
.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

 UGC CARE Group-1, 315

Redundant Firewall and Router Using OpenBSD and

CARP
 Mr.Alok Kumar Pattnaik1*, Ms. Swarnakanti Samantaray2

 1* Assistant Professor Dept. Of Computer Science and Engineering, NIT , BBSR
2 Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

alokkumar@thenalanda.com* swarnakanti @thenalanda.com

Abstract— Redundancy becomes more important as reliance on computing and network systems grows. To construct redundant routers and
firewalls, use the Common Address Redundancy Protocol (CARP) protocol with OpenBSD's pfsync tool. This paper explores the performance
one can anticipate from the open source solutions and describes how CARP and pfsync collaborate to provide this redundancy. Two tests were
conducted: one demonstrating the connection between state synchronisation traffic and firewall state formation, and the other demonstrating
how TCP sessions are transparently maintained in the event of a router failure. An overview of the capabilities of OpenBSD, CARP, and pfsync
as redundant routers and firewalls for the modern Internet is provided through discussion of these simulations and background material..

I. INTRODUCTION

The growing digital economy provides a perfect example of the need for redundant systems. When the online store of a

company is not available, potential revenues are lost by the second. Quality of service applications such as streaming video are also

very unforgiving towards service interruptions. Redun- dant systems are often used to provide increased availability, preventing

such revenue loss and interruptions of service. In complex systems such as the Internet there are often many possible causes for

loss of availability. One such cause is the failure of routers. In the worst case, a failed router will cause a complete outage of

network communications if no other routes are available. In other cases, the failure may be temporary lasting only until new

routes are discovered. However, even in this second case, a router failure may introduce instabilities into the Internet affecting

both reliability and quality of service on a much larger scale [1].

The concept of redundant routing is not new. In fact, commercial solutions such as Cisco Systems’ Hot Standby Routing

Protocol (HSRP) [2], have existed for many years. An additional and very similar protocol is the Virtual Router Redundancy

Protocol (VRRP) proposed by the IETF in the late 1990’s [3]. Both of these solutions are flawed in the sense that they lack security

and neither are free of patents. Specifically, HSRP is patented by Cisco Systems, which also claims the patent rights to the IETF’s

VRRP standard due to similarities between the protocols [4].

In August 2002 the OpenBSD community realized that Cisco Systems’ claim to VRRP made it impossible to create a free

implementation of the protocol [5]. Having already created the pfsync protocol to synchronize state between multiple firewalls, and

needing a way to provide transparency of those firewalls to end hosts, the OpenBSD project [6] developed CARP. CARP, the

Common Address Redundancy Protocol, was intended to solve the same problems as HSRP and VRRP while being different

enough technically to not fall under Cisco Systems’ patents.

Combined with the project’s packet filtering (pf) system and pfsync utility, OpenBSD’s CARP protocol is well suited to

provide redundant routers and firewalls. In this paper we provide a background of previous redundant routing protocols, an

overview of router and firewall redundancy using the above mentioned OpenBSD technologies, and an analysis of state sharing

traffic and TCP session maintainability through experi- mentation. In these experiments, two physical routers are used to create a

single virtual router. This virtual router performs basic routing and stateful firewall functions between two end host computers on

separate subnets. The term router is used to refer to this router and firewall combination from here on.

The remainder of this paper is organized as follows. Section 2 presents a background on other protocols related to CARP and

mailto:alokkumar@thenalanda.com*
mailto:prasantkumar@thenalanda.com

.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

 UGC CARE Group-1, 316

Hot Standby Router Protocol (HSRP)

HSRP is designed to provide non-disruptive fail-over routing in networks which have fixed next hop routes such as Ethernet

LANs. Two or more routers are grouped together into a virtual router (also called a HSRP group or hot standby group) which

presents a single host for the next hop route. Each of these virtual routers has a single well-known MAC address and IP address

which are different from the addresses assigned to any of the real router’s physical interfaces. While each router is then capable

of receiving packets destined to the virtual router, only a single router, called the active router, actually forwards packets. The

active router and a second standby router are chosen through an election process. Once the election process is over, the active and

standby routers periodically pass a heartbeat message so that they can detect the failure of one another. If the active router fails, the

standby takes over and another standby router is elected. If the standby router fails, the active router remains active and another

standby router is elected. HSRP allows for multiple virtual routers to be created on a single LAN and for load sharing to occur

by distributing physical hosts among different virtual router groups. A physical router maintains separate state and timers for each

group it participates in. Communication between the routers of a group is optionally protected by an 8 character plain text

password.

A. Virtual Router Redundancy Protocol (VRRP)

VRRP is almost identical in functionality to Cisco Systems’ HSRP and Digital Equipment Corporation’s IP Standby Pro- tocol

(IPSTB) with only minor differences in its operation [7]. Early versions of VRRP included not only the plain text password

authentication mechanism from HSRP but also a HMAC authentication [8] scheme. However, experience showed both schemes

offered little to no additional security and have been removed in the latest version of VRRP leaving no authen- tication mechanism.

A second difference in VRRP is the use of ICMP redirects, a mechanism for routers to send routing information to end hosts,

allowing its use in non-symmetric networks. A non-symmetric network is one where packets flowing in one direction through the

router group differs from the other direction. Packets may leave a network through a router group A but return to a router group B.

It is possible for a VRRP router to act as master for a group with addresses it does not own. In this case, the router would need to

determine which group the packet was sent to when setting the redirect source address. In symmetric networks with load sharing

between routers, this ICMP redirect ability is often disabled. HSRP explicitly forbids the use of ICMP redirects to hide the primary

MAC addresses of routers in the virtual group.

VRRP also relies on an election process to determine which routers becomes master and which routers become standbys. This

differs from HSRP in that HSRP only elects a single backup router, whereas in VRRP different priorities get as- signed to all

backup routers with the router of highest priority

.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

 UGC CARE Group-1, 317

MOTIVATION

Link failures in an IP network cause surrounding routers to react by updating their routing tables to reflect the change in

topology. These changes often propagate through the Internet causing instabilities in the overall routing of data. Such in-

stabilities are referred to as route flaps and are one of many pathologies affecting both the performance and the availability

between end to end hosts [9]. It has been shown through empirical evidence that certain inter-domain routing protocols such as

BGP suffer from delayed routing convergence after failures. These delays, which can last in the timescale of minutes, may

interrupt communication between end hosts by reducing routing performance or preventing communication all together [10],

[11].

Incorporating redundancy among routers reduces the proba- bility of link failures and subsequently reduces the chance of route

flaps forming and the need for routing convergence to even occur. Removing these pathologies increases the stability and

performance of the Internet as a whole thereby benefiting providers and customers who rely on these traits for profit and quality

of service.

The earlier router redundancy protocols such as IPSTB and HSRP are both proprietary and constrained from general use by

patent law. The IETF’s development of VRRP was intended to provide an open and patent-free protocol of similar design. While

the VRRP standard has without a doubt enjoyed wide acceptance by commercial and open source vendors alike, Cisco Systems has

claimed patent rights to it preventing it from being used in true open form. As a result of this encumbrance, the OpenBSD project

designed and developed CARP to provide the functionality of the previous protocols under the original BSD license. CARP also

introduces new features, the most notable being the use of cryptography to increase security. The OpenBSD project also has two

more developments, namely the packet filter (pf) and pfsync utilities, which allow the creation of robust, free, and redundant

combined router and firewall systems. CARP, pf, and pfsync are discussed in the next section.

II. CARP

This section introduces the operation and features of CARP,

pf, and pfsync in OpenBSD.

A. CARP standalone

CARP by itself provides redundancy between systems. These systems need not be limited to routing, and can easily serve other

roles such as that of a web server. Like VRRP, CARP is a multicast protocol which groups multiple systems together into a

virtual group called a CARP group. This group presents a single shared MAC and IP address combination to the hosts of a

network. Just as in VRRP, a master is elected from the group with the remaining systems being assigned priorities indicating

which takes over when the master fails. The inclusion of a clock skew setting allows the manual assignment of priority. This can be

used to give a particular machine a greater chance of being elected master, and to cause that machine to be re-elected as

.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

 UGC CARE Group-1, 318

system to have its own MAC and IP address in addition to the

virtual addresses and also requires all IP addresses of a group be

on the same subnet. Any service running on the systems can be

configured to use the virtual addresses of a group transparently

giving the benefit of redundancy. By itself, CARP does not

provide a mechanism for replicating data among the group.

This needs to be accomplished by other tools such as rsync for

file replication or pfsync for firewall state replication.

B. CARP, pf, and pfsync

The OpenBSD project has included packet filtering software

called pf in their releases since version 3.0 which can be

used to create advanced stateful firewalls. When using CARP

in a standalone mode to provide redundant stateful firewalls

a problem arises. If the master firewall goes down, all the

state information is lost and existing stateful connections will

be unknown to the backup and therefore be blocked and

terminated. The solution to this problem is pfsync.

pfsync is the OpenBSD project’s protocol to synchronize

firewall state tables between multiple systems. From the op-

erating system viewpoint, pfsync is a pseudo-interface which

can be configured in multiple ways such as to send the state

update information over a physical interface or through a VPN

tunnel. Like CARP, pfsync is a multicast protocol allowing state

updates on the master to be sent to all backup firewalls. When

the backups receive state updates over their pfsync interfaces,

the updates are inserted into their own internal state tables

thus synchronizing the state information between all firewalls.

pf does allow a no-sync keyword to be specified on firewall

rules such that state information created from that rule is not

passed to the backup systems. pfsync also automatically tries

to combine multiple state updates into a single update and to

use compression where possible.

C. Load balancing with CARP

The increased amount of traffic flowing over today’s net-

works means an increased demand in processing power for

the gateways, routers, and firewalls that manipulate it. This is

especially true in the cases where detailed packet inspection and

modification occur such as intrusion detection systems (IDS),

network address translation (NAT), and scrubbing [12], [13]. It

is not unreasonable for a large network to contain more traffic

than can be handled by single system. Load balancing is often

used to split demand among many systems, and CARP provides

a mechanism by which to accomplish this.

Load balancing with CARP is done through ARP based

hashing only. This requires a CARP group to be setup for each

physical host with the groups sharing a common virtual IP

address but having unique virtual MAC addresses. As every

virtual interface sees the traffic on its side of the network, it is

simple to perform a hash on the source address of a connection

to determine which group (or physical machine) acts on that

connection. While primitive, this form of load balancing has

the advantage of simplicity in that multiple connections fr.

This type of load balancing with CARP need not be restricted

to firewalls and routers, and can be used equally as well for

other services such as a pool of web servers.

III. IMPLEMENTATION

To observe the usage and behavior of CARP, pf, and pfsync

in operation, a small network consisting of two routers and

two end hosts was created. This section describes the network

layout and the configuration used to achieve router redundancy.

In addition, details of the testing methods are given at the end

of this section.

A. Network Layout

The two routers acted as both a gateway and a firewall

between the two subnets, and for the remainder of this paper

the term router shall refer to this combination. The end hosts

used were standard computers running Linux with one running

the Apache web server [14] and the other making HTTP GET

requests using Siege [15]. The topology of this network is

depicted in Fig. 1.

B. Router Configuration

The two routers, labeled Router A and Router B, were

physically identical computers each with three physical

network interfaces. Using physically identical computers is

not necessary to achieve router redundancy with OpenBSD

and CARP. On both machines, OpenBSD 3.6 was installed

with all default settings except for the following change to

/etc/sysctl.conf :

net.inet.ip.forwarding = 1

This change was required to allow forwarding of packets

between the interfaces. Two of the three physical interfaces,

dc0 and dc1, were given unique addresses on the web client

subnet and the web server subnet respectively. In order for

CARP to function, each participating machine in a virtual

group needs to be able to receive and see the same network

traffic. This was accomplished by creating a new CARP

interface with a shared IP address on both routers. The two

interfaces, one for each of the two subnets, were created as

follows:

ifconfig carp0 create

ifconfig carp0 vhid 1 pass df2m1 10.1.1.1

ifconfig carp1 create

ifconfig carp1 vhid 2 pass q3c4m 10.1.2.1

This created two virtual interfaces, one with the IP ad-

dress 10.1.1.1 and the other with the IP address 10.1.2.1. As

the routers share these IP addresses, traffic sent from other

computers on the subnets gets seen by both. Refer to Fig. 1

for a complete view of the layout including the IP addresses

for each interface. Only the master of the group actually

takes action on the traffic when not using load balancing.

Note the inclusion of a simple five character password (df2m1

.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

 UGC CARE Group-1, 319

password is similar to that found in HSRP and what previously

existed in VRRP. If provided, the password is used to encrypt

all CARP communication packets between the routers with an

SHA-1 HMAC scheme [8].

In addition to the carp0 and carp1 interfaces, an interface

for pfsync to transfer state information between the routers

was created with the following:

ifconfig pfsync0 syncif dc2

This pfsync0 interface was tied to the third physical interface,

dc2, of each router. By default the state information sent over

the pfsync0 interface is multicast and encrypted. In production

environments this would most likely be a truly private and

secure network, perhaps a single crossover cable in the case

of two routers. The pfsync utility also provides a mechanism

for unicasting the state traffic which could be used with other

security mechanisms such as IPSec tunneling to share state

information between distant routers.

The following rules which prevent the blocking of CARP

and pfsync traffic were added to the pf configuration.

pass quick on { dc2 } proto pfsync

pass on { dc0 dc1 } proto carp keep state

In addition, the following rule was added to maintain the

state of standard TCP connections between the subnets. No

additional pf rules were specified.

pass on { dc0 dc1 } proto tcp keep state

C. Web server and Web client

The web server and web client computers ran Linux and

each contained one physical network interface configured

to a unique address on the subnet to which each computer

belonged. The web server software used was Apache 2.0.52

[14] and the web client software used was Siege 2.61 [15]. Siege

is a HTTP stress testing utility which was used to generate new

HTTP requests many times a second. Each new HTTP request

created two new TCP states, one for each

direction of traffic, on the master router. This was a reliable

and simple method of creating new states thereby causing

pfsync to create state traffic on the pfsync0 interface. The

only additional configurations to the web server and web

client were the manual addition of the carp0 and carp1 group

IP addresses as routes for the corresponding subnets as follows:

(on the web client) route add default gw 10.1.1.1

(on the web server) route add default gw 10.1.2.1

D. Packet Capture and State Monitoring

Both the public interfaces with the CARP protocol traffic

and the pfsync interfaces with the state update traffic were

monitored using Ethereal [16]. During the course of the exper-

iments, all traffic on these interfaces was captured and stored.

The results of this packet capturing are discussed in Section

VI.

The state tables on each router were monitored periodically

during both tests using the pfctl utility included with OpenBSD

using the following command:

pfctl -s info

This command gives, amongst other items, the current num-

ber of state table entries and the number of state table inserts,

removals, and searches.

E. Testing

Two tests were performed on this network setup. The first test

measured the amount and characteristics of the traffic generated

on the pfsync0 interfaces during a period where new states were

generated by Siege. The creation of new states, two for each

HTTP GET connection, causes the need to synchronize these

state tables between the master and backup routers. Siege was

stopped before packet capture ended as states will eventually

expire on the master, again requiring pfsync updates to be sent

to the backup.

The second test was to show that stateful connections such

as SSH will be maintained even upon the failure of the

master router providing transparent fail-over from the end user’s

TABLE I

pfsync0 TRAFFIC STATISTICS

d

c0

10

.1.

1.

2

Ro
ute
r A

d

c1

10

.1.

2.

2

dc

2

10

.1.

3.

1

1
0
.
1
.
1
.
4

Siege

HTTP

Utility

10.1
.1.1

Web

Client

Subne

t

dc

2

10

.1.

3.

2

10
.1.
2.
1

Web

Server

Subnet

10.1.2
.4

Apach

e

HTTP

Server

10
.1.
1.
3

d

c

0

Ro
ute
r B

10
.1.
2.
3

d

c

1

.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

 UGC CARE Group-1, 320

Parameter Value

Total number of packets 3827

Average packets per second 81.75

Average packet size in bytes 465.68

Total bytes transfered 1782170

Average bytes per second 38067.81

Average Mbits per second 0.31

perspective. This test consisted of starting various SSH sessions

between the web client and web server machines and literally

“pulling the plug” on the master router causing the backup to

take over while maintaining the active SSH sessions.

IV. DISCUSSION

A. pfsync0 Traffic Analysis

The packets captured over the pfsync0 interfaces of the two

routers can be categorized into two types. The first is the state

table update information generated by pfsync when a new state

is created on the master router. These updates are sent over the

pfsync0 interface almost immediately to keep a high level of

synchronization between the routers. The second of these types

is the revocation updates which remove expired states from the

backup routers. These updates are grouped together in batches

so as to minimize the amount of traffic on the pfsync0 interface.

During the Siege/Apache test, a total of 1269 unique HTTP

transactions (HTTP GETs) were created over a period of 46

seconds, an average of 27.53 transactions per second. Each

HTTP transaction created two states in the pf state table

meaning 2538 states were generated at an average rate of 55.2

states per second. In addition to the packets required to update

the state tables, pfsync generates periodic packets on the pfsync0

interface which are 180 bytes in size. In the 46 second test

period, 92 of these packets were sent totaling approximately

16 kilobytes of data. Fig. 2 shows a plot of the packets per

second transmitted over the pfsync0 interface during the test

period. Important periods include 14-60 seconds which is when

Siege was generating HTTP GET requests, 60-108 seconds

when no state updates occurred, and 108-152 seconds when

the batch state revocation updates occurred. The period of 0-

14 seconds is where packet capture had begun but the Siege

request generation had not. Table 1 displays the traffic statistics

for the period of state creation only, that is during time of 14-60

seconds.

Traffic statistics show that during the creation of new states,

which occurred at the rate of 55.2 states/sec, the average amount

of pfsync traffic generated was only 0.31 Mbits/sec. As the size

of the packets containing state change information does not

vary greatly, it can be said that the amount of traffic generated

on the pfsync0 interface of the master router scales linearly

with the amount of state changes occurring. Scaling up the

0.31 Mbits/sec to a full 100 Mbits/sec gives a rough value of

over 17,000 states needing to be created per second to saturate

such a link. While a 100 Mbits/sec link would be common

for installations where the physical routers are located near

one another, other cases exist where the pfsync link capacity

may become an issue. Take for example the case of a large

campus where border routers may be located miles apart. A

1.5 Mbits/sec T1 link may be used to share state information

reducing the above number to around 250 new states/sec. Add

the fact that the pfsync link can be easily tunneled with IPSec

over the Internet and that using unicast instead of multicast

scales the amount of traffic by a factor of n where n is the

number of routers, it is clear that cases exist where the pfsync

link capacity affect the synchronization of state tables among

the routers.

B. SSH Sessions Maintained

The purpose of synchronizing firewall state information

between the routers is to ensure no existing connections get

broken when a failure occurs. Starting SSH sessions between

the web client and web server computers created multiple

persistent TCP sessions through the routers. Each SSH session

created two state entries in the master which were replicated

on the backup as expected. Failing the master and letting the

backup take over did not interrupt the SSH sessions as the

TCP sessions already existed on the backup router letting the

traffic associated with the sessions flow freely. However, the

solution is not flawless. By default the time period between

advertisements of the master’s operation is three seconds.

During this period no packets are being routed because while

the master has failed, the backup(s) have not yet realize it.

Configuring the period between advertisements to a lower value

will decrease this period allowing much quicker response. As

TCP is a reliable transport protocol, this delay will generally

not cause termination of the connection or loss of data. UDP

traffic, however, may be lost during this delay period as it is

an unreliable datagram protocol.

V. FUTURE WORK

The scope of this paper is limited to OpenBSD’s CARP and

pfsync protocols with a focus on their performance in a simple

two host network. More network intensive tests could be done,

such as generating multiple types of traffic (multicast, video

streams, etc.) which would be more indicative of real world

data. Also, future tests could include other pf features such as

queueing priorities and focus not only on data passed over the

pfsync0 interface but also network processing time. Even more

complex cases remain to be explored, such as the use of load

.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

 UGC CARE Group-1, 321

balancing among routers.

In a load balancing scenario, all routers would need to share

their states while different routers operate on different subsets

of connections. This technique would distribute the processing

of traffic among all the routers in a virtual group, the obvious

benefit being that increased demands from more traffic could

be met with the addition of more routers. This would be

especially true in cases where the routers are doing complex

tasks such as intrusion detection or the processing of large

firewall rule sets. While CARP on OpenBSD includes an ARP

balancing

is accomplished through a simple hash of IP addresses, which in

practice will not give 50/50 load splits. Second, the ARP

balancing feature is intended to pass traffic along to a secondary

set of servers on an inside subnet protected by the routers. It is

not readily apparent that load balancing among the pf and pfsync

systems on the routers themselves is possible with the current

implementations.

Finally, a comparison between Cisco Systems’ proprietary

HSRP and the IETF’s VRRP standard to CARP and pfsync is

needed to see which of the three options is best for a given

application. Measuring HSRP would best be done on Cisco

hardware itself. VRRP implementations are however available

in both hardware and software implementations, the latter of

which is free to acquire but still restricted by patents.

VI. CONCLUSION

The goal of this work was to provide an overview into

how the OpenBSD Project’s CARP protocol can be used in

conjunction with the pf and pfsync firewall utilities to create

redundant stateful firewalls. Also touched on were the possi-

bilities of using CARP by itself to provide redundant routers

without firewalls, to provide load balancing, and to provide

redundancy in general purpose server scenarios. Experiments

were conducted and results were provided quantifying how

traffic on the pfsync interface may limit the number of new

firewall state creations per second and how reliable traffic

flows such as TCP remain uninterrupted during a fail-over.

Also discussed was the flexibility provided by CARP and

pfsync such as the case where routers at distant locations can

securely share firewall state information to provide transparent

redundancy. The need for such redundancy has become more

apparent in recent years as heavy reliance is put on the Internet

to support applications demanding both quality of service and

high availability. As OpenBSD and the tools discussed here are

available freely under the BSD licence they provide a robust

and accessible solution for router and firewall redundancy.

ACKNOWLEDGEMENTS

This work is partially supported by NSF Grant No. CCR-

0311577.

REFERENCES

[1] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of link failures in an ip backbone,” Internet Measurement
Workshop, 2002.

[2] T. Li, B. Cole, P. Morton, and D. Li, “Cisco Hot Standby Router
Protocol (HSRP),” RFC 2281 (Informational), Mar. 1998. [Online].
Available: http://www.ietf.org/rfc/rfc2281.txt

[3] R. Hinden, “Virtual Router Redundancy Protocol (VRRP),”
RFC 3768 (Draft Standard), Apr. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3768.txt

[4] “http://www.ietf.org/ietf/ipr/vrrp-cisco.” [Online]. Available:
http://www.ietf.org/ietf/IPR/VRRP-CISCO

[5] OpenBSD release song lyrics. [Online]. Available:
http://openbsd.org/lyrics.html#35

[6] The OpenBSD Project. [Online]. Available: http://openbsd.org/
[7] A. Srikanth and A. A. Onart, VRRP: Increasing Reliability and Failover

with the Virtual Router Redundancy Protocol. Pearson Education,
September 2002.

[8] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication,” RFC 2104 (Informational), Feb. 1997.
[Online]. Available: http://www.ietf.org/rfc/rfc2104.txt

[9] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”
in SIGCOMM ’97: Proceedings of the ACM SIGCOMM ’97 conference
on Applications, technologies, architectures, and protocols for computer
communication. New York, NY, USA: ACM Press, 1997, pp. 115–126.

[10] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet
routing convergence,” IEEE/ACM Trans. Netw., vol. 9, no. 3, pp. 293–306,
2001.

[11] X. Zhao, D. Massey, D. Pei, and L. Zhang, “A study on the routing
convergence of latin american networks,” in LANC ’03: Proceedings
of the 2003 IFIP/ACM Latin America conference on Towards a Latin
American agenda for network research. New York, NY, USA: ACM
Press, 2003, pp. 35–43.

[12] T. Verdickt, W. V. de Meerssche, and K. Vlaeminck, “Modeling the
performance of a nat/firewall network service for the ixp2400,” in WOSP
’05: Proceedings of the 5th international workshop on Software and
performance. New York, NY, USA: ACM Press, 2005, pp. 137–144.

[13] D. Watson, M. Smart, G. R. Malan, and F. Jahanian, “Protocol scrubbing:
network security through transparent flow modification,” IEEE/ACM
Trans. Netw., vol. 12, no. 2, pp. 261–273, 2004.

[14] Apache HTTP Server Project. [Online]. Available: http://httpd.apache.org/
[15] J. Fulmer. Siege HTTP Utility. [Online]. Available:

http://www.joedog.org/siege/
[16] Ethereal. [Online]. Available: http://ethereal.com/

http://www.ietf.org/rfc/rfc2281.txt
http://www.ietf.org/rfc/rfc3768.txt
http://www.ietf.org/ietf/ipr/vrrp-cisco
http://www.ietf.org/ietf/IPR/VRRP-CISCO
http://openbsd.org/lyrics.html#35
http://openbsd.org/
http://www.ietf.org/rfc/rfc2104.txt
http://httpd.apache.org/
http://www.joedog.org/siege/
http://ethereal.com/

.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

 UGC CARE Group-1, 322

.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

 UGC CARE Group-1, 323

.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 51, Issue 04, April : 2022

 UGC CARE Group-1, 324

