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Abstract - This paper presents a new optimization algorithm, called B
a modified teaching-learning algorithm, which solves a more practical . .
design of a reserve-limited dynamic economic allocation of heat units and attime (MW ).
devices, taking into account network losses and operational limits ) . : :
of generator units (i.e. valves). ). load effect and creep limitations). Bo.i.c Loss co_eff|C|ent ?SSOCI_atEd with the
Unlike previous approaches, the rotary reserve requirements of production of unit at time .
the three types of systems are directly modeled into the problem,
and a new constraint approach is proposed to satisfy them. The
proposed teaching-learning optimization algorithm is a new Manuscript received September 27, 2011; revised February 12, 2012 and
popu|ation_based optimization method features between the Apl’ll 28, 2012; accepted June 22, 2012. Date of publication AUgUSt 28, 2012;
teacher and learners (students). Therefore, this algorithm date of current version April 18, 2013. Paper no. TPWRS-00915-2011. )
searches for the global optimal solutionthrough two main phases: The authors are with the Department of Electronics and Electrical Engi-
1) the “teacher phase” and 2) the“learner phase”. Nevertheless neering, Shiraz University of Technology (SUTech), Shiraz, Iran (e-mail:
ih t h p ¢ ad te f pl I " i > r.azizipanah@sutech.ac.ir; niknam@sutech.ac.ir; aghaei@sutech.ac.ir).

ese WO phases are not adequate tor learnming Inteéraction Color versions of one or more of the figures in this paper are available onlineat
betwee_n thg teacher and the learners in the entire search space. nitp:/jiecexplore.ieee.org.
Thus, in this paper a new phase named “modified phase” based  pigital Object Identifier 10.1109/TPWRS.2012.2208273
on a self-adaptive learning mechanismis added to the algorithm
to improve the process of knowledge learning among the learners
and accordingly generate promising candidate solutions. The
proposed framework is applied to 5-, 10-,30-, 40-, and 140-unit test
systems in order to evaluate its efficiencyand feasibility.

i Loss coefficient relating the productionsof

Index Terms—Dynamic economic dispatch, modified teaching-
learning algorithm, ramp rate, reserve constraint, valve-point
effects.

NOMENCLATURE
Indices

m Learner index.
i Unit index.
k Iteration index.

t Time interval index.

Constants

a;.biocioen i Cost coefficients of unit i.

UGC CARE Group-1 224


mailto:1*samapikamohanty@thenalanda.com
mailto:1*samapikamohanty@thenalanda.com
mailto:shyamalendukhuntia@thenalanda.com
http://ieeexplore.ieee.org/

Industrial Engineering Journal
ISSN: 0970-2555
Volume : 51, Issue 04, April : 2022

B Loss coefficient parameter at Variables t
time(MW). Delta,  Power mismatch at time {MW).

DR, Ramp-down rate of unit F(Pg) Total fuel cost at time span NT ($).

(MW/h). fyiax Maximum iteration. G(P;)  Total fuel cost at time ($).

Nicarner Number of learners. ME*  Mean matrix in iteration k

NT Number of time intervals. P, Unit production matrix.

NU Number of units. Pr.oss+  Total real power losses at time ¢ (MW).

Pp. Load demand at time (MW). Py Generation output of unit i at tifne £ (MW).

L Capacity of unit (MW). iy Lower limit of the th unit dutput power at time

pin Minimum power output of unit  (MW). t (MW). i

randl,...,10(-) Random function generator in the P, Upper limit of the th unit output power at time
range[0, 1]. t (MW).

SRy 60-min spinning reserve TR" Teacher matrix in iteration %.
requirementsat time (MW). t

SR} 10-min spinning reserve I. INTRODUCTION

requirementsat time (MW). YNAMIC economic Jispatch (DED) in power systems

TE* Teaching factor in iteration . deals with determining the optimal produétion levels of
. the scheduled units over a short-term horizon to meet load de-

UR, - . . Y .
Ramp-up rate of unit (MW/h) mands. It is necessary to note that DED is‘the extension of the

UGC CARE Group-1 225



Industrial Engineering Journal
ISSN: 0970-2555
Volume : 51, Issue 04, April : 2022

conventional economic dispatch (ED). In DED, it is desirable
to minimize the total fuel cost. In practical situations, the model
of DED problem may need to consider the spinning reserve re-
quirements (SRRs) in order to incorporate the unit coupling of
ramp rates at the system level via unit reserve on the top of
the time coupling of ramp rates at the unit level. Traditionally,
the valve-point loading effects of the large steam turbines were
ignored and a convex quadratic fuel cost function was consid-
ered for the thermal units. This leads to a mathematically simple
formulation of the problem. However, a more realistic model
must take into account the valve-point effects. This makes the
fuel cost function non-convex and non-smooth. Moreover, the
search space of the DED problem is irregular due to the ramp
rate limits and SRRs constraint. Therefore, the DED problem is
a complicated optimization problem for which finding the op-
timal solution is a difficult task.

Currently, the available methods and algorithms for solving
DED problem are classified into two categories of classical opti-
mization-based and meta-heuristic methods. The optimization-
based methods consist of linear programming (LP) [1], non-
linear programming (NLP) [2], quadratic programming (QP)
[3], Lagrangian relaxation (LR) [4], and dynamic programming
(DP) [5], which impose no restriction on the non-smooth and
non-convex characteristics of the valve-point effects. Neverthe-
less, these methods suffer from the “curse of the dimensionality”
in the case of large-scale power systems. Consequently, these
methods cannot guarantee to find the global optimum as well as
to manage computational time when the nonlinearity and dis-
continuous characteristics are considered in the evaluations.

As a result, recently many modern meta-heuristic optimiza-
tion algorithms have been developed and utilized successfully to
solve the DED problem. Some of the most well-known methods
are: simulated annealing (SA) [6], differential evolution (DE)
[7]-[10], particle swarm optimization (PSO) [11]-[14], artificial
immune system (AIS) [15], and improved pattern search based
algorithm (PS) [16]. However, similar to the other methods
mentioned before, these methods do not guarantee to find the
global solution. Correspondingly, hybrid methods based on
combined heuristic methods such as hybrid evolutionary pro-
gramming and sequential quadratic programming (EP-SQP)
[17], PSO-SQP [18], modified hybrid EP-SQP (MHEP-SQP)
[19], hybrid quantum inspired PSO (HQPSO) [20], etc. were
proposed to solve the DED problem by improving the ability of
searching the entire search space while using fast computational
analysis. Previously available approaches, e.g., [18], solved
RCDED that the associated cost of SRRs and other constraints
are added as penalty terms to the fuel cost function. However,
no DED approach with simultaneous constraints-handling is
currently available in the literatures without enforcing any
restrictions on the objective function.

The original Teaching-Learning Algorithm (TLA) was firstly
proposed by Rao et al. to solve a mechanical design optimiza-
tion problem [21]. In their work, TLA was successfully applied
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to the test system and it was shown that the performance of TLA
was more satisfactory than the other well-known algorithms in
the area. In fact, TLA is a new population-based heuristic search
algorithm, which considers the teacher role and the learners’ in-
teraction for solving optimization problems. Hence, TLA per-
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formance has two phases: 1) teacher phase; and 2) learner
phase. In the teacher phase, the teacher improves the
knowledge of the learners up to the level of his/her own
knowledge level. In fact, in this phase, the quality of the
learners is affected by the good quality of the teacher as the
best individual. In the learner phase, similarly to the other
meta-heuristic algorithms, the in- formation is shared between
the learners so that the level of their knowledge would be
improved. The superiority of TLA in com- parison to the
other heuristic methods has been illustrated in

[21] on a benchmark function. Unlike similar optimization algo-
rithms, performance of TLA is independent of the initial
valuesof parameters.

In this paper, a new modification phase is proposed and
added to the original TLA to improve its performance. In the
new mod- ification phase, a self-adaptive learning framework
is adopted to probabilistically implement four mutation
strategies with dif- ferent features in parallel. Indeed, the
augmented phase can im-prove the convergence property and
enhance the quality of the solution. The new modified TLA
(MTLA) is implemented to solve the non-convex and non-
smooth complex reserve con- strained dynamic economic
dispatch (RCDED) problem using four test cases with five
units, ten units, thirty units and one hun- dred units. Simulation
results show that the new modified algo-rithm achieves better
solutions and improves the convergence rate compared to
other methods.

The main contributions of this paper can be summarized
as follows: 1) the RCDED problem including ramp rate
limits, valve-point effect and three types of the SRRs is
formulated. Moreover, an enhanced simultaneous
constraints-handling scheme is proposed to bias the
optimization toward the feasibleregion without enforcing any
restrictions on the objective function; 2) a new modified
algorithm is proposed to solvethe RCDED problem; and 3)
the performance of the proposed approach is successfully
evaluated by numerical simulations.

The remainder of this paper is organized as follows: In
Section Il, a brief mathematical formulation of the
RCDED is provided. In Section Ill, the new modified
algorithm isdescribed. The proposed solution methodology
is presentedin Section IV. In Section V, the feasibility and
efficiency ofthe proposed method are investigated using four
test systems. Finally, the paper concludes in Section V1.

Il. PROBLEM FORMULATION

The objective function and constraints of RCDED are de-
scribed as follows:

A. Objective Function
UGC CARE Group-1

The fuel cost of each thermal unit is characterized in the
form of a quadratic function plus the absolute value of a sinu-
soidal term corresponding to the valve point effects [22]. Con-
sequently, the RCDED problem can be formulated as follows:

NT
Wi [(Pg;) = Z G(P,)
f\'l} NU
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B. Constraints

Limits associated with RCDED are as follows:
a) Power balance
NU
> Pii=Pps+Prows t=1.....NT ()
i=1
where the power losses is in the following form [23]:

NU NU

Plus\rfZZPMB”fP,r‘FZBJum‘FB[mr

i=1 j=1
t=1.....NT. (3)
b) Up/down ramp rate limits

The power generated at the output of theith thermal unit
at time imay affect its output power in the next time step.
This limitation can be expressed as follows:

P{.l - F}[.Jf] S -[TRt

i=1....,NU t=1,..., NT 4)
Fiv—1 — Fiy < DR,
i=1,....0 NU; t=1....,NT. (5

c) Generation limits
According to the ramp rate, the generation limits will be

B,‘_[ g Pﬁ.f S ﬁi.i
i=1....NU;t=1...., NT (6)

P, = min (P Py, + UR;)
i=1..... NU: t=1..... NT (7)

I, = max (I’f”i“. P;i—1 — DRy)
i=1.....NU.{=1.....NT. (8)

d) Spinning reserve requirements
The SRRs should be considered as an additional con-
straint to avoid an unexpected large load to the system or a
failure in a certain large unit. Here, SRRs for the RCDED
problem are formulated in three different ways:

‘ NU
(Ail" =3
i=1

(Ppt+ Ploss.i + SR,)) 20

{=1,....NT (9

NI
(AEJ = Z (min (P/""* —

i=1

P, . UR,)) - sn,) >0

N UG CARE Gr¢qp~)l %R’) -

(3)
(Ar' b = E min | P/ — P "
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Constraints (9) and (10) are generally applied in the unit
commitment and DED problems within 60 min of being
required [18], [24]. Using (11) will exactly satisfy the
SRRs from the spinning generators in each time within
10 min of being required and its amount is related to the
ramp up rate constraint of generating unit. For time in-
terval ¢ to ¢ 4 1 the ramp up rate of unit ; js U, (MW/h),
the corresponding amount for 10 min is ULX; /G [25].

I1l. MODIFIED TEACHING-LEARNING ALGORITHM

As mentioned before, TLA as a novel optimization algorithm
does not need to adjust its controlling parameters to reach the
optimum solution. The performance of the original TLA de-
pends on two main parts: 1) “teacher phase” or learning from
teacher, and 2) “learner phase” or exchange of information be-
tween learners.

A. Teacher Phase

In TLA [21], each class consists of a number of learners
(Pg..,,) with different grades. Similar to what happens in re-
ality, the learner with the best grade is selected as the teacher.
In TLA, the teacher’s task is to improve the mean of the class
to a value close to his or her mean value depending on the ca-
pabilities of the learners. In fact, a good teacher among his staff
is one who brings his/her learners up to his/her level in terms
of knowledge. Hence, the mean mark of his/her class, named
“MEM, is improved sufficiently. In each iteration, the learner
with the best fitness value among all learners |s selected asa new
teacher, which can be shown asTR* = [tr}. tr5. ... tr{ ],
The structure of each learner and the mean value of the class
are defined as

& k
I:P'” 1: P,” 2 "Pm.\T}
m=1..... Nuuner

mef{—T} .

Pé; m
(12)
ME" = (13)

[me;{'. meh. ...

In this study, each learner (P¢; ,,,) is indicative of the solution
which refers to the generation pattern of the generating units (as
shown in (12)). The mean value of the class can be calculated as
+Ph )
t=1,..., NT.

me; = (Pi‘.f + P4+

(14)

N learner

Now, for each learner, a new vector can be defined as follows:

k & 3
P newt = [Ph w1 Pro et Po vt )
mo=1,.... Neaner  (15)
k i e . AT
Pénew: =P, +DMY m=1..... Njeayner  (16)

where DM?* as the difference value is defined as

(10)
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(1) DM" = |dm!.dm}. ..., dmiT} an
DM* = rand1(. )(TR" — TI*ME") (18)
TTF" = round(1 + rand2( ). (19)

In order to calculate each element (P% , . ) of the mth
learner (PF. . ...}, the fitness function G(Pk

b onewl )
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is compared with the fitness function of the target vector

» ke .
((T(Pm.ﬁ.]v;n'm-[ ))
A‘
Pm.;‘,lv.n ner
ke S I ¥ I
{Pm,l,us‘\\'l i G [Pm.ﬁ.nm\ I) S G (P,,,‘jrh\;,,.m\,.) (20)
ke WL
Pm..’.](vl]u(‘l' Uth( Iwise.

B. Learner Phase

In this part, the learners try to increase their knowledge by
helping each other. Each learner interacts with other learners
randomly via group discussions, presentations, formal commu-
nications, etc. [21]. Thus, each learner can gain knowledge if

Accordingly, during the evolution process, with respect to
each target solution in the current population which is extracted
from the second phase (learner phase), one method will be se-
lected from the strategy pool based on its probability. The more
successfully one mutation method behaved in previous itera-
tions to generate promising solutions, the more probably it will
be chosen in the current iteration to produce solutions. In this
paper, four mutation strategies are implemented in MTLA to
optimize the complex non-linear, non-smooth and non-convex
RCDED problem. These mutation operators can be described as
follows:

Method1 :Pf,

maod 1

the other ones know more than him or her. This process is sim- = TR" + randd(-) (P, — PL..)
ulated as described in the following. o= 1. ] NE o (24)
For the sth learner in the class, two of the best individuals Method?2 -P*
(n1,n2) are selected in the way that 7, # n» # m. Now the - o (’-”"”i“'“ . .
new individual (P ,, ....) is defined as shown in (21) and =P, +randa(-) (P, — P )
(22). at.the bottom of the page. +rand6( ) (TR" Pk )
Similar to the teacher phase, the replacement procedure can ’ i )
be implemented as m=1.....Ny (25)
PA‘ Method3 :P?-'.m‘m“d\‘%
mf,lv:l ner A '{ — P;i.-;A‘“ + ['E'lll(l?( . ) (P(j“;rq_‘ _ P:‘.;V,I_,}
' . il G (P ,) < G(P? ) o
— { P;ji.?.lls'“'! if ¢ [I‘ -m.ﬁ.uo\\_) = C (Pm.r.hnulu*l) (23) mo=1.... .. \f; (26)
Pm,i,l(-;n'm'l' (,)th(‘l'“"lﬁ(f. h’lefhod4 :P?-a'.m‘lund4
» =Pl g T rands(- J(TRF — WR")
C. Modified Phase o i,
m=1.,....N (27)

Compared to the other evolutionary algorithms, TLA has
major advantages that can be used in solving complex nonlinear
optimization problems such as the RCDED problem. Some of
these advantages are simple concept, lower computational com-
plexity, easy implementation, higher consistency mechanism,
minimal storage requirement and no need to tune algorithm
parameters. Despite these characteristics, the interactions in the
second phase (learner phase) may lead to inappropriate knowl-
edge exchange between learners in the way that the algorithm
may be trapped in local optima. Therefore, a novel self-adaptive
learning modification approach is proposed to overcome this
deficiency. It is necessary to note that the basic idea behind
this approach is to simultaneously select adaptively multiple
effective strategies from the candidate strategy pool on the
basis of their previous experiences in the generated promising
solutions and applied to perform the mutation operation. It
means that at different steps of the optimization procedure,
multiple strategies may be assigned a different probability
based on their capability in generating improved solutions.

where NF.N¥. N¥ and NF are the respective number of
learners which choose the mutation method 1, 2, 3, and 4
in iteration &. In this regard, four learners (1. 2. q3.q4) are
randomly selected from the existing population in such a way
that 1 # 42 # 3 # g1 7 m inorder to uniformly cover
the algorithm search domain. Also, WR" is the worst vector
among population in iteration k In order to improve the solu-
tions of the proposed large-scale problem and further increase
the population diversity and enhance the globally search ca-
pabilities, the mutation method1 and 2 can be used. The TR"
is used as an attractor to guide the information exchanging
between the learners with a better manner. However, the pre-
mature convergence may be occurred in solving the problems
with enormous local optima. The mutation method3 is able
to achieve lower convergence speed but avoids quickly being
trapped by local optima on the complex problems and taken
from [26]. It is observed that this mutation only relies on the
difference of learner information. The mutation strategy4 has

| ol

m.2.new2:

Pk

Gomnew?2

=
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m=1....,! N rlr;un('l' (21)
P"' - P?l;_m + "il]l(]:j( ’ ) (pé:;.nl - P?:F.n.;) i F (P?'”) < I (P?"h)
Gomnew2 = pl 4 rand3(-) (PE .~ PE ) otherwise
o= 1.....1 Niearner  (22)
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a powerful local search capability and fast convergence speed.
This mutation is motivated from nature and human actions.
In other words, although all learners in a class are different
in many ways but all of them tend to enhance themselves by
following the same direction of the elite learner and similarly
they try to avoid the direction of the lazy one in competition
with others.

Generally speaking, the criteria of selecting these four
strategies are that they have different characteristics that cover
diverse conditions. The occurrence of mutation is followed
from the requirements of the TLA search process. All the
learners in the population will have a chance to be mutated
based on the probability of their methods of mutating. In this
approach, instead of using relatively fixed execution proba-
bilities during the whole optimization procedure, MTLA uses
a probabilistic updating mechanism which is described in the
following manner. In the probability model, each learner selects
one of these four methods. Denote Prob! = 0.25.a = 1.2.3.4
as the initial probability of implementingath mutation strategy.
Also, a parameter called accumulator is assigned to each of
mutation strategies denoted by ;\('nmfl', (o = 1.2.3,4) which
have the initial value of zero. In each iteration, a weight factor is
assigned to each learner after sorting the population according
to (28). It is clear that the best learner gets the larger weight
factor. After that the related accumulator of each strategy will
be updated based on (29) [27]:

N h’s'-'.(i'\"lt'urmq- —m —+ l)
" Jog(1) + - - 4+ 108( Niernear )

"

(28)

‘ i 1
Acum® T = Acum? +
m=1....,1] NF a=1.2.3,4 (29)

where w® (m = 1.....NF) are the weight factors corre-
sponding to each strategy in iteration k. After the fixed number
of generations LP, the excitation probability is calculated as
[27]

A.
Acum!

Probi ™ = (1 — a)Prob) + o
rob;, ( «)Prob, + « p

a=1,2.3.1: LP =10 (30)
where ds the learning rate to control the learning speed in the
MTLA algorithm and it is considered to be equal to o = 1/6
in this paper [27]. Finally, the Roulette Wheel Mechanism
(RWM) is applied to choose thedth modification method for
each learner based on the normalized probability values as
follows:

‘ Prol k41
Probhtt = a=1.2.3.1. (31)
Z ProbF+?
a=1

It can be expected that the mutation methods which have gener-
ated higher-quality individuals tend to increase their probabili-
ties iteration by iteration. In the MTLA solution technique, with
respect to each target solution in the current population which
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is extracted from the second phase, i.e., learner phase, one trial
solution generation method is selected from the strategy pool
according to its probability on the basis of (31). The selected
method is subsequently applied to the corresponding target so-
lution to generate a trial solution. The details of this procedure
are as follows:

Form =1to i\‘rlw;u'nvr

Select the th mutation strategy by RWM selection based
on (31) for the mth learner as follows:

If rand,, () < l‘ml)i+l
Select mutation method1 for target solution .
Elseif rand,, () < Prob?*! 4+ Probs ™!

Select mutation method?2 for target solution .
Elseif rand,, (-) < l’mh'f+l + th-j-_}"H + l’l'U“;ﬁl‘l
Select mutation method3 for target solution .

Else
Select mutation method4 for target solution .
Endif

Endfor (refers to index )

After the above process, the new solution is generated for
each learner ;i as P, .3 Then modified individual is
mixed with P% | which generates P(. , | .., as

Gom?

P o

= [P Loda Poomodus - - Pl Ntomods) (32
P?;.m.nm\'fi

= [Pfﬂ,1,w.o.\-;ﬁ- Pfﬂ‘ﬁ,].m\-:y s 'Pf},,\T,m-.\ :_;: . (33)

Each element of P. |, ..5, denoted by P% , .. ., is calcu-
lated as

'L.
Pm,a‘,uv\\'.‘}
. . ke T
= [Pig;f.f‘l.ll(“\':‘i lei‘a,f,? new3 j’m.,h,\l’.m*\\'.’ﬂ] (34)
,‘.
Pf.vz.f.ﬁ‘ur‘\\'-‘.ﬁ
_ P{g_tu“m]u il (1(-1‘11<.l!)( =) < rand10(-)) (35)
f)fﬂ,i',!,li‘ill ner ("th('\].“:lsi"
where ’F .. .. is the power generated at the output of theith

unit in the/th time interval for thesth learner of the kth iter-
ation. For the replacement operation, the fitness function of the
mixed vector ;(P* , .} should be compared with the fitness

function of the existing vector, G(P* , . as follows:

P

et learner

— {Pf;f.f.11r\\\fj
Pi‘;!,i‘,"(‘;ll'[l(‘t'
The final results are the MTLA output of thekth iteration and

the input population for the next iteration.
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It should be noted that similar to other evolutionary algo-
rithms such as GA [22] and PSO [11], the TLA and MTLA
try to find the optimal solution through populations that are
randomly generated. Although effectiveness of the algorithm
changes with its parameter values, unlike other optimization
techniques, TLA do not require any parameter tuning process
[21]. This is the attractive aspect of the proposed approach. In
original TLA, solutions are more likely to cluster together in
similar groups, while in MTLA, solutions do not have propen-
sity to clump due to the added modified phase. This is the ad-
vantage of MTLA in comparison to TLA. As in PSO [11], TLA
uses the teacher of the iteration to improve the existing solu-
tion so as to increase the convergence rate. GA [22] uses se-
lection, crossover and mutation processes to develop itself, but
TLA implement the mean value of the class to improve itself.
However, Elitism operation improves the algorithm’s efficiency
in this respect.

IVV. SOLUTION METHODOLOGY

In this section, MTLA is applied to the RCDED problem, the
pseudo-code of the proposed approach is presented, and some
relevant tools are discussed. The flowchart of the whole process
of the MTLA technique is given in Fig. 1 in order to depict the
order of the proposed algorithm. It is clear that the first phase
(teacher phase), the second phase (learner phase) and the third
phase (modified phase) are applied on the population, consec-
utively. The output solutions of the modified phase are as the
input population for the next iteration.

A. Application of MTLA to the RCDED Problem

The decision variables of the RCDED problem are the gener-
ation pattern of the NG thermal units through the NT time inter-
vals. Therefore, each learner is associated with NTU x NT vari-
ables. The process of the MTLA can be summarized as follows:

Step 1: Input the required information of the RCDED
problem.

Step 2: Representation of the learner; each learner indicates
a solution for the power generation of the units for the NT
time intervals as in (12).

Step 3: Generation of the initial population with
constraint-handling; the candidate solution of each
individual (generating units’ output) is randomly initialized
in the feasible range, which would satisfy the constraints
given by (2)—(11) as follows:

Step 3.1: Simultaneous handling of the SRRs and ramp
rate constraints: for each hour, the feasibility of constraints
(6)—(11) is checked. If these constraints are violated, the
algorithm returns to previous hours and modifies them in
the way that it can reach the desired solution according to
the following backward and forward procedure:

For m = 1 t0 Niearner
Fort = 11to NT
=1t
UGC CARE Group-1

Generate P, ; randomly subject to constraint (6). To
satisfy power balance, go to the step 3.2 and return. Then,
calculate the value of violation to the SRRs constraints as

‘ o (1) (2) A3
A!H.H = min (Am.”' Am..n' Am ”) (37)

If AJ:H.N < 0.

Backward procedure: go to the previous time and subtract
A? 4, fromeach P, ,, ; which are fixed to their
maximum values. Generate P,,, ;r ; randomly subject to
constraints (6), (7), and (8) then, compute A’ ,; . This
procedure continues until the time reached in which the
violation is greater than or equal to zero. Save this time in },

Forward procedure: Generate P,, ;. t = h+ 1 to

I randomly subject to constraint (6). Check the power
balance according to step 3.2 and calculate the total fuel
cost G(P,,. ;) using (1). Then the value of violation A/,
is calculated again based on the power output of the
P.. 5. The backward and forward procedures continue
untilA’ .. = 0.

Else
Calculate the total fuel cost &G(P,,, ;) using (1).
Endfor (refers to index }
Calculate '(P¢; ., ) from (1).
Endfor (refers to index m:)

Step 3.2: Power balance handling: for satisfying the
constraint (2) the value of power mismatch is calculated for
each P, , of matrix P; ,,, as follows:

Nt
N — 2 _ > I
D{'“‘i'm.?‘ — § ]Ii?.f:ﬁ i Dt 1 e, Loss. ¢
i—1

If Delta,, , = 0, return.

If Delta,,  # 0, select one unit P,,, ;; of P,,, ; randomly
and subtract Delta,,, ; from it, subject to (6). This procedure
continues to reach the zero value of Dclta,,, ; by selecting
different units to repair power mismatch [12]. The flowchart
for the proposed constraints handling is shown in Fig. 1.

Step 4: Teacher phase; in the current iteration (%), the best
solution is selected for the teacher (TR") and the mean
value of the class (ME") is calculated using (13) and (14).
This step is implemented as described in Section I11-A.

Step 5: Learner phase; learners try to improve themselves
via the interaction process described in Section I11-B.

Step 6: Modified phase; this step is implemented as
described in Section 111-C. The modification process can be
expressed as shown in the next subsection.

Step 7: Update procedure; the initial population is updated
based on the new improved learners.
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Fig. 1. Flowchart of the proposed MTLA method.

UGC CARE Group-1 234



Step 8: Checking the convergence criteria; if the
convergence criteria are satisfied, terminate the optimization
process and select the best learner denoted by TR~ as
the optimal solution, otherwise return to step 4 and repeat
the process.

B. Pseudo-Codes of the Proposed Algorithm

Input all required data.
1. Initialization:
For m = 110 Nicarner
Fort = 1to NT

Generate P! , randomly while satisfying(2)—
(12).

End For (it refers to index 3
Calculate £'(P(, ) from (1).
End For (it refers to index )
Initialize:

TR! : The learner with the best fitness value
among all P/

o

WR! : The learner with the worst fitness value
among all P¢,

k=1,
2. While £ < ks
Update the teaching factor TF* using (19).

Update the mean matrix ME" of all existing learners
using (13), (14).

Teacher phase
For m = 1 to i\‘rl(-:uu:-r

Adapt learner based on the teacher matrix TR*
using (16)—(18) to generatePy. ..

If the new solution is better than the existing one;
Accept P4 . andreplace P
Else
Memorize P .
End If
End For (it refers to index )
Learner phase
For m = 1 t0 Nearner

Select the two best learners n, # n2 # m from

existing class.
Adapt learner using (22) to generate P}

Gonrnew?2:

If the new solution is better than the existing one;
UGC CARE Group-1

Accept P% . andreplace P
Else
Memorize P .
End If

End For (it refers to index )
Modified phase

For m = 1 t0 Nicarner

Select the th mutation strategy by roulette wheel
mechanism based on Section I11-C and calculate
the modification operator using (32)—(35) to

generate P}

‘r'.m.nn'\\'fi'
If the new solution is better than the existing one;
Accept P

k .
Gomnewd and replace PC.‘,HH
Else

Memorize PL .
End If

End For (it refers to index )

Update the learner for the next iteration.

Update Acum® and Prob” for the next iteration
based on (28)—(31).

Determine TR" and WR*
k=k+1,
End While (it refers to index A

3. Return the final teacher found.

C. Tool Usage

The proposed tool can be used at the beginning of each period
based on the rolling window information system. Thus, the im-
pact of all equality and inequality constraints on meeting load
demand, transmission losses and SRRs are mitigated for prac-
tical systems in real-time applications. For illustrative and com-
parative purposes, consider the time period of one day with an
hourly time step. In each time horizon, for each time interval,
the system demand, SRRs and7+loss coefficient should be up-
dated and a new RCDED should be run while taking into ac-
count the power outputs in the previous hour and the ramping
rate limits. Consequently, to handle the aforementioned equality
and inequality constraints, implementing the proposed tool by
the user to cope with the RCDED problem, which result in the
optimal dispatching matrix of units over the 24-h, is of vital
importance.

V. CASE STUDIES

In this section, the proposed method is applied to four case
studies to comprehensively investigate the RCDED problem.
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A. Description of the Case Studies

Case I: The first case consists of five thermal units consid-
ering the transmission losses. Here, the cost coefficients, gen-
eration limits, ramp-rate limit of units, forecasted load demand
for 24 h and thei?loss coefficient of the system considering
valve-point loading effect are considered [6].

Case II: The second case is a ten-unit network, which is
investigated with and without transmission losses. Here, the
system data are mainly derived from [19].

Case Il1: The third case is obtained by tripling the number of
units in the previous case.

Case IV: In order to measure better, the performance of the
proposed approach, the scalability study is conducted.

The large-scale 40-unit and 140-unit Korean test system are se-
lected for this goal. The systems data are taken from [28].

It should be noted that the/?loss coefficients are assumed to
stay unchanged over the time horizon. Moreover, the 60 minute
SRRs is set to 5% of load demand in each hour for all of the
above case studies with time period 24-hour.

In addition, the 10-min SRRs must be set to (1/6% (5%) load
demand. In order to show the capability of the proposed ap-
proach this quantity is set to (2/6) £5%) load demand.

B. Parameter Setting

It should be noted that the simulations are carried out on a
Pentium P4, Core 2 Duo 2.4-GHz personal computer with 1 GB
of RAM memory. Also, the setup for the proposed algorithm
is as following. The numbers of the population are equal to 10,
20, 50, 30, and 30 for the test cases 5, 10, 30, 40, and 140 units,
respectively. Maximum number of the iterations is 200 for all
of the aforementioned test systems.

It should be noted that the performance of the other meta-
heuristic optimization algorithms highly depends on tuning their
different parameters. A small change in the parameters may re-
sult in a large change in the solution obtained by these algo-
rithms. For instance, PSO [11] requires learning factors, varia-
tion of weight, and maximum value of velocity. As mentioned
before, TLA is a powerful algorithm, which is free from ad-
justing the parameters. TLA works in such a way that it only
requires the population size and the maximum number of itera-
tions. In other words, this algorithm reaches the optimal solution
with adjusting two parameters and this feature is the major ad-
vantage and superiority of the algorithm.

C. Computational Result and Comparison

Firstly, in order to show the satisfying performance of MTLA
over the other renowned algorithms, the complete comparison
and empirical studies between the algorithms’ convergence is
carried out. For each case study, the value of the total fuel cost
is extracted in 30 independent runs and the statistical informa-
tion including the best, the worst and the average of the solu-
tions as well as the Average CPU time are evaluated. It should
be emphasized that the worst value of the total fuel cost is better
than the best solution of all other methods in all test cases. This
is another advantage of the proposed method that illustrates the
superiority of the suggested MTLA over other techniques. Com-
paring the best solutions and the mean values obtained by dif-
ferent methods, it can be inferred that MTLA is a more pow-
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erful algorithm than other ones for finding the optimal solution.
Moreover, in this study, the successful percentage and error are
implemented to show the robustness of the proposed approach.
The successful percentage can be defined as the number of suc-
cessful runs which converge to the best solution divided by all
runs (30 runs). Beside, the error is the average difference be-
tween the obtained best solution and the global solution, which
indicates the ability of each technique to reach the global op-
timum solution.

In order to investigate the effectiveness of the self-adaptive
learning mechanism of MTLA, the execution probabilities of
all four separate mutation strategies on the case study IV are
plotted. To obtain each probability curves, the MTLA have been
run for 30 trials. The most suitable strategy during the search
procedure should yield the largest probability.

The convergence graphs are also plotted to inspect the quality
of the best solution over the evolution process.

The average CPU time is highly dependent on the computer
systems used for other experiments, which have been reported
in the literatures. Hence, the scaled CPU time is calculated by
the per-unit CPU speed multiplied by the given Average CPU
time for each of the mentioned techniques [8]. The per-unit base
speed is 2.4 GHz and the scaled CPU time is as follows:

scaled CPU time
eiven CPU speed . .
=2 x given average CPU time.

2.4 GHz

(39)

The average CPU time of each optimization method is very
important for its application to real problems. Comparing the
scaled CPU times for different methods, it can be illustrated
that the proposed technique is faster than other methods. This
is another advantage of the proposed MTLA.

In each algorithm, the optimum population size is found to be
related to the problem dimension and complexity. A change in
the population size, affects the performance of the MTLA algo-
rithm but its effect is not noticeable since this method achieves
the optimum solution with a few number of population. The re-
sults are presented in the following.

Case I: RCDED Problem for 5-Unit Test System: As men-
tioned before, in this case, the valve-point loading effect is con-
sidered. The problem is solved for both conditions (considering
and neglecting losses). The complete comparison between the
performance of the proposed method and those of other well-
known algorithms are shown in Tables | and I, for with and
without losses, respectively. It can be seen that the best, the
worst and the average value of the total fuel cost are ($43 084.4
and $42688.2), ($43199.5 and $42688.2) and ($43 167.6 and
$42 688.2) for with and without losses, respectively. The self-
adaptive probabilistic characteristics of the proposed approach
are analyzed using the candidate strategies in the pool separately
to solve the problem.

The proposed MTLA with the aid of multiple mutation strate-
gies in a parallel way can benefit from both global and local
search characteristics. So, in each generation, the MTLA can
produce diverse solution even with a small population and less
maximum iteration number. Besides, the MTLA with self-adap-
tive probabilistic mutation operators can better manage transi-
tion from each generation to the next one in comparison with
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TABLE | TABLE Il
RESuLTS OBTAINED BY DIFFERENT METHODS RESuLTS OBTAINED BY DIFFERENT METHODS FOR CASE | AND Il WITH Loss
FOR CAsE I, Il, AND Il WiTHOUT Loss
Scaled
i Scaled CPU N Total fuel cost ($ CPU
Solut_lun Total fuel cost ($) cae Solution ® .
technique time technique time
Best Mean Worst (min) Best Mean Worst (min)
value value value value value value
Case I Case |
TLA 42,8216 42,900.4 42,9633 0.038 SA [6] 47,356 NA NA 4.395
TLA-method1 42,7192 42,7332 42,756.0 0.059 Af\’fs‘j 123] 414%3758 f . 4”7?8 ) A 5}51?3 q 5‘;?3
TLA-method4 42,711.6 42,729.7 42,751.1 0.058 TLl " ] 11643 128004 125074 e
TLA-method3 42,7019 42,709.4 42,7226 0.055 TAcmstind] prgtens 139004 st 0096
TLA-method2 42,696.4 42,700.8 427134 0.054 0 A'ﬁzthz " 131052 43199 7 13288 4 0001
MITLA 42,688.2 42,688.2 42,688.2 0.052 TLA-method3 43,0015 43,179.8 43.248.1 0.081
Case I TLA-method2 43,0843 43,167.6 43,199.5 0.078
SQP [17] 1,051,163 NA NA 0421 MTLA 43,048.4 43,077.9 43,1285 0.071
EP[17) 1,048,638 NA NA 15.049 Case 11
EP-SQP [17] 1,031,746 1,035,748 NA 7.264 T0] T034.003 05735 - 5
MDE (3] 1,031,612 1,033,630 NA 4417 EP-SQP [19] 1,052,668 1,053,771 NA 2753
HQPSO [20] 1,031,559 1,033,837 1,036,681 0.773 1PSO [12] 1046.275 1048154 NA 5.150
PSO-SQP [18] 1,030,773 1,031,371 1,053,983 6.364 AIS [13] 1045.715 1,047,050 1048431 30973
MHEP-SQP [19] 1,028,924 1,031,179 NA 21.23 TLA 1045327 1.046.432 1047679 0.083
DGPSO[11] 1,028,835 1,030,183 NA 4.809 TLA-method1 1,038,547 1,038,913 1,039,736 0.155
PSO-SQP (C) [18] 1027334 1,028,546 1,033,983 1214 TLA-methodd 1,038,126 1,038,587 1,038,965 0.147
IPSO[12] 1,023,807 1,026,863 NA 0.050 TLA-method3 1,037,943 1,038,177 1,038,511 0.131
:}i%g [5;] }=g§(‘)-g§g : ggggg LOi{“:” 2?-?36 TLA-method2 1,037,898 1,038,060 1,038,199 0.124
CDE method3 [10] 1019123 1.020.870 1,023,115 032 MT_LA 1,037,489 1,037,712 1,038,090 o111
ICPSO [14] 1,019,072 1,020,027 NA 0.350 NA: Not available in the literature
TLA 1,019,925 1,020,411 1,021,118 0.049
TLA-method] 1.017,820 1,018,243 1,018,803 0.091 . .
TLA-method4 1017697 1,018,052 1018418 0.084 losses of AIS [15], i.e., 193.4334 MW. To demonstrate Slm%ﬂ-
TLA-method3 1,017,164 1,017,331 1,017,536 0.076 ; (1)
TLA-method2 1017050 1.017.225 1.017.395 0.072 ta?_ious handl('.in_‘g of three types of the SRRs by MTLA, A "},
MTLA 1016935 1,016,972 1,017,091 0.065 A and A, are also computed and added to this Table. It
Case 111 ’ ¥ . .
i o s — i should be noted that to satisfy the SRRs constraints, the back-
EP-SQP [19] 3159204 3,169,003 NA NA ward procedure occurs at the peak load demand hours in the next
MHEP-SQP [19] 3,151,445 3,157,738 NA NA day, i.e., hours 11 am, 12, and 20 pm
DGPSO [11] 3,148,992 3,154,438 NA 22816 P 1o "
IPSO [12] 3,090,570 3,071,588 NA 0.142 Case Il1: RCDED Problem for 10-Unit Test System: As men-
CDE method 3 [10] 3,083,930 3,090,542 NA 0.67 ; ; ; NG ki i
1CPSO [14] 3064497 3071588 NA 0773 t|oned_before, thls_c_ase is the ten-unit netwo_rk,_ which is investi
TLA 3,080,802 3,096,729 3,101,300 0.108 gated in two conditions. Firstly, the transmission losses are ne-
TLA-method1 3,058,702 3,060,996 3,066,644 0.153 -
TLA methodd 3057980 3060633 3,085 721 0150 glected and the best total fuel post is evaluated as $1 01§ 9_35.
TLA-method3 3050834 3,051,569 3,052,065 0.139 To check whether the constraints of the problem are satisfied
TLA-method2 3,050,098 3,051,548 3,051,994 0.136 : : .
MTLA 3048609 3049871 3051113 0127 or not, the detailed dispatch results of the MTLA solution are

NA: Not available in the literature

each separate strategy. It is necessary to note that in each sepa-
rate method, i.e., TLA-methodl, TLA-method2, TLA-method3,
and TLA-method4, one mutation technique is implemented for
all of the output solutions of the second phase (learner phase).
In an attempt to improve the modification process more effec-
tively, a new self-adaptive mutation strategy is used such that
the output solutions of the second phase (learner phase) would
be improved in the third phase, i.e., modified phase. The added
phase gets use of four mutation operations in parallel to enhance
the ability of the algorithm for both local and global search ex-
ploration adequately. It is obvious that the proposed method has
provided better results in terms of the total fuel cost and the
scaled CPU time. In Table Ill, the best dispatch result found
by MTLA is shown to consider transmission losses condition
and to compare with that of AIS [15] as the earlier report. All
the changed generation dispatches have been bolded. One can
observe that the generation outputs of many units by MTLA
are quite different from those of AIS [15]. This implies that the
global searching capability has been improved extensively by
the proposed MTLA mechanism. The corresponding total loss
is 194.5457 MW which is slightly larger than the transmission
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given in Table 1V and compared with that of ICPSO [14] as
the earlier report. All the changed generation dispatches of units
have been bolded. One can observe that the generation outputs
of many units by MTLA are quite different from those of ICPSO
[14]. To demonstrate simultaneous handling of three types of the
SRRs by MTLA, A A “and A are also calculated
and added to this Table. It is necessary to note that in this case
study, the backward procedure occurs at the peak load demand
hours in the next day, i.e., hours 10 am, 11 am, 12, and 20 pm to
satisfy the SRRs constraints. Secondly, the effect of the trans-
mission losses is considered. The best value of the total fuel cost
evaluated by MTLA is $1 037 489. The corresponding total loss
is 823.2054 MW which is greatly smaller than the transmission
losses of recently reported approach AIS [15], i.e., 835.6200
MW,

In Tables I and Il, the comparison between the results eval-
uated in two different conditions are shown. In Fig. 2, the
best convergence performance for TLA, TLA with mutation
methodl, TLA with mutation method2, TLA with mutation
method3, TLA with mutation method4 and MTLA neglecting
losses are depicted. This figure indicates that the MTLA con-
sistently converges faster than other separated methods. The
computational cost of the proposed approach is compared with
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TABLE Il
CoMPARISON OF BEST DisPATCH FOUND By MTLA (FIRsT Rows IN EAcH HouR) AND AIS [15] (SEconD Rows IN EAcH HOUR) FOR CASE I—WITH Loss

Hour L0 P P, Py Py P Pus AP AP AD

(MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW)

1 410 20.6029 98.5427 30.0002 124.9100 139.7598 3.8156 490.6844 175.9573 26.5000
12.5000 42.5000 95.2344 124.2884 138.9718 3.4946

2 435 10.0000 97.9633 66.4963 124.9069 139.7599 4.1264 464.1236 175.2867 26.0833
42.27800 20.0040 112.2875 125.7028 138.6054 3.8777

3 475 10.0362 98.5259 106.4963 124.9518 139.7721 4.7823 421.4677 172.7241 25.4168
72.2780 26.3907 114.2580 126.1687 140.5437 4.6390

4 530 10.0017 98.5814 112.7089 174.9518 139.7705 6.0143 362.4857 169.9186 24.5000
75.0000 31.1875 112.7300 176.1687 140.7643 5.8504

5 558 10.0000 92.5463 112.6655 209.8149 139.7288 6.7555 332.3445 162.2851 24.0333
74.9988 24.3688 113.5320 211.1969 140.4977 6.5942

6 608 10.0000 98.5409 112.6747 209.8169 184.9591 1.9916 278.6084 156.2422 23.2000
75.0000 25.0925 114.9903 210.2393 190.4977 7.8198

7 626 10.0000 72.4503 112.6740 209.8158 229.5194 8.4595 259.2405 158.8842 22.9000
64.1335 20.0615 111.7384 210.5317 227.9034 8.3686

8 654 12.7044 98.5437 112.6743  209.8158  229.5195 9.2577 229.0423 153.9405 22.4333
75.0000 34.7330 114.2589 209.7960 229.3024 9.0903

9 690 42.7044 105.4542 112.6743 209.8160 229.5195 10.1684 190.3316 145.2298 21.8333
74.9199 64.7330 117.5007  211.4532  231.4786 10.0853

10 704 64.0108 98.5398 112.6735 209.8158 229.5196 10.5595 175.2405 132.4336 21.6000
70.5373 94.7330 112.2591 209.5795 227.4356 10.5444

1 720 75.0000 104.0359 112.6735 209.8158 229.5196 11.0448 157.9552 115.1483 16.3333
74.9984 100.6899 115.5328  210.1738  229.6279 11.0228

12 740 75.0000 124.7111 112.6735  209.8158  229.5196 11.7200 136.2800 93.4731 11.2889
75.0000 124.0393 113.5686 209.7999 229.3043 11.7122

13 704 64.0108 98.5398 112.6735 209.8158 229.5196 10.5595 175.2405 132.4336 21.6000
67.8957 97.5603 112.6091 207.6484 228.8343 10.5477

14 690 49.6196 98.5398 112.6735 209.8158 229.5196 10.1683 190.3317 147.5248 21.8333
47.0756 100.5859 112.5156  209.1798  230.8228 10.1798

15 654 19.6196 91.5856 112.6734 209.8158 229.5196 9.2140 229.0860 157.4842 224333
17.0756 98.5570 108.4764  209.7412 2294111 9.2613

16 580 10.0000 75.1865 112.6734 159.8158 229.5196 7.1953 308.8047 171.0000 23.6667
10.0000 75.9723 111.8815 159.8231 229.5225 7.1994

17 558 10.0000 87.5823 112.6735 124.9078 229.5189 6.6825 3324175 172.1000 24.0333
10.0574 88.1689 112.1409 124.7947 229.5235 6.6853

18 608 10.0000 98.5403 112.6759 165.2142 229.5196 7.9500 278.6500 166.0597 23.2000
40.0562 106.1047 113.4525 125.7050 230.5613 7.8796

19 654 12.7080 98.5407 112.6735 209.816 229.5196 9.2578 229.0422 153.9433 22,4333
70.0562 124.9989 113.6349 125.1984 229.2400 9.1284

20 704 42.7078 119.9405 112.6735 209.8158 229.5196 10.6572 175.1428 130.0437 21.6000
75.0000 122.5644 112.5402 175.1463 229.3045 10.5554

21 630 39.3528 98.5399 112.6735 209.8158 229.5196 9.9016 201.0984 152.6443 22.0000
45.0000 94.7048 111.0462  209.7771 229.3600 9.8881

» 605 10.0001 98.5399 112.6735 162.1377 229.5196 7.8708 281.8792 166.2101 23.2500
15.0000 98.5583 111.1507 159.8228 228.3217 7.8535

2 537 10.0000 98.5386 112.6733 124.9077 186.7862 5.90580 365.7442 170.1114 24.5500
10.0000 98.8304 71.1507 123.6987  229.4886 6.1684

2% 463 10.0000 80.1510 112.6711 124.9056 139.7596 4.4873 434.3627 176.8500 25.6167
10.0000 73.6784 31.1507 124.8491 228.3089 4.9872

those of other methods such as ICPSO [14] and HQPSO
[20] in Table V. This table shows that the proposed method
reaches a lower total fuel cost than [14] ($1 016 935 opposed
to $1 019 072) in lower maximum number of iterations, popu-
lation size, algorithm parameters, power mismatch and scaled
CPU time. Moreover, although [20] is in the list of latest hybrid
evolutionary algorithms which solve the DED problem, but the
result of the proposed MTLA approach is much superior than
[20].

To evaluate the effect of population size on the performance
of MTLA, different population sizes are selected and the
RCDED problem is solved in 30 independent runs on the10-
unit neglecting losses. Table VI shows the statistical infor-
mation and frequency of convergence for 10, 20, 50, and 100
population sizes. The population size of 20 achieves optimal
solutions more consistently for the 10-unit test system.

The successful percentage for all the methods and the pro-
posed MTLA technique to solve RCDED problem considering
losses is listed in Table VII. When the complexity of the problem
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increases, its overall successful percentage decreases, especially
for non-convex and non-smooth problems. But the results of
Table VII show that the MTLA is more successful in finding
satisfactory solution in comparison to the other methods.

Case Ill1: RCDED Problem for 30-Unit Test System: In order
to show the efficiency of MTLA in solving medium-scale non-
linear problems, the 30-unit test system is produced by tripling
the number of units in the system and the load demand is also
tripled for the next 24 hours. It can be seen from Table | that the
best total fuel cost is $3 048 609, which is much better and su-
perior than the results of other methods. This is also important
because as the size of the system increases, the differences be-
tween the methods seem to decrease, but the solution obtained
by the MTLA is far better than other methods. It should be
pointed out that the backward procedure occurs at the peak load
demand hours in the next day similar to the previous case study.

Case 1V: ED Problem for 40-Unit and 140-Unit Test Systems:
From the point of view of meta-heuristic optimization and sim-
ilar approaches, the test system of 5, 10, or 30 units is not large
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TABLE IV

CoMPARISON OF BEST DisPATCH FounD By MTLA (FIrRsT Rows IN EACH HOUR)
AND ICPSO [14] (SEconD Rows IN EAcH HouR) FOR CASE |I—WiTHoOUT Loss

Hour  Lond P, P, P, P, P, Py P, Py P, P A" AP AP
(MW) MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) W)
1 1036 150.0000  309.5330  73.0000 60.0000 73.0000 118.8766  129.5904  47.0000  20.0000 55 12702000  389.7330  58.14293
150.0000 135.0000 243.9597 60.0000 73.0000 122.4498 129.5904 47.0000 20.0000 55
5 1110 150.0000  316.8232  86.2700 60.0000 1228666  122.4498  129.5904  47.0000  20.0000 55 11925000  382.4598 56.9096
150.0000 1350000 317.9780 60.0000 73.0000 1224329 129.5891  47.0000  20.0000 55
; 1258 150.0000  396.7992  154,2938 60.0000 1228666 1224500  129.5904  47.0000  20.0000 55 1037.1000 3582604  54.4429
226.6175  215.0000  259.4354 60.0000 1228624 1224944 129.5904  47.0000 _ 20.0000 55
4 a0 1266242 3968021 2256667  60.0000 122.8666 1224500  129.5904  47.0000  20.0000 55 881.7000 350.8575 51.9763
303.2483  295.0000  300.7107 60.0000 73.0000 1224493 129.5917  47.0000  20.0000 55
5 g0 1266242 3968186  299.6503 60.0000 122.8666 1224499  129.5904  47.0000  20.0000 55 804.0000 307.4908 50.7429
379.8391 3095242 283.6138 60.0000 73.0000 1224493 129.5736  47.0000  20.0000 55
P lGos  303.2484 3968007  321.1755 60.0000 1727350 1224500  129.5904  47.0000  20.0000 55 648.6000 278.5834  48.2763
456.4968  309.5329  305.0356 60.0000 122.8636 1224773 129.5937  47.0000 _ 20.0000 55
7 1702 3798726 3968005 3185524 60.0000 1727331 1224510  129.5904  47.0000  20.0000 55 570.9000 277.5057 47.0429
456.4864  309.5328  297.3992 60.0000 1727196 1542715 129.5904  47.0000  20.0000 55
8 1776 3798726 3967994 2973857 1053023 2225996 1224500  129.5904  47.0000  20.0000 55 493.2000 2653749 458096
456.4962 389.5328 297.4101 85.7665 172.7358 122.4681 129.5904 47.0000 20.0000 55
9 lo24 4564968 3967994 297.6793  146.3842 2225997 1224502  129.5904  77.0000  20.0000 55 337.8000 191.1842 43.3429
456.5000  396.8009 3050732 1314385  222.5957  160.0000  129.5918  47.0000  20.0000 55
10 j072 4564968 3967994 3242324 1919169 2225997  160.0000 1295904 853644  50.0000 55 182.4000 119.6813 32.5429
456.4968  460.0000  340.0000 1812430  222.6697  160.0000  129.5905  47.0000  20.0000 55
1" J14g 4564968 3967994  340.0000 2419169 2288052  160.0000 1295504 853342 520571 55 104.7000 91.9511 17.9763
460.1662  460.0000  340.0000 2312430 243.0000 _ 160.0000  129.5907  47.0000 _ 20.0000 55
12 2op0  456.4968  460.0000  308.0258  291.0550  222.5997  160.0000  129.5904 853095 519225 55 27.0000 22.3095 16.7429
456.4971  460.0000  340.0000  281.2422  240.6727  160.0000  129.5912  47.0000  49.9967 55
13 so72  456.4968 3967994 303.0122 2412669 2225997  160.0000  129.5904 853121 219225 55 182.4000 140.9015 32.5429
) 456.4979  460.0000  317.6239 2412363 222.5997 1224512 129.5910  47.0000 _ 20.0000 55
14 lo24 4564968 3967994 2943514 1912669 1727331 1224499  129.5904 853121  20.0000 55 337.8000 224.1121 433429
456.4922  396.7994  332.6988  191.2363  172.7330 1224498  129.5905  47.0000  20.0000 55
is 1776 3798726 3967994 290.8021  180.7354 1228657 1224499  129.5904  77.8845  20.0000 55 493.2000 301.5582 45.8096
379.8725  396.8003  337.7821  164.5865 1228727  122.4911 129.5930  47.0000  20.0016 55
6 1554 3032484 3967994 2752920  130.7354  73.0000 122.4499  129.5904  47.8845  20.0000 55 726.3000 328.1683 49.5096
303.2262  396.7978 2923923 114.5865 73.0000 122.4066  129.5906  47.0000  20.0000 55
17 l4gp 1266242 3967994 2891154 120.4206 73.0000 122.4500  129.5904  47.0000  20.0000 55 804.0000 318.0448 50.7429
379.8725 3167978  271.7026 64.5865 73.0000 122.4499  129.5906  47.0000  20.0000 55
18 2 3032485 3967994  310.6300 1204153 1228666 1224498  129.5904  47.0000  20.0000 55 648.6000 289.1304 48,2763
379.8726  396.7978  294.4352 60.0000 122.8543  122.4497  129.5903  47.0000  20.0000 55
19 1776 3798726 3967994  299.6038 1229507 1727331 1224500 1295004  77.0000  20.0000 55 493.2000 2927564 458096
456.4309  396.7993  316.0057 60.0001 1727232 1224483 129.5926  47.0000  20.0000 55
20 so72 4596143 3967994 340.0000 1729507 2227331 160.0000  129.5904 853121  50.0000 55 182.4000 100.6628 16.2620
4678096 460.0000  340.0000  110.0001  222.6000  160.0000  129.5905  77.0000  49.9999 55
2 lo24 4564968 390.0205  319.6069 1229507 2225996 1224230  129.5904 853121  20.0000 55 337.8000 176.0628 43.3429
456.5001  389.5686  323.3630 1203910 222.5866  160.0000  129.5907  47.0000  20.0000 55
3 s 3798726 3100205 280.0708 72.9507 1727331 1224498 129.5904 853121  20.0000 55 648.6000 3364890 482763
379.8725 3095692  321.4019 70.3910 1727264 1224486 129.5904  47.0000  20.0000 55
23 1332 3032484 2300205 2035025 60.0000 122.8666 1224498  129.5904 853218  20.0000 55 959.4000 371.3598 53.2096
303.2484 2295731 242.2786 60.0000 122.8594 1224500 129.5905  47.0000  20.0000 55
24 llgs 2266242 2222665  189.6787  60.0000 73.0000 122.4498  129.5904  85.3904  20.0000 55 1114.8000  378.7598 55.6763
2266243 149.5731  300.7614 60.0000 73.0006 1224503 129.5903  47.0000  20.0000 55
TABLE V
CompARISON OF ICPSO [14], HQPSO [20]
Generate P et WITH MTLA For CAse Il WITHOUT LOSSES
Calculate
Pretassr and Nu..of Population Maximum 1-’ower Scaled CPU
then Deltam.c Method algorithm size iteration m';{m‘:}ch time (min)
Compute SRRs violation parameters (MW}
Yes (Section IV.A Step3.1)
based on (37). ICPSO [14] 9 100 1,200 0.00178 0.350
HQPSO [20] 7 50 150 0.50000 0.773
MTLA 2 20 150 0.00000 0.065
T SRRs N0
\% TABLE VI
L\‘:‘J“_hlm — EFFECT OF POPULATION SiIZE ON CASE II—WITHOUT Loss
B /l\ forward procedure to reach —
No e N SRRs violation=> 0
‘{@ EW Population No. of hits to Total fuel cost ($) C‘A;Gr:ﬁ:e
? size ($1016900- Best Mean Worst .
Yse (min)
$1017400) value value value
4' Fix the output power with their limit. ‘ 10 23 1’017,155 1,017‘278 1,017.464 0.051
20 30 1,016,935 1,016,972 1,017,091 0.065
Fig. 2. Flowchart of the constraints handling. S0 30 1016935 1,017,123 1,017,314 0.102
100 30 1,016,935 1,017,144 1,017,335 0.189

enough to demonstrate the scalability of the proposed approach.  $121 403.5362 [28] while it seems to be wrong. The true value
Therefore, the 40-unit test system is selected while valve-point  based on the results of this paper is equal to $121 412.5483. The
effects are considered. In this test case, load demand is 10 500 static ED (with study horizon 1h) is handled by the proposed
MW. The best fuel cost for this test case reported until now is  approach and the results have been shown in Table VIII. The
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TABLE VII
SUCCESSFUL PERCENTAGE (%) oF DIFFERENT METHODS
FOR CASE II—WITH Loss OuT oF 30 TRAIL RUNS

& o & o o o & o oo
o0 00 o0 00 o0 o0 o0 o0 o0 o0
. . =+ %0 o6 o1 ] & S S =
Solution technique ~ ~ of o o o6 o o
[salsal oo N o on [sa e
<< < S S < < S S
TLA 0 0 0 0 0
TLA-method1 0 0 10% 56.7%  33.3%
TLA-method4 0 13.3% 46.7% 40% 0
TLA-method3 0 60% 40% 0 0
TLA-method?2 0 100% 0 0 0
MTLA 66.7% 33.3% 0 0 0
U
107F
108
106
—\I1A
105 —TLA-mahod
=== TLA-mahod3

b4

Total fuel cost (§)
8

Fig. 3. Convergence graphs of MTLA, TLA-methodl, TLA-method2, TLA-
method3, TLA-method4, and original TLA for case II.

Probability

Fig. 4. Evolution of probability for mutation strategies 1, 2, 3, and 4 in Case
1V—40 unit.

proposed method is compared with other methods in the area
such as HQPSO [20], CCPSO [28], COPSO [28], CSPSO [28],
CTPSO [28], BBO [29], DE/BBO [29], RCGA [30], QPSO
[31], and DABFA [32] to illustrate the superiority of the pro-
posed MTLA. Also, the system with 140 units considering ramp
rate limits and valve-point effects are selected as another large
scale test case. The total load demand is 49 342 MW. The results
are reported in Table VIII. The evolution trend of the probability
of each strategy and convergence graph for 40-unit test systems
have been illustrated in Figs. 3-5, respectively. It is observed
that different strategies of MTLA are working together to ob-
tain higher performance in the final results. Fig. 4 indicates that

UGC CARE Group-1

Total fiel cost (F)

Iteration

Fig. 5. Convergence graphs of MTLA, TLA-methodl, TLA-method2, TLA-
method3, TLA-method4, and original TLA for case I\V—40 unit.

TABLE VI
RESULTS OBTAINED BY DIFFERENT METHODS FOR CASE IV

Scaled

Solution Total fuel cost ($) C'PU

. time

technique
Best Mean Worst .
(min)
value value value
40unit
DABFA [32] 123,027.9674° - - 0.074
HQPSO [20] 122,318.6058" - - NA
CTPSO [28] 121,703.5133" - - 0.264
QPSO [31] 121,448.2100 122,225.0700 NA NA
CSPSO [28] 121,444.9621" - - 0.264
BBO [29] 121,426.9530 121,508.0325 121,688.6634 1.757
RCGA [30] 121,424.4374 - - 1.818
COPSO [28] 121,420.9086° - - 0.267
DE/BBO [29] 121,420.8948 121,420.8952 121420.8963 0.958
CCPSO [28] 121,412.5483° - - 0.268
TLA 122,009.7664 122,074.9032 122,171.5600 0.027
TLA-method| 121,420.8958 121,427.6669 121,443.2010 0.041
TLA-method4 121,416.7159 121,421.2654 121,431.9027 0.038
TLA-method3 121,412.5364 121,412.5843 121,412.6504 0.036
TLA-method2 121,412.5355 121,412.5359 121,412.5365 0.035
MTLA 121,412.5355 121,412.5355 121,412.5355 0.032
140unit

CCPSO [28] 1,657,962.7300 1,657.,962.7300 1,657,962.7300 2.083
COPSO [28] 1,657,962.7300 1,657,962.7300 1,657,962.7300 2.083
CSPSO [28] 1,657,962.7300 1,657,962.7400 1,657,962.8500 1.250
CTPSO [28] 1,657,962.7300 1,657,964.0600 1,658,002.7900 1.389
TLA 1,660,362.2313 1,661,997.8770 1,664,432.5688 0.034
TLA-methodl 1,657,951.9053 1,657,952.8345 1,657,953.3559 0.044
TLA-method4 1,657,951.9053 1,657,952.4066 1,657,952.8802 0.043
TLA-method3 1,657,951.9053 1,657,951.9137 1,657,952.0118 0.041
TLA-method2 1,657,951.9053 1,657,951.9053 1,657,951.9053 0.041
MTLA 1,657,951.9053 1,657,951.9053 1,657,951.9053 0.038

NA: Not available in the literature
" Exact total fuel costs from the schedule of [20], [28], [30] and [32] are used
in this paper which reported in the lower value in these literatures.

MTLA is able to adaptively select the most suitable strategy
among all of them, without any prior knowledge.

It can converge rapidly to a strategy with higher probability.
It is necessary to note that the mutation method2 obtains the
highest probability in comparison with other strategies, spe-
cially the implemented mutation in [26] and plays a central role
in the performance of the MTLA to reach to better results.

To show the superiority of the proposed approach, the
error index is implemented and calculated for each opti-
mization methods. The corresponding error of original TLA,
TLA-methodl, TLA-method4, TLA-method3, TLA-method?2
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and MTLA are $662.3677, $15.1314, $8.7300, $0.0308,
$0.0004, and $0.0000 for 40-unit test system.

According to the results of Tables I, I, V, VI, VII, and VIIlI,the following conclusions can be observed:

1) When the dimensions of the problems increase, their com-plexity increase consistently, especially for the non-smooth and non-
convex function. Thus, the overall successful rateof each algorithm decreases for large-scale problem but the proposed approach
obtains the best overall results.

2) For large-scale problem, the higher population diversityis required and, hence, the strategy which provides higherdiversity
is able to obtain better performance.

3) Regarding the advantages of the MTLA, which are illus- trated via simulations, it would be a proper choice for real-time
applications in practical power systems.

D. Performance of the Inclusion SRRs Constraints

Inclusion of SRRs constraints increases complexity and av- erage CPU time burden to satisfy it. In this paper, three types of the
SRRs constraints incorporating the ramp rate limits and power balance considering losses are handled simultaneously without any
restriction on the objective function. As it can be seen from (9), the reserve capacity has been included in the constraint as an extra
term, i.e., SR, , in addition to load and loss in each hour. Therefore, this constraint will affect the re- sults of the DED problem.
Also, if the constraints (10) and (11)are not satisfied in each hour, the algorithm should be returnedto the pervious hours and
modified them until satisfaction of these equations. Thus in all of the cases with the fixed number of units, inclusion of the
additional SRRs constraints consider-ably affect the solution search domain and the performance of the solution procedure. These
lead to a more execution time and total fuel cost. To demonstrate this, the DED is solved for the case study Il without considering
SRRs constraints. The best production cost and the average CPU time taken by the MTLAmethod decreases to $1 016 748 and
0.065 min, respectively. It is clear that the SRRs constraints increase the complexity, the number of computations and the total fuel
cost. The same justi-fication can be implemented for other case studies.

Only two types of SRRs have been considered in the previous work [18]. Indeed, [18] considers the RCDED problem while the
reserve have been added as a penalty term to the fuel cost function. In the presence of the SRRs constraints, the best totalfuel costs
are $1 083973 and $1 071 236 for SRRs constraints
(9) and (10), respectively, in 10 unit test system in 12.506 and
16.374 min time. Besides, in the viewpoint of optimization is- sues, increasing the number of constraints will significantly de-
crease solution space. From the experiments in Tables | and I1,it is clear that for all test cases, the MTLA method is better com- pared
to the other methods, in terms of producing better solu- tion and computation time. According to the above tables, the results of
MTLA are more comparable with other approaches, since there is a considerable computation time and cost saving by using this
method.
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