scheduling horizon, not only for each single time interval, with- 

out violating the technical constraints. This is another difference 

between the DED and the traditional ELD problems. 

Several methods have been proposed to solve the DED problem. 

However, most of the  previous  work  in  this  field  is  not  able 

to provide an optimal solution and usually get stuck at a local 

minimum point [1]. Methods of solving the DED problem can be 

classified into classical, artificial intelligence (AI) based and hybrid 

methods. 

Lagrangian relaxation (LR) is an example of the classical meth- 

ods. This technique suffers from myopia for nonlinear search spaces 

leading to a less than desirable performance. To avoid this, approx- 

imations may be used to limit the problem complexity [3]. 

Another classical method is the dynamic programming (DP). 

DP has been used in many previous papers in literature to solve 

this problem. In Ref. [4], DP is used to solve DED simulating what 

so-called the valve point loading. Also it managed to have a look- 

ahead capability for the solution in order to predict the effect of 

the current generation value on the generation levels of the next 

time intervals. Anyway, the results are not compared with any 

other method to prove the superiority of the proposed method in 

computational time or accuracy. Price-based ramp rate model for 

the DED problem is introduced in Ref. [5]. The effect of ramp rate 

constraint is shown by examples and compared with the heuristic 

approaches. DP and Dantzig-Wolfe decomposition are also imple- 

mented to solve a linearized form of the problem. Constructive 

dynamic programming and dual optimization technique are among 

the classical methods used to solve this problem [6]. 
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AI-based optimization techniques such as simulated annealing 

(SA), genetic algorithms (GA), evolutionary programming (EP) and 

particle swarm optimization (PSO) have been used to solve the DED 

problem. Such techniques use probabilistic rules to update their 

candidates’ positions in the search space. Anyway, these algorithms 

do not always guarantee discovering the global optimal solution in 

a finite time but they can only find a feasible solution in short time 

[1,3]. 

The appropriate setting of the control parameters of SA is very 

difficult and is done by trial and error. Also the speed of conver- 

gence of the algorithm is slow when applied to a real power system. 

Encoding and decoding schemes that are essential in GA approach 

are not needed in DED. It is claimed in Ref. [1] that all heuristic tech- 

niques take long computational time in order to obtain the global 

optimal solution. 

Hybrid methods combine two or more techniques previously 

mentioned in order to get the best features in each algorithm. 

Hybrid methods usually combine probabilistic and deterministic 

methods together. Probabilistic method is used as a base level 

search procedure to find a feasible and near optimal solution. The 

deterministic method is then used to fine-tune that solution reach- 

ing to the global optimum solution [1,3]. 

EP and sequential quadratic programming (SQP) are used in 

Ref. [1] to solve the DED with non-smooth fuel cost function. PSO 

and SQP are employed in Ref. [3] to solve the reserve constrained 

DED problem together with security constraints. Spinning reserve 

requirements are satisfied. Security constraints include maintain- 

ing the voltages of all busses between maximum and minimum 

values. Also the load flow on every transmission line must not 

exceed the maximum allowable transmission line capacity. 

Hopfield neural network (HNN) is used to solve the DED problem 

in Ref. [2]. The ramp up and down rates constraint is included in 

the solution algorithm by obtaining the optimum dispatch for the 

first interval to determine the required generating levels of each 

unit. The maximum and minimum allowable output of each unit 

is then updated to be the generation level of the previous interval 

Bij loss coefficient between the ith and jth generators 

(MW−1) 

CT total cost of generation of all generators through the 

whole simulation horizon in $ 

C(Pih) cost of generating Pih MW from the ith generator during 

the hth interval in $ 

h interval index 

H number of intervals in the simulation horizon 

i generator index 

Ii external input (bias) of the ith neuron 

k iteration index 

Lh load demand during the hth interval in MW 

N number of dispatchable generators 

Pih output of the ith generator at the hth interval in 

megawatts (MW) 

Pi-max    maximum allowable output of the ith generator in MW Pi-

min   minimum allowable output of the ith generator in MW PLoss-h 

transmission losses at the hth interval in MW 

RDRi       maximum allowable ramp down rate of the ith generator 

in MW/h 

RURi maximum allowable ramp up rate of the ith generator in 

MW/h 

Tij interconnection conductance (weight) from the output of 

the jth neuron to the input of the ith neuron. 

Ui input to the ith neuron 

Vi-max maximum allowable value for the output of the ith neuron Vi-

min      minimum allowable value for the output of the ith neuron Vj

 output of the jth neuron 

λ scaling factor termed as the slope 

 
2.2. Problem formulation 

The DED problem can be stated as follows [3]: 

Minimize 

H      N 
plus the maximum allowable ramp up rate for ramping up or minus 
the maximum allowable ramp down rate for ramping down. This 

algorithm may reach the optimum value for each interval but does 

not guarantee reaching the global optimum of the whole simulation 

horizon. 

In this paper, the enhanced HNN explained in Ref. [7] serves as 

a base level search procedure to find a near optimal solution with- 

out applying the ramp rate constraints. The ramp rate constraint 

is then applied by the quadratic programming approach in order 

to consider the effect of the current load on the next time interval 

dispatch. This method ensures that the solution will have what the 

so-called look-ahead capability of the solution. An example from 

the literature is solved by the proposed method and the solution 

is compared with some other methods to prove the validity and 

superiority of the proposed technique. 

 
2. Problem  description 

 
The (DED) problem is concerned with minimizing the overall 

generating cost of N dispatchable generating units over the whole 

scheduling period H subjected to some operating constraints. In this 

CT = C(Pih) (1) 

h=1 i=1 

where 

C(Pih) = ai × P2 + bi × Pih + ci (2) 

Subjected to the following constraints: 

i. Real power balance 

N 

Pih = Lh + PLoss-h     ∀ h = 1 : H (3) 

i=1 

Transmission losses can be modeled either by running a com- 

plete load flow analysis to the system [3] or by using the loss 

coefficients method (also known as the B-coefficients) devel- 

oped by Kron and adopted by Kirchmayer [7]. The later method 

is adopted in this work. 

In the B-coefficients method, the transmission losses are 

expressed as a quadratic function of the generation level of each 

generator as follows: 

n n 
section, the symbols used are introduced then the mathematical 

 
P = 

ΣΣ
P   B  P 

(4) 

 2.1. Notation 

formulation of the problem is presented. 

i=1  j=1 

jh 
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ai, bi, ci    cost coefficients of the ith generator 

 
ii. Real power generation limits 

Pi−min ≤ Pih ≤ Pi−max      ∀ i = 1 : N and h = 1 : H (5) 

iii. Ramp up and down rates 
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To avoid undue thermal stresses on the boiler and the com- 

bustion equipment, the rate of change of the output power of 

each thermal unit must not exceed certain rate during increas- 

ing or decreasing the power output of each unit [4]. This can 

be formed mathematically as follows: 

4.   Proposed algorithm 

 
The proposed algorithm is a hybrid between the enhanced HNN 

[7] and the QP. The enhanced HNN is used to obtain a schedule of 

generation satisfying the given load profile without considering the 

RDR ≤ |P — P | ≤  RUR ∀ i = 1 : N and h = 1 : H − 1 (6) 
ramp rate constraint. In other words, HNN solves the static part of 

 

3. Hopfield neural network 

 
Hopfield neural network is a single layer, recurrent, and non- 

hierarchal neural network. The action of this network is to minimize 

an energy function [8]. 

In HNN, all connective weights are calculated initially from the 

system data without training. The neurons are initiated by an initial 

value (guess) then the network goes through a series of iterations 

until it reaches a final output that represents the minimum of an 

energy function [9]. 

The dynamics of each neuron can be described by the following 

differential equation [10]: 
n 

ward and forward evaluations are made. The proposed algorithm 

is introduced as follows: 

 

1. Obtain a complete generation schedule for the given load curve 

using the enhanced HNN described in Ref. [7] for each time inter- 

val in the simulation horizon without the ramp rate constraint 

being considered. This is the unconstrained DED solution. The 

values of the HNN parameters A, B and λ will be 1.6, 2 and 10−3, 

respectively as being recommended in Ref. [7]. 

2. Backward evaluation: 

For i = 1:N 

For h = H:2 

a. If Pih    Pih−1 > 0, then it is ramp up case, else it is a ramp 

down case. 

dUi   = 
Σ

T  V  + I 
(7) b. Calculate the amount of violation to the ramp rate con- 

 

First-order Euler–Cauchy integration technique has been used 

in Ref. [10] to solve Eq. (7) as follows: 
n 

i. If ramp up is detected: 

Violation = |Pih − Pih−1|− RURi (15) 

U (k) = U (k − 1) + 
Σ

T  V (k − 1) + I 
 

 

 

(8) 
If violation > 0        

 

  
The input–output model of the conventional HNN adopted in 

this work is the sigmoid function: Pih−1(updated) = Pih−1 + 
violation 

(17)
 

2 

Vi = Vi- min 

1 
+ 

2 
(Vi max — Vi min)(1 + tanh(λUi)) (9) 

ii. If ramp down is detected: 
Violation 

 
RDR 

 
(18) 

The energy function of HNN is given by 
= |Pih  − Pih−1|− i 

If violation > 0 n n n 

E 
1 ΣΣ

T  V V  − 
Σ

I V  (10) violation 
= − 

2
  

i=1  j=1 

ij   i   j i   i 

i=1 

Pih(updated) = Pih + 
2 

(19) 

violation 

The time derivative of this energy function was proven to be 

negative so the network always moves in such a direction that the 

function gradually converges to a minimum [10]. 

To solve the DED using HNN, penalty function method is used 
to represent the ELD as a quadratic function as follows [8]: 

Pih−1(updated) = Pih−1 − 

3. Forward evaluation: 

For i = 1:N 

For h = 1:H − 1 

2 
(20) 

E = 
A

 
 

 

 
Σn

  
a P2 + b P + c + 

B    
L + P 

 
 

 
2 

— 
Σ

P 

 
 

(11) 

a. If Pih+1    Pih > 0, then it is ramp up case, else it is a ramp 

down case. 

b. Calculate the amount of violation to the ramp rate con- 

2 
i=1 

i  ih i   ih i 2 h Loss-h ih 

i=1 
straint as follows: 
i. If ramp up is detected: 

The energy function consists of the total fuel cost (the objective 

function) and the power mismatch (the equality constraint). A and B 

represent weighting coefficients that introduce the relative impor- 

tance for their respective associated terms. Ramp rate constraint 

 

Violation = |Pih+1 − Pih|− RURi (21) 

If violation > 0 

will be forced into the solution using the quadratic programming 

(QP) approach as will be explained in the following section. 
Pih+1(updated) = Pih+1 

violation 
— 

2
 (22) 

To obtain the interconnection conductances and the external 

inputs, substitute (4) in (11) and compare the resulting equation 
Pih(updated) = Pi + 

violation 
(23)

 

2 
with (10) after replacing Vi and Vj with Pih and Pjh, respectively 

thus we get the following set of equations: 
ii. If ramp down is detected: 

Tii = −A × ai − B (12) 
Violation = |Pih+1 − Pih|− RDRi (24) 

If violation > 0 

violation 
(16)

 

2 
Pih(updated) = Pih − j=1 

straint as follows: 

the DED problem. To enforce this constraint into the solution, back- ih+1 i 

j=1 

i 

i 
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Tij = −B (13) 

A 
 

 

Pih+1(updated) = Pih+1 + 
violation 

(25)
 

2 

Ii = B(Lh − PLoss-h) − 
2 

bi (14) 

Full details of the mapping process can be found in Ref. [7]. Pih(updated) = Pih − 
violation 

(26)
 

2 
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Table 1 

Data of the example 
 

Unit index ai ($/MW2
 H) bi ($/MWH) ci ($) Pi-min (MW) Pi-max (MW) RURi (MW/h) RDRi (MW/h) 

1 0.0372 26.4408 180 155 360 20 25 

2 0.03256 21.0771 275 320 680 20 25 

3 0.03102 18.6626 352 323 718 50 50 

4 0.02871 16.8894 792 275 680 50 50 

5 0.03223 17.3998 440 230 600 50 50 

6 0.02064 21.6180 348 350 748 50 50 

7 0.02268 15.1716 588 220 620 100 100 

8 0.01776 14.5632 984 225 643 100 150 

9 0.01644 14.3448 1260 350 920 100 150 

10 0.01620 13.5420 1200 450 1050 100 150 

 

4. Let the accepted tolerance between iterations be ε: 

If the difference between the updated schedule obtained after 

step 3 and the schedule before step 2 is less than ε, then go to 

step 5. 

Else update the solution as follows: 

For h = 1 : H,    Pih(updated) = Pih (27) 

Then go to step 2 for another iteration 

5. The solution is now let to undergo the correction factor algorithm 

described in Ref. [7] as follows: 

For h = 1:H 

Calculate the power mismatch as follows: 
 

N 

power mismatch = Lh  + Ploss-h  − Pih (28) 

i=1 

The correction factor (C.F.) is then calculated by 

 
 

 
Fig. 2. Comparison of the total cost for different techniques. 

C.F. 1 
power mismatch 

Lh 

 
(29) 

New England test system given in Ref. [2] is studied and solved. 

The system consists of 10 units, their cost data, generation limits 

and ramp rate limits are given in Table 1. Transmission losses are 
The solution obtained after step 4 is then multiplied by C.F. The 

transmission losses and the power mismatch are updated using 

Eqs. (4) and (28), respectively. C.F. is calculated again from Eq. 

(29) to adapt itself to the new mismatch. The process continues 

till the mismatch is acceptably small. 

This correction factor guarantees that the power mismatch 

between the total generation for each interval and the corre- 

sponding load is within accepted limits and that no violation 

happens to the maximum and minimum generation level con- 

straint. 

6. Print out the schedule obtained after step 5. It is the required 

optimum solution. 

 
5. Implementation examples 

 
Software package implementing the new proposed technique is 

developed using Intel Centrino® Duo, 1.83 GHz processor. To illus- 
trate the validity and effectiveness of the proposed technique, the 

 

Fig. 1. Load curve for the example. 
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neglected. The simulation horizon of the example is 12 h. The 

corre- sponding load curve is given in Fig. 1. Comparison is made 

between the solution obtained by the proposed algorithm and the 

solution techniques given in Ref. [2]. Figs. 2 and 3 show the 

superiority of the proposed technique regarding both the total 

cost and the com- putational time, respectively. The complete 

generation schedule is given in Table 2. 

It can be seen from Table 1 that the first two units are the 

most ramp rate limited units. Their schedule using the proposed 

tech- nique and that of Ref. [2] is shown in Figs. 4 and 5, 

respectively. 

By studying the results in Figs. 2 and 3, it is clear that the new 

proposed algorithm is efficient, faster and giving a cheaper total 

generating cost than the other algorithms. In other words, the 

new proposed algorithm is capable of giving a more optimum 

solution with less computational time. 

Figs. 4 and 5 reveal that the new technique “smoothens” the 

schedules of the first two units. In other words, the more ramp- 

limited units are scheduled in a flat profile way thus 

increasing 

 

Fig. 3. Comparison of the computational times for different techniques. 



  

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 51, Issue 04, April : 2022 
 

UGC CARE Group-1,                                                                                     573 
 
 

 

Table 2 

Solution of the example using the proposed technique 
 

Unit index Interval 

1 2 3 4 5 6 7 8 9 10 11 12 

1 209.7 212.13 219.4 209.7 226.79 228.74 227.21 218.99 214.55 208.89 214.96 217.38 

2 323.9 323.21 321.73 323.9 327.01 329.79 327.61 321.79 322.62 324.15 322.53 322.06 

3 524.24 530.32 548.49 524.24 566.98 571.82 568.03 547.48 536.39 522.22 537.4 543.45 

4 524.24 530.32 548.49 524.24 566.98 571.82 568.02 547.48 536.39 522.22 537.4 543.45 

5 504.91 510.76 528.25 504.91 546.07 550.72 547.08 527.29 516.6 502.95 517.56 523.41 

6 524.24 530.32 548.49 524.24 566.98 571.82 568.03 547.48 536.39 522.22 537.4 543.45 

7 548.53 554.88 573.89 548.53 593.25 598.3 594.34 572.84 561.23 546.4 562.29 568.62 

8 657.35 664.97 687.75 657.35 710.94 716.99 712.25 686.49 672.57 654.8 673.84 681.43 

9 813.94 823.38 851.59 813.94 880.3 887.8 881.93 850.03 832.79 810.79 834.36 843.76 

10 Σ 928.95 939.71 971.92 928.95 1004.7 1013.2 1006.5 970.13 950.47 925.36 952.26 962.99 

N 
Pih i=1 

5560 5620 5800 5560 5990 6041 6001 5790 5680 5540 5690 5750 
             

Interval total 174460 177090 185110 174460 193730 196070 194240 184660 179750 173580 180190 182870 

cost ($)             

 
 

 
 

Fig. 4. Scheduling of unit no. 1. 

 
 

 
Fig. 5. Scheduling of unit no. 2. 

 
 

their lifetime by preventing large ramps. This is another privilege 

of the new proposed technique. 

 
6. Conclusions 

 
This paper presents a novel hybrid method to solve the slope 
velocity-constrained DED problem. The basic solution is an 

improved HNN, which provides an initial solution without considering the 
dynamic ramp rate limitation. The ramp speed limit is enforced in the 
solution using quadratic programming with successive backward and 
forward estimates. The new technique has predictive power, because it 
distributes the ramp of generators over the entire simulation horizon to 
avoid a sudden ramp that can exceed the maximum allowable ramp rates. 
The power of a given unit does not necessarily have to be high in a 
certain time period to achieve an optimal solution in that time period. If 
this device has a large slope at any subsequent interval, it is 
recommended that the power of this device is gradually increased to 
meet the dynamic limit. The schedule obtained in each interval may not be 
the optimal schedule for that interval, but it is optimal over the entire 
simulation horizon. An example from the literature is solved by the new 
proposed algorithm and the results are compared with those of other 
techniques. The new technology finds a cheaper solution in a much 
shorter time than other technologies. The results show the superiority of 
the proposed technique both in terms of cheapness of total production 
costs and computational time. 
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