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     Abstract 
For the high-density interconnection scenario of data centres, we implemented the AI-assisted optical network fault 

location technique in the study by applying the customised AI module to the OTDR device and combining it with 

the optical power monitoring module. The data from optical links can be fully utilised by the process. The AI 

module can identify potential weak links using link data, and the optical power module will then keep an eye on the 

target links. The system has a quick way to identify broken links and react to them. According to the test, using an 

AI model can increase the link's average fault detection performance by 98.41%. 
 

1. Introduction 

As the data center gets bigger and bigger and the topological 

structure becomes more and more complex, a data center 

failure is a disaster that can cause the loss of huge amounts of 

data and the interruption of large calculations. At the same 

time, as the number of devices and links increases rapidly, 

the frequency of failure in optical networks of data centers 

increases and the number of alarms increases, which makes 

it difficult to locate faults and takes more time to rectify 

faults. How to locate the fault quickly and accurately from 

a large number of alarm devices has proven to be a thorny 

problem [1]. 

As reported by the Federal Communications Commis- 

sion (FCC), more than one-third of service disruptions are 

caused by fiber-cable problems [2]. Therefore, automatic 

monitoring and diagnosis of optical fiber links are very 

beneficial. By introducing machine learning (ML) in data 

centers, it will not only revolutionize the (mainly manual 

and human) approach to the traditional management of 

fiber-optic network fault management [3]. It also helps 

optical network operators plan and schedule their mainte- 

nance activities more efficiently [4] and thereby save 

CAPEX/OPEX and reduce the time to repair (MTTR) by 

quickly discovering and pinpointing the link faults. This 

 

enables operators to more easily meet service level agree- 

ments (SLAs) and improve customer satisfaction by re- 

ducing downtime and improving network quality. In 2018, 

Rafique et al. [5, 6] proposed an optical layer fault detection 

architecture based on machine learning and defined four 

types of optical layer fault types. It was suggested to acquire 

and collect optical power monitoring data through the 

southbound interface of SDON, conduct data analysis 

through the ANN algorithm, and upload data analysis re- 

sults through the northbound interface. In the same year, 

Huawei put forward the optical service fault prediction 

scheme combining artificial intelligence and big data 

technology, mainly taking the bit error rate (BER) and 

optical power as input to predict the optical service fault, and 

cooperated with operators to carry out the initial verification 

of the OTN live network. The prediction accuracy is 85%, 

which not only improves the robustness of their network but 

also reduces the network cost of inspection. Chen et al. [7] 

proposed a DNN-based optical transmission link fault de- 

tection scheme in which the clustering module of un- 

supervised learning and the DNN module of supervised 

learning were integrated to analyze the internal relationship 

between optical power and the alarm log to detect link faults. 

However, the above work only realizes the fault prediction 

and does not consider the problem of fault location. 
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FIgurE 1: Diagram of AI-assisted failure location platform. 

 

The optical time-domain reflectometer (OTDR) is the 

most common way for quality evaluation and fault location 

of optical fibers [8]. At present, the commonly used data 

center fault monitoring scheme is to adopt optical switch 

polling and optical power monitoring. However, in the case 

of high-density interconnection of optical networks in data 

centers, fault detection in this way still consumes a lot of 

time, which is not conducive to troubleshooting and solving 

faults. In [4], the author proposes an OTDR optimization 

scheme based on LSTM. A LSTM model is used to predict 

possible faults according to OTDR detection results. 

However, this method requires continuous use of OTDR to 

detect link conditions, and the existing data center operation 

and maintenance data cannot be fully utilized. In this paper, 

based on the model that was realized in [9], an AI auxiliary 

judgment and failure location platform was designed and 

implemented. By using the operational data collected from 

optical network link, AI module predicts possible failure of 

the link, platform will send instructions to the optical switch 

according to the prediction result and monitor the optical 

power of optical links that may fail. Once the optical power is 

below the threshold, OTDR is enabled for link detection. 

After the test, the average fault detection efficiency of the link 

increased by 98.41%. 
This paper is organized as follows: Section 2 describes the 

system architecture and equipment introduction. Section 3 

introduces the AI model that is used in our system. Practical 

application and performance analysis of the platform are 

discussed in Section 4. Conclusions are drawn in Section 5. 

 
2. The Architecture of the Platform 

The architecture diagram of our test is shown in Figure 1. 

The AI-assigned monitoring platform collects data from the 

optical link in real-time. These data are used by the AI model 

to predict the status of the optical link. According to the 

prediction result, the platform issues instructions to the 

optical switch array, which will switch the predicted failure 

Data Collection 

Issue Instructions 

…
…
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link in turn before the next instruction arrives. At the same 

time, equipment A monitors the power of the link and 

starts the OTDR to detect the link when the power is lower 

than the threshold. The above workflow is shown in 

Figure 2. 
Figure 3 is the architecture of equipment A. 

In Figure 3, the laser produces a 1650 nm laser burst 

according to the pulse generator. The pulse enters the 

optical link through the circulator. Uplink light from the 

optical link enters the WDM filter module through the 

circulator. Uplink light and 1650 nm backward scattering 

light enter modules B, which is used for OTDR data 

acquisition and processing, and C, which is used to 

calculate optical power. The calculation result is sent to the 

AI-assisted monitoring platform. 

 

3. AI Model Used in the Platform 

This section includes a theoretical introduction and the 

results of the failure prediction model. Part A is mainly 

about the LSTM model for each feature. Part B shows the 

classification result of the SVM model. 

LSTM Model. A typical LSTM neural network with 

cell, input gate, forget gate, and output gate, as shown in 

Figure 4. Memory-cell takes input from the output of 

the LSTM neural network in the last iteration. The 

input-gate obtains a new input point from outside and 

processes newly coming data. Forget-gate decides 

when to forget the output results, which selects the 

optimal time lag for the input sequence. The output-

gate takes all the results calculated and generates output 

for the LSTM neural network cell. Compared with 

traditional RNNs, LSTM avoids the problem of 

gradient disappearance or gradient expansion while 

learning faster. We chose six features for the training 

of the LSTM model, such as laser bias current, input 

optical power, output optical power, OSNR, 

temperature in the model, and de- tection point 

temperature. We show LSTM results for the four 

features below. Other results can be seen in the paper 
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and calculate the accuracy according to (1). The calculation 

accuracy is 90.63%. When we calculate the failure accuracy 

according to (2). The calculation result is 99.38%, which 

means the AI module can predict almost all failures. 

Accuracy =
 TP + TN  

(1) 

     TN  

Failure Accuracy =
TN + 

, 2 
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FIgurE 2: Workflow of the proposed mechanism. 

 
[9]. The left image shows the loss of the LSTM model in 

training and validation, and the right image shows the 

comparison of test data and the LSTM model’s prediction 

result. 

Figure 5 shows the results of using LSTM for Laser Bias 

Current prediction. It can be seen from the results that the 

validation loss is less than 0.001, and the model has high 

accuracy in the prediction of laser bias current. 

Figure 6 shows the results of using LSTM for input 

optical power prediction. It can be seen from the results that 

the validation loss is less than 0.005 and the model has high 

accuracy in the prediction of input optical power. 

Figure 7 shows the results of using LSTM for output 

optical power prediction. It can be seen from the results that 

there are a few less accurate numbers, but overall the results 

are accurate. 

Figure 8 shows the results of using LSTM for OSNR 

prediction. According to the prediction results, the pre- 

diction results of OSNR are relatively low compared with the 

actual data, which will be optimized in the follow-up work. 

 
SVM Model. The SVM is essentially a binary classifi- 

cation algorithm that screens the support vectors from 

the training data and uses them to establish a decision 

function [10, 11]. In practical application, in the case 

of linear in- separability, the kernel function of 

SVM can realize the 

where TP represents true positive, TN represents true 

negative, FP represents false positive, and FN represents false 

negative. 

As shown in Figure 10, to facilitate the presentation of 

the results, we divided the SVM classification results into ten 

pieces and counted the accuracy, TN, FN, and corre- 

sponding true network failure numbers, respectively. By the 

way, the fluctuation between each accuracy is related to the 

result distribution. 

From Figure 10, the number of TN is very close to the 

actual number of failures, which means that the failure 

prediction accuracy is very high. Results FN show that some 

faultless links are predicted to be faulty links, and we will 

compensate for this deficiency by monitoring the optical 

power of links predicted to be faulty. 

 

4. Result Analysis 

This section will show the performance of the platform in 

practical application. 

Figure 11 shows the details of link channel 3 in normal 

condition when the optical switch array changes the link in 

turn without an AI module. “Optical power” shows the 

current power of channel 3, whose value is 7.979 dBm. 

“Distance” represents the length of the optical link. “OTDR” 

is set as “manual,” which means the parameters shown in the 

figure are the result of manually turning on the OTDR 

probe. Figure 12 shows the logs of optical switch polling. 

When the AI module predicts link failure, it will send an 

instruction to the optical switch array and record some 

prediction logs in platform. Figure 13 is the screenshot of the 

recorded prediction logs. Figure 14 shows logs that the 

optical switch array changes the link according to the AI 

prediction result. 

Figure 15 shows the monitoring results of optical power 

when the link failure predicted by AI occurs. The OTDR 

mode is set to auto, which means that when the optical 

power is abnormal, OTDR detection is automatically started. 

The optical power of link channel 3 currently detected is 

54.457 dBm. The value of “distance” is 9852.35, which 

means there is a breakpoint at 9852.35 m. The curve of the 

mapping   from   a   low-dimensional   space   to   a   high- 

dimensional space and transform the two types of points 

in the low-dimensional space into linearly separable points, 

as shown in Figure 9. 

The trained SVM model is used to classify the optical 

network status data predicted by the LSTM model and judge 

whether it belongs to the failure state. We compare the 

classification results of the SVM model with the true results 
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OTDR detection is shown in Figure 16. 

We can see from the figure above that there is a 

dramatic change in the curve near 10,000 meters, which is 

the position of the breakpoint. 

Figure 17 shows the comparison of the time con- 

sumption between the conventional polling detection 

method and the AI-based detection method when a 

random fault occurs in 1024 links. The calculation formula 

is (3). The 
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FIgurE 3: Main components of the equipment A. 

 
 

FIgurE 4: Schematic diagram of the LSTM model. 

 

introduction of an AI model increases the average failure 

detection efficiency of failure links by 98.41%. 

Efficiency = 
t1 − t2

, (3) 

where t1 represents the time consumption of discovering 

failure links without using the AI model, and t2 represents 

the time consumption of discovering failure links with the 

AI model. 
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FIgurE 5: Laser Bias Current predicted by LSTM. 
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FIgurE 7: Output optical power predicted by LSTM. 
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FIgurE 8: OSNR predicted by LSTM. 
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FIgurE 9: Schematic diagram of the SVM model. 
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FIgurE 10: The failure prediction result of the AI model. 

 
 

FIgurE 11: Monitoring diagram of link channel 3 by the platform without AI module. 
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FIgurE 12: Logs of optical switch polling. 
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FIgurE 13: Screenshot of failure prediction result logs. 

 
 

FIgurE 14: Logs of optical switch that is switched based on the predicted result. 

 
 

FIgurE 15: Link channel 3 failure monitoring diagram assisted by AI module. 
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FIgurE 16: Diagram of OTDR detection curve. 
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FIgurE 17: Comparison of time consumption with or without an AI module for detecting the fault link. 

 

From the efficiency curve, we can see that the in- 

troduction of an AI model greatly reduces the time of failure 

detection and improves the efficiency of the equipment. 
 

5. Conclusion 

In this paper, we design an AI-assisted optical link failure 

prediction and failure location platform based on AI module and 

test its performance. The optical power monitoring can com- 

pensate for the shortage of the AI model, which may predict the 

normal state as the failure state. At the same time, the in- 

troduction of an AI model increases the average failure detection 

efficiency of a failure link by 98.41%. This greatly improves the 

efficiency of failure detection and location in data centers. 
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