
 

 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 51, Issue 04, April : 2022 

  

UGC CARE Group-1                                                                                  224 

 

 
 

A new modified teaching-learning algorithm for reservation-constrained dynamic financial 
issuance  

 
1* Mr.Pradosh Ranjan Parida, 2 Mr.SHYAMALENDU KHUNTIA 

1* Asst. Professor, Dept. Of  Electrical Engineering, NIT BBSR, 

Asst. Professor DEPT. of Electrical Engineering, NIT BBSR, 

         1*pradoshranjan@thenalanda.com, shyamalendukhuntia@thenalanda.com, 

 

 
 

  
 

 

Abstract - This paper presents a new optimization algorithm, called 
a modified teaching-learning algorithm, which solves a more practical 
design of a reserve-limited dynamic economic allocation of heat 
devices, taking into account network losses and operational limits 
of generator units (i.e. valves). ). load effect and creep limitations). 
Unlike previous approaches, the rotary reserve requirements of 
the three types of systems are directly modeled into the problem, 

and a new constraint approach is proposed to satisfy them. The 

proposed teaching-learning optimization algorithm is a new 

population-based optimization method features between the 
teacher and learners (students). Therefore, this algorithm 
searches for the global optimal solution through two main phases: 

1) the “teacher phase” and 2) the “learner phase”. Nevertheless, 
these two phases are not adequate for learning interaction 

between the teacher and the learners in the entire search space. 
Thus, in this paper a new phase named “modified phase” based 
on a self-adaptive learning mechanism is added to the algorithm 

to improve the process of knowledge learning among the learners 
and accordingly generate promising candidate solutions. The 
proposed framework is applied to 5-, 10-, 30-, 40-, and 140-unit test 

systems in order to evaluate its efficiency and feasibility. 

Index Terms—Dynamic economic dispatch, modified teaching- 

learning algorithm, ramp rate, reserve constraint, valve-point 
effects. 

 
 

NOMENCLATURE 

Indices 
 

Learner index. 

            Unit index. 

Iteration index. 

Time interval index. 

 

Constants 
 

       Cost coefficients of unit . 

                        Loss coefficient relating the productions of 

units   and   at time   (MW ). 

                       Loss coefficient associated with the 

production of unit at time . 
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D 

                        Loss coefficient parameter at 

time (MW). 

                         Ramp-down rate of unit 

(MW/h).                         Maximum iteration. 

                   Number of learners. 

NT Number of time intervals. 

NU Number of units. 

                         Load demand at time (MW). 

                       Capacity of unit (MW). 

                       Minimum power output of unit   (MW). 

    Random function generator in the 

range [0, 1]. 

                          60-min spinning reserve 

requirements at time (MW). 

                          10-min spinning reserve 
requirements at time (MW). 

                         Teaching factor in iteration  . 

                         Ramp-up rate of unit (MW/h). 

Variables 

      Power mismatch at time (MW). 

     Total fuel cost at time span NT ($). 

      Total fuel cost at time ($). 

        Mean matrix in iteration . 

           Unit production matrix. 

      Total real power losses at time   (MW). 

           Generation output of unit   at time   (MW). 

          Lower limit of the th unit output power at time 

(MW). 

           Upper limit of the th unit output power at time 

(MW). 

        Teacher matrix in iteration   . 

 
I. INTRODUCTION 

YNAMIC economic dispatch (DED) in power systems 

deals with determining the optimal production levels of 

the scheduled units over a short-term horizon to meet load de- 

mands. It is necessary to note that DED is the extension of the 
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conventional economic dispatch (ED). In DED, it is desirable 

to minimize the total fuel cost. In practical situations, the model 

of DED problem may need to consider the spinning reserve re- 

quirements (SRRs) in order to incorporate the unit coupling of 

ramp rates at the system level via unit reserve on the top of 

the time coupling of ramp rates at the unit level. Traditionally, 

the valve-point loading effects of the large steam turbines were 

ignored and a convex quadratic fuel cost function was consid- 

ered for the thermal units. This leads to a mathematically simple 

formulation of the problem. However, a more realistic model 

must take into account the valve-point effects. This makes the 

fuel cost function non-convex and non-smooth. Moreover, the 

search space of the DED problem is irregular due to the ramp 

rate limits and SRRs constraint. Therefore, the DED problem is 

a complicated optimization problem for which finding the op- 

timal solution is a difficult task. 

Currently, the available methods and algorithms for solving 

DED problem are classified into two categories of classical opti- 

mization-based and meta-heuristic methods. The optimization- 

based methods consist of linear programming (LP) [1], non- 

linear programming (NLP) [2], quadratic programming (QP) 

[3], Lagrangian relaxation (LR) [4], and dynamic programming 

(DP) [5], which impose no restriction on the non-smooth and 

non-convex characteristics of the valve-point effects. Neverthe- 

less, these methods suffer from the “curse of the dimensionality” 

in the case of large-scale power systems. Consequently, these 

methods cannot guarantee to find the global optimum as well as 

to manage computational time when the nonlinearity and dis- 

continuous characteristics are considered in the evaluations. 

As a result, recently many modern meta-heuristic optimiza- 

tion algorithms have been developed and utilized successfully to 

solve the DED problem. Some of the most well-known methods 

are: simulated annealing (SA) [6], differential evolution (DE) 

[7]–[10], particle swarm optimization (PSO) [11]–[14], artificial 

immune system (AIS) [15], and improved pattern search based 

algorithm (PS) [16]. However, similar to the other methods 

mentioned before, these methods do not guarantee to find the 

global solution. Correspondingly, hybrid methods based on 

combined heuristic methods such as hybrid evolutionary pro- 

gramming and sequential quadratic programming (EP-SQP) 

[17], PSO-SQP [18], modified hybrid EP-SQP (MHEP-SQP) 

[19], hybrid quantum inspired PSO (HQPSO) [20], etc. were 

proposed to solve the DED problem by improving the ability of 

searching the entire search space while using fast computational 

analysis. Previously available approaches, e.g., [18], solved 

RCDED that the associated cost of SRRs and other constraints 

are added as penalty terms to the fuel cost function. However, 

no DED approach with simultaneous constraints-handling is 

currently available in the literatures without enforcing any 

restrictions on the objective function. 

The original Teaching-Learning Algorithm (TLA) was firstly 

proposed by Rao et al. to solve a mechanical design optimiza- 

tion problem [21]. In their work, TLA was successfully applied 

to the test system and it was shown that the performance of TLA 

was more satisfactory than the other well-known algorithms in 

the area. In fact, TLA is a new population-based heuristic search 

algorithm, which considers the teacher role and the learners’ in- 

teraction for solving optimization problems. Hence, TLA per- 
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formance has two phases: 1) teacher phase; and 2) learner 

phase. In the teacher phase, the teacher improves the 

knowledge of the learners up to the level of his/her own 

knowledge level. In fact, in this phase, the quality of the 

learners is affected by the good quality of the teacher as the 

best individual. In the learner phase, similarly to the other 

meta-heuristic algorithms, the in- formation is shared between 

the learners so that the level of their knowledge would be 

improved. The superiority of TLA in com- parison to the 

other heuristic methods has been illustrated in 

[21] on a benchmark function. Unlike similar optimization algo- 

rithms, performance of TLA is independent of the initial 

values of parameters. 

In this paper, a new modification phase is proposed and 

added to the original TLA to improve its performance. In the 

new mod- ification phase, a self-adaptive learning framework 

is adopted to probabilistically implement four mutation 

strategies with dif- ferent features in parallel. Indeed, the 

augmented phase can im- prove the convergence property and 

enhance the quality of the solution. The new modified TLA 

(MTLA) is implemented to solve the non-convex and non-

smooth complex reserve con- strained dynamic economic 

dispatch (RCDED) problem using four test cases with five 

units, ten units, thirty units and one hun- dred units. Simulation 

results show that the new modified algo- rithm achieves better 

solutions and improves the convergence rate compared to 

other methods. 

The main contributions of this paper can be summarized 

as follows: 1) the RCDED problem including ramp rate 

limits, valve-point effect and three types of the SRRs is 

formulated. Moreover, an enhanced simultaneous 

constraints-handling scheme is proposed to bias the 

optimization toward the feasible region without enforcing any 

restrictions on the objective function; 2) a new modified 

algorithm is proposed to solve the RCDED problem; and 3) 

the performance of the proposed approach is successfully 

evaluated by numerical simulations. 

The remainder of this paper is organized as follows: In 

Section II, a brief mathematical formulation of the 

RCDED is provided. In Section III, the new modified 

algorithm is described. The proposed solution methodology 

is presented in Section IV. In Section V, the feasibility and 

efficiency of the proposed method are investigated using four 

test systems. Finally, the paper concludes in Section VI. 
 

II. PROBLEM FORMULATION 

The objective function and constraints of RCDED are de- 

scribed as follows: 

A. Objective Function 

The fuel cost of each thermal unit is characterized in the 

form of a quadratic function plus the absolute value of a sinu- 

soidal term corresponding to the valve point effects [22]. Con- 

sequently, the RCDED problem can be formulated as follows: 
 

 

 
(1) 
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is 

 

where 
 

     
 

and 
 

     

Constraints (9) and (10) are generally applied in the unit 

commitment and DED problems within 60 min of being 

required [18], [24]. Using (11) will exactly satisfy the 

SRRs from the spinning generators in each time within 

10 min of being required and its amount is related to the 

ramp up rate constraint of generating unit. For time in- 
terval   to the ramp up rate of unit (MW/h), 

B. Constraints 

Limits associated with RCDED are as follows: 

a) Power balance 
 

where the power losses is in the following form [23]: 
 

 
 

b) Up/down ramp rate limits 

 

 

 

 
(2) 

 

 

 

 

 

(3) 

the corresponding amount for 10 min is [25]. 

 
III. MODIFIED TEACHING-LEARNING ALGORITHM 

As mentioned before, TLA as a novel optimization algorithm 

does not need to adjust its controlling parameters to reach the 

optimum solution. The performance of the original TLA de- 

pends on two main parts: 1) “teacher phase” or learning from 

teacher, and 2) “learner phase” or exchange of information be- 

tween learners. 
 

A. Teacher Phase 

In TLA [21], each class consists of a number of learners 

with different grades. Similar to what happens in re- 

The power generated at the output of the th thermal unit 

at time may affect its output power in the next time step. 

This limitation can be expressed as follows: 
 

      (4) 
 

 

      (5) 
 

c) Generation limits 

According to the ramp rate, the generation limits will be 
 

                              (6) 

ality, the learner with the best grade is selected as the teacher. 

In TLA, the teacher’s task is to improve the mean of the class 

to a value close to his or her mean value depending on the ca- 

pabilities of the learners. In fact, a good teacher among his staff 

is one who brings his/her learners up to his/her level in terms 

of knowledge. Hence, the mean mark of his/her class, named 

“ ”, is improved sufficiently. In each iteration, the learner 

with the best fitness value among all learners is selected as a new 

teacher, which can be shown as                                      . 

The structure of each learner and the mean value of the class 

are defined as 
 

(12) 

  (13) 
 

 

 
 

d) Spinning reserve requirements 

(7) 

 
(8) 

In this study, each learner  is indicative of the solution 

which refers to the generation pattern of the generating units (as 

shown in (12)). The mean value of the class can be calculated as 

 
(14) 

The SRRs should be considered as an additional con- 

straint to avoid an unexpected large load to the system or a 

failure in a certain large unit. Here, SRRs for the RCDED 

problem are formulated in three different ways: 

 
Now, for each learner, a new vector can be defined as follows: 

 

 
(15) 

(16) 
 

(9) where  as the difference value is defined as 
 

 

 

(10) 
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(11) (17) 

(18) 

(19) 
 

In order to calculate each element of the th 

learner , the fitness function 
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is compared with the fitness function of the target vector 

: 

 

      (20) 
 

 
B. Learner Phase 

In this part, the learners try to increase their knowledge by 

helping each other. Each learner interacts with other learners 

randomly via group discussions, presentations, formal commu- 

nications, etc. [21]. Thus, each learner can gain knowledge if 

the other ones know more than him or her. This process is sim- 

ulated as described in the following. 

For the th learner in the class, two of the best individuals 

  are selected in the way that         . Now the 

new individual    is defined as shown in (21) and 

(22) at the bottom of the page. 

Similar to the teacher phase, the replacement procedure can 

be implemented as 

 
 

      (23) 
 

 
C. Modified Phase 

Compared to the other evolutionary algorithms, TLA has 

major advantages that can be used in solving complex nonlinear 

optimization problems such as the RCDED problem. Some of 

these advantages are simple concept, lower computational com- 

plexity, easy implementation, higher consistency mechanism, 

minimal storage requirement and no need to tune algorithm 

parameters. Despite these characteristics, the interactions in the 

second phase (learner phase) may lead to inappropriate knowl- 

edge exchange between learners in the way that the algorithm 

may be trapped in local optima. Therefore, a novel self-adaptive 

learning modification approach is proposed to overcome this 

deficiency. It is necessary to note that the basic idea behind 

this approach is to simultaneously select adaptively multiple 

effective strategies from the candidate strategy pool on the 

basis of their previous experiences in the generated promising 

solutions and applied to perform the mutation operation. It 

means that at different steps of the optimization procedure, 

multiple strategies may be assigned a different probability 

based on their capability in generating improved solutions. 

Accordingly, during the evolution process, with respect to 

each target solution in the current population which is extracted 

from the second phase (learner phase), one method will be se- 

lected from the strategy pool based on its probability. The more 

successfully one mutation method behaved in previous itera- 

tions to generate promising solutions, the more probably it will 

be chosen in the current iteration to produce solutions. In this 

paper, four mutation strategies are implemented in MTLA to 

optimize the complex non-linear, non-smooth and non-convex 

RCDED problem. These mutation operators can be described as 

follows: 

 

 

 
(24) 

 

 

 

 
(25) 

 

 

(26) 

 

 

(27) 
 

where   and   are the respective number of 

learners which choose the mutation method 1, 2, 3, and 4 

in iteration   . In this regard, four learners   are 

randomly selected from the existing population in such a way 

that                                          in order to uniformly cover 

the algorithm search domain. Also,  is the worst vector 

among population in iteration . In order to improve the solu- 

tions of the proposed large-scale problem and further increase 

the population diversity and enhance the globally search ca- 

pabilities, the mutation method1 and 2 can be used. The  

is used as an attractor to guide the information exchanging 

between the learners with a better manner. However, the pre- 

mature convergence may be occurred in solving the problems 

with enormous local optima. The mutation method3 is able 

to achieve lower convergence speed but avoids quickly being 

trapped by local optima on the complex problems and taken 

from [26]. It is observed that this mutation only relies on the 

difference of learner information. The mutation strategy4 has 
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(21) 

  
    (22) 
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(34) 

 

a powerful local search capability and fast convergence speed. 

This mutation is motivated from nature and human actions. 

In other words, although all learners in a class are different 

in many ways but all of them tend to enhance themselves by 

following the same direction of the elite learner and similarly 

they try to avoid the direction of the lazy one in competition 

with others. 

Generally speaking, the criteria of selecting these four 

strategies are that they have different characteristics that cover 

diverse conditions. The occurrence of mutation is followed 

from the requirements of the TLA search process. All the 

learners in the population will have a chance to be mutated 

based on the probability of their methods of mutating. In this 

approach, instead of using relatively fixed execution proba- 

bilities during the whole optimization procedure, MTLA uses 

a probabilistic updating mechanism which is described in the 

following manner. In the probability model, each learner selects 

one of these four methods. Denote  
as the initial probability of implementing th mutation strategy. 

Also, a parameter called accumulator is assigned to each of 

mutation strategies denoted by      which 

have the initial value of zero. In each iteration, a weight factor is 

assigned to each learner after sorting the population according 

to (28). It is clear that the best learner gets the larger weight 

factor. After that the related accumulator of each strategy will 

be updated based on (29) [27]: 

 

 

(28) 

 

 
(29) 

 
where                 are the weight factors corre- 

sponding to each strategy in iteration . After the fixed number 

of generations LP, the excitation probability is calculated as 

[27] 

    (30) 

where is the learning rate to control the learning speed in the 

MTLA algorithm and it is considered to be equal to           
in this paper [27]. Finally, the Roulette Wheel Mechanism 

(RWM) is applied to choose the th modification method for 

each learner based on the normalized probability values as 

follows: 

 
                                                 (31) 

 

 

It can be expected that the mutation methods which have gener- 

ated higher-quality individuals tend to increase their probabili- 

ties iteration by iteration. In the MTLA solution technique, with 

respect to each target solution in the current population which 

is extracted from the second phase, i.e., learner phase, one trial 

solution generation method is selected from the strategy pool 

according to its probability on the basis of (31). The selected 

method is subsequently applied to the corresponding target so- 

lution to generate a trial solution. The details of this procedure 

are as follows: 

 
For to  

Select the th mutation strategy by RWM selection based 

on (31) for the th learner as follows: 

If    

Select mutation method1 for target solution . 

Elseif  

Select mutation method2 for target solution . 

Elseif  

Select mutation method3 for target solution . 

Else 

Select mutation method4 for target solution . 

Endif 

Endfor (refers to index ) 
 

After the above process, the new solution is generated for 
each learner       as . Then modified individual is 

mixed with , which generates  as 

 

(32) 

 

(33) 

 
Each element of  , denoted by  , is calcu- 

lated as 
 

 

 
 

(35) 

 
where , is the power generated at the output of the th 

unit in the th time interval for the th learner of the th iter- 

ation. For the replacement operation, the fitness function of the 

mixed vector  should be compared with the fitness 

function of the existing vector, , as follows: 

 

      (36) 
 

The final results are the MTLA output of the th iteration and 

the input population for the next iteration. 
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It should be noted that similar to other evolutionary algo- 

rithms such as GA [22] and PSO [11], the TLA and MTLA 

try to find the optimal solution through populations that are 

randomly generated. Although effectiveness of the algorithm 

changes with its parameter values, unlike other optimization 

techniques, TLA do not require any parameter tuning process 

[21]. This is the attractive aspect of the proposed approach. In 

original TLA, solutions are more likely to cluster together in 

similar groups, while in MTLA, solutions do not have propen- 

sity to clump due to the added modified phase. This is the ad- 

vantage of MTLA in comparison to TLA. As in PSO [11], TLA 

uses the teacher of the iteration to improve the existing solu- 

tion so as to increase the convergence rate. GA [22] uses se- 

lection, crossover and mutation processes to develop itself, but 

TLA implement the mean value of the class to improve itself. 

However, Elitism operation improves the algorithm’s efficiency 

in this respect. 

 
IV. SOLUTION METHODOLOGY 

In this section, MTLA is applied to the RCDED problem, the 

pseudo-code of the proposed approach is presented, and some 

relevant tools are discussed. The flowchart of the whole process 

of the MTLA technique is given in Fig. 1 in order to depict the 

order of the proposed algorithm. It is clear that the first phase 

(teacher phase), the second phase (learner phase) and the third 

phase (modified phase) are applied on the population, consec- 

utively. The output solutions of the modified phase are as the 

input population for the next iteration. 

 

A. Application of MTLA to the RCDED Problem 

The decision variables of the RCDED problem are the gener- 

ation pattern of the NG thermal units through the NT time inter- 

vals. Therefore, each learner is associated with vari- 

ables. The process of the MTLA can be summarized as follows: 

Generate  randomly subject to constraint (6). To 

satisfy power balance, go to the step 3.2 and return. Then, 

calculate the value of violation to the SRRs constraints as 
 

              (37) 

 
if        . 

Backward procedure: go to the previous time and subtract 
  from each which are fixed to their 

maximum values. Generate  randomly subject to 
constraints (6), (7), and (8) then, compute . This 

procedure continues until the time reached in which the 
violation is greater than or equal to zero. Save this time in . 

Forward procedure: Generate                 to 

randomly subject to constraint (6). Check the power 

balance according to step 3.2 and calculate the total fuel 
cost  using (1). Then the value of violation  
is calculated again based on the power output of the 

. The backward and forward procedures continue 

until     . 

Else 

Calculate the total fuel cost  using (1). 

Endfor (refers to index ) 

Calculate  from (1). 

Endfor (refers to index ) 

Step 3.2: Power balance handling: for satisfying the 

constraint (2) the value of power mismatch is calculated for 

each of matrix as follows: 

 

Step 1: Input the required information of the RCDED 

problem. 

Step 2: Representation of the learner; each learner indicates 

 

 

If , return. 

(38) 

a solution for the power generation of the units for the NT 

time intervals as in (12). 

Step 3: Generation of the initial population with 

constraint-handling; the candidate solution of each 

individual (generating units’ output) is randomly initialized 

in the feasible range, which would satisfy the constraints 

given by (2)–(11) as follows: 

Step 3.1: Simultaneous handling of the SRRs and ramp 

rate constraints: for each hour, the feasibility of constraints 

(6)–(11) is checked. If these constraints are violated, the 

algorithm returns to previous hours and modifies them in 

the way that it can reach the desired solution according to 

the following backward and forward procedure: 

For to  

For to NT 

; 

If , select one unit  of  randomly 

and subtract  from it, subject to (6). This procedure 

continues to reach the zero value of  by selecting 

different units to repair power mismatch [12]. The flowchart 

for the proposed constraints handling is shown in Fig. 1. 

Step 4: Teacher phase; in the current iteration , the best 

solution is selected for the teacher  and the mean 

value of the class  is calculated using (13) and (14). 

This step is implemented as described in Section III-A. 

Step 5: Learner phase; learners try to improve themselves 

via the interaction process described in Section III-B. 

Step 6: Modified phase; this step is implemented as 

described in Section III-C. The modification process can be 

expressed as shown in the next subsection. 

Step 7: Update procedure; the initial population is updated 

based on the new improved learners. 
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Fig. 1. Flowchart of the proposed MTLA method. 
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Step 8: Checking the convergence criteria; if the 

convergence criteria are satisfied, terminate the optimization 

process and select the best learner denoted by  as 

the optimal solution, otherwise return to step 4 and repeat 

the process. 

 

B. Pseudo-Codes of the Proposed Algorithm 

 

Input all required data. 

1. Initialization: 

For to  

For to NT 

Generate  randomly while satisfying (2)–

(11). 

End For (it refers to index ) 

Calculate  from (1). 

End For (it refers to index ) 

Initialize: 

    The learner with the best fitness value 

among all ; 

    The learner with the worst fitness value 

among all ; 

; 

2. While    

Update the teaching factor  using (19). 

Update the mean matrix  of all existing learners 

using (13), (14). 

Teacher phase 

For to  

Adapt learner based on the teacher matrix  

using (16)–(18) to generate  . 

If the new solution is better than the existing one; 

Accept  and replace ; 

Else 

Memorize . 

End If 

End For (it refers to index ) 

Learner phase 

For to  

Select the two best learners  from 

existing class. 

Adapt learner using (22) to generate . 

If the new solution is better than the existing one; 

 
Accept  and replace ; 

Else 

Memorize . 

End If 

End For (it refers to index ) 

Modified phase 

For to  

Select the th mutation strategy by roulette wheel 

mechanism based on Section III-C and calculate 

the modification operator using (32)–(35) to 

generate . 

If the new solution is better than the existing one; 

Accept  and replace ; 

Else 

Memorize . 

End If 

End For (it refers to index ) 

Update the learner for the next iteration. 

Update  and  for the next iteration 

based on (28)–(31). 

Determine  and  

; 

End While (it refers to index ) 

3. Return the final teacher found. 

 
C. Tool Usage 

The proposed tool can be used at the beginning of each period 

based on the rolling window information system. Thus, the im- 

pact of all equality and inequality constraints on meeting load 

demand, transmission losses and SRRs are mitigated for prac- 

tical systems in real-time applications. For illustrative and com- 

parative purposes, consider the time period of one day with an 

hourly time step. In each time horizon, for each time interval, 

the system demand, SRRs and -loss coefficient should be up- 

dated and a new RCDED should be run while taking into ac- 

count the power outputs in the previous hour and the ramping 

rate limits. Consequently, to handle the aforementioned equality 

and inequality constraints, implementing the proposed tool by 

the user to cope with the RCDED problem, which result in the 

optimal dispatching matrix of units over the 24-h, is of vital 

importance. 

 

V. CASE STUDIES 

In this section, the proposed method is applied to four case 

studies to comprehensively investigate the RCDED problem. 
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A. Description of the Case Studies 

Case I: The first case consists of five thermal units consid- 

ering the transmission losses. Here, the cost coefficients, gen- 

eration limits, ramp-rate limit of units, forecasted load demand 

for 24 h and the -loss coefficient of the system considering 

valve-point loading effect are considered [6]. 

Case II: The second case is a ten-unit network, which is 

investigated with and without transmission losses. Here, the 

system data are mainly derived from [19]. 

Case III: The third case is obtained by tripling the number of 

units in the previous case. 

Case IV: In order to measure better, the performance of the 

proposed approach, the scalability study is conducted. 

The large-scale 40-unit and 140-unit Korean test system are se- 

lected for this goal. The systems data are taken from [28]. 

It should be noted that the -loss coefficients are assumed to 

stay unchanged over the time horizon. Moreover, the 60 minute 

SRRs is set to 5% of load demand in each hour for all of the 

above case studies with time period 24-hour. 

In addition, the 10-min SRRs must be set to (1/6) (5%) load 

demand. In order to show the capability of the proposed ap- 

proach this quantity is set to (2/6) (5%) load demand. 

B. Parameter Setting 

It should be noted that the simulations are carried out on a 

Pentium P4, Core 2 Duo 2.4-GHz personal computer with 1 GB 

of RAM memory. Also, the setup for the proposed algorithm 

is as following. The numbers of the population are equal to 10, 

20, 50, 30, and 30 for the test cases 5, 10, 30, 40, and 140 units, 

respectively. Maximum number of the iterations is 200 for all 

of the aforementioned test systems. 

It should be noted that the performance of the other meta- 

heuristic optimization algorithms highly depends on tuning their 

different parameters. A small change in the parameters may re- 

sult in a large change in the solution obtained by these algo- 

rithms. For instance, PSO [11] requires learning factors, varia- 

tion of weight, and maximum value of velocity. As mentioned 

before, TLA is a powerful algorithm, which is free from ad- 

justing the parameters. TLA works in such a way that it only 

requires the population size and the maximum number of itera- 

tions. In other words, this algorithm reaches the optimal solution 

with adjusting two parameters and this feature is the major ad- 

vantage and superiority of the algorithm. 

C. Computational Result and Comparison 

Firstly, in order to show the satisfying performance of MTLA 

over the other renowned algorithms, the complete comparison 

and empirical studies between the algorithms’ convergence is 

carried out. For each case study, the value of the total fuel cost 

is extracted in 30 independent runs and the statistical informa- 

tion including the best, the worst and the average of the solu- 

tions as well as the Average CPU time are evaluated. It should 

be emphasized that the worst value of the total fuel cost is better 

than the best solution of all other methods in all test cases. This 

is another advantage of the proposed method that illustrates the 

superiority of the suggested MTLA over other techniques. Com- 

paring the best solutions and the mean values obtained by dif- 

ferent methods, it can be inferred that MTLA is a more pow- 

erful algorithm than other ones for finding the optimal solution. 

Moreover, in this study, the successful percentage and error are 

implemented to show the robustness of the proposed approach. 

The successful percentage can be defined as the number of suc- 

cessful runs which converge to the best solution divided by all 

runs (30 runs). Beside, the error is the average difference be- 

tween the obtained best solution and the global solution, which 

indicates the ability of each technique to reach the global op- 

timum solution. 

In order to investigate the effectiveness of the self-adaptive 

learning mechanism of MTLA, the execution probabilities of 

all four separate mutation strategies on the case study IV are 

plotted. To obtain each probability curves, the MTLA have been 

run for 30 trials. The most suitable strategy during the search 

procedure should yield the largest probability. 

The convergence graphs are also plotted to inspect the quality 

of the best solution over the evolution process. 

The average CPU time is highly dependent on the computer 

systems used for other experiments, which have been reported 

in the literatures. Hence, the scaled CPU time is calculated by 

the per-unit CPU speed multiplied by the given Average CPU 

time for each of the mentioned techniques [8]. The per-unit base 

speed is 2.4 GHz and the scaled CPU time is as follows: 

 

    (39) 

The average CPU time of each optimization method is very 

important for its application to real problems. Comparing the 

scaled CPU times for different methods, it can be illustrated 

that the proposed technique is faster than other methods. This 

is another advantage of the proposed MTLA. 

In each algorithm, the optimum population size is found to be 

related to the problem dimension and complexity. A change in 

the population size, affects the performance of the MTLA algo- 

rithm but its effect is not noticeable since this method achieves 

the optimum solution with a few number of population. The re- 

sults are presented in the following. 

Case I: RCDED Problem for 5-Unit Test System: As men- 

tioned before, in this case, the valve-point loading effect is con- 

sidered. The problem is solved for both conditions (considering 

and neglecting losses). The complete comparison between the 

performance of the proposed method and those of other well- 

known algorithms are shown in Tables I and II, for with and 

without losses, respectively. It can be seen that the best, the 

worst and the average value of the total fuel cost are ($43 084.4 

and $42 688.2), ($43 199.5 and $42 688.2) and ($43 167.6 and 

$42 688.2) for with and without losses, respectively. The self- 

adaptive probabilistic characteristics of the proposed approach 

are analyzed using the candidate strategies in the pool separately 

to solve the problem. 

The proposed MTLA with the aid of multiple mutation strate- 

gies in a parallel way can benefit from both global and local 

search characteristics. So, in each generation, the MTLA can 

produce diverse solution even with a small population and less 

maximum iteration number. Besides, the MTLA with self-adap- 

tive probabilistic mutation operators can better manage transi- 

tion from each generation to the next one in comparison with 
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TABLE I 

RESULTS OBTAINED BY DIFFERENT METHODS 

FOR CASE I, II, AND III WITHOUT LOSS 

 

 
each separate strategy. It is necessary to note that in each sepa- 

rate method, i.e., TLA-method1, TLA-method2, TLA-method3, 

and TLA-method4, one mutation technique is implemented for 

all of the output solutions of the second phase (learner phase). 

In an attempt to improve the modification process more effec- 

tively, a new self-adaptive mutation strategy is used such that 

the output solutions of the second phase (learner phase) would 

be improved in the third phase, i.e., modified phase. The added 

phase gets use of four mutation operations in parallel to enhance 

the ability of the algorithm for both local and global search ex- 

ploration adequately. It is obvious that the proposed method has 

provided better results in terms of the total fuel cost and the 

scaled CPU time. In Table III, the best dispatch result found 

by MTLA is shown to consider transmission losses condition 

and to compare with that of AIS [15] as the earlier report. All 

the changed generation dispatches have been bolded. One can 

observe that the generation outputs of many units by MTLA 

are quite different from those of AIS [15]. This implies that the 

global searching capability has been improved extensively by 

the proposed MTLA mechanism. The corresponding total loss 

is 194.5457 MW which is slightly larger than the transmission 

TABLE II 

RESULTS OBTAINED BY DIFFERENT METHODS FOR CASE I AND II WITH LOSS 

 

 

losses of AIS [15], i.e., 193.4334 MW. To demonstrate simul- 

taneous handling of three types of the SRRs by MTLA,  
, and  are also computed and added to this Table. It 

should be noted that to satisfy the SRRs constraints, the back- 

ward procedure occurs at the peak load demand hours in the next 

day, i.e., hours 11 am, 12, and 20 pm. 

Case II: RCDED Problem for 10-Unit Test System: As men- 

tioned before, this case is the ten-unit network, which is investi- 

gated in two conditions. Firstly, the transmission losses are ne- 

glected and the best total fuel cost is evaluated as $1 016 935. 

To check whether the constraints of the problem are satisfied 

or not, the detailed dispatch results of the MTLA solution are 

given in Table IV and compared with that of ICPSO [14] as 

the earlier report. All the changed generation dispatches of units 

have been bolded. One can observe that the generation outputs 

of many units by MTLA are quite different from those of ICPSO 

[14]. To demonstrate simultaneous handling of three types of the 

SRRs by MTLA, , and  are also calculated 

and added to this Table. It is necessary to note that in this case 

study, the backward procedure occurs at the peak load demand 

hours in the next day, i.e., hours 10 am, 11 am, 12, and 20 pm to 

satisfy the SRRs constraints. Secondly, the effect of the trans- 

mission losses is considered. The best value of the total fuel cost 

evaluated by MTLA is $1 037 489. The corresponding total loss 

is 823.2054 MW which is greatly smaller than the transmission 

losses of recently reported approach AIS [15], i.e., 835.6200 

MW. 

In Tables I and II, the comparison between the results eval- 

uated in two different conditions are shown. In Fig. 2, the 

best convergence performance for TLA, TLA with mutation 

method1, TLA with mutation method2, TLA with mutation 

method3, TLA with mutation method4 and MTLA neglecting 

losses are depicted. This figure indicates that the MTLA con- 

sistently converges faster than other separated methods. The 

computational cost of the proposed approach is compared with 
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TABLE III 

COMPARISON OF BEST DISPATCH FOUND BY MTLA (FIRST ROWS IN EACH HOUR) AND AIS [15] (SECOND ROWS IN EACH HOUR) FOR CASE I—WITH LOSS 

 

 
 

those of other methods such as ICPSO [14] and HQPSO 

[20] in Table V. This table shows that the proposed method 

reaches a lower total fuel cost than [14] ($1 016 935 opposed 

to $1 019 072) in lower maximum number of iterations, popu- 

lation size, algorithm parameters, power mismatch and scaled 

CPU time. Moreover, although [20] is in the list of latest hybrid 

evolutionary algorithms which solve the DED problem, but the 

result of the proposed MTLA approach is much superior than 

[20]. 

To evaluate the effect of population size on the performance 

of MTLA, different population sizes are selected and the 

RCDED problem is solved in 30 independent runs on the 10-

unit neglecting losses. Table VI shows the statistical infor- 

mation and frequency of convergence for 10, 20, 50, and 100 

population sizes. The population size of 20 achieves optimal 

solutions more consistently for the 10-unit test system. 

The successful percentage for all the methods and the pro- 

posed MTLA technique to solve RCDED problem considering 

losses is listed in Table VII. When the complexity of the problem 

increases, its overall successful percentage decreases, especially 

for non-convex and non-smooth problems. But the results of 

Table VII show that the MTLA is more successful in finding 

satisfactory solution in comparison to the other methods. 

Case III: RCDED Problem for 30-Unit Test System: In order 

to show the efficiency of MTLA in solving medium-scale non- 

linear problems, the 30-unit test system is produced by tripling 

the number of units in the system and the load demand is also 

tripled for the next 24 hours. It can be seen from Table I that the 

best total fuel cost is $3 048 609, which is much better and su- 

perior than the results of other methods. This is also important 

because as the size of the system increases, the differences be- 

tween the methods seem to decrease, but the solution obtained 

by the MTLA is far better than other methods. It should be 

pointed out that the backward procedure occurs at the peak load 

demand hours in the next day similar to the previous case study. 

Case IV: ED Problem for 40-Unit and 140-Unit Test Systems: 

From the point of view of meta-heuristic optimization and sim- 

ilar approaches, the test system of 5, 10, or 30 units is not large 
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TABLE IV 
COMPARISON OF  BEST  DISPATCH  FOUND  BY  MTLA (FIRST  ROWS  IN  EACH  HOUR) 

AND ICPSO [14] (SECOND ROWS IN EACH HOUR) FOR CASE II—WITHOUT LOSS 

 

 
TABLE V 

COMPARISON OF ICPSO  [14], HQPSO  [20] 
WITH MTLA FOR CASE II WITHOUT LOSSES 

 

 
TABLE VI 

EFFECT OF POPULATION SIZE ON CASE II—WITHOUT LOSS 

 

 

 

 

 

Fig. 2. Flowchart of the constraints handling. 

enough to demonstrate the scalability of the proposed approach. 

Therefore, the 40-unit test system is selected while valve-point 

effects are considered. In this test case, load demand is 10 500 

MW. The best fuel cost for this test case reported until now is 

 

$121 403.5362 [28] while it seems to be wrong. The true value 

based on the results of this paper is equal to $121 412.5483. The 

static ED (with study horizon 1h) is handled by the proposed 

approach and the results have been shown in Table VIII. The 
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TABLE VII 

SUCCESSFUL PERCENTAGE (%) OF DIFFERENT METHODS 

FOR CASE II—WITH LOSS OUT OF 30 TRAIL RUNS 

 

 

 

Fig. 3. Convergence graphs of MTLA, TLA-method1, TLA-method2, TLA- 
method3, TLA-method4, and original TLA for case II. 

 
 

 

Fig. 4. Evolution of probability for mutation strategies 1, 2, 3, and 4 in Case 
IV—40 unit. 

 

 

proposed method is compared with other methods in the area 

such as HQPSO [20], CCPSO [28], COPSO [28], CSPSO [28], 

CTPSO [28], BBO [29], DE/BBO [29], RCGA [30], QPSO 

[31] , and DABFA [32] to illustrate the superiority of the pro- 

posed MTLA. Also, the system with 140 units considering ramp 

rate limits and valve-point effects are selected as another large 

scale test case. The total load demand is 49 342 MW. The results 

are reported in Table VIII. The evolution trend of the probability 

of each strategy and convergence graph for 40-unit test systems 

have been illustrated in Figs. 3–5, respectively. It is observed 

that different strategies of MTLA are working together to ob- 

tain higher performance in the final results. Fig. 4 indicates that 

 

 
 

Fig. 5. Convergence graphs of MTLA, TLA-method1, TLA-method2, TLA- 
method3, TLA-method4, and original TLA for case IV—40 unit. 

 

 
TABLE VIII 

RESULTS OBTAINED BY DIFFERENT METHODS FOR CASE IV 

 

 
 

MTLA is able to adaptively select the most suitable strategy 

among all of them, without any prior knowledge. 

It can converge rapidly to a strategy with higher probability. 

It is necessary to note that the mutation method2 obtains the 

highest probability in comparison with other strategies, spe- 

cially the implemented mutation in [26] and plays a central role 

in the performance of the MTLA to reach to better results. 

To show the superiority of the proposed approach, the 

error index is implemented and calculated for each opti- 

mization methods. The corresponding error of original TLA, 

TLA-method1, TLA-method4, TLA-method3, TLA-method2
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and MTLA are $662.3677, $15.1314, $8.7300, $0.0308, 

$0.0004, and $0.0000 for 40-unit test system. 

According to the results of Tables I, II, V, VI, VII, and VIII, the following conclusions can be observed: 

1) When the dimensions of the problems increase, their com- plexity increase consistently, especially for the non-smooth and non-

convex function. Thus, the overall successful rate of each algorithm decreases for large-scale problem but the proposed approach 

obtains the best overall results. 

2) For large-scale problem, the higher population diversity is required and, hence, the strategy which provides higher diversity 

is able to obtain better performance. 

3) Regarding the advantages of the MTLA, which are illus- trated via simulations, it would be a proper choice for real-time 

applications in practical power systems. 

D. Performance of the Inclusion SRRs Constraints 

Inclusion of SRRs constraints increases complexity and av- erage CPU time burden to satisfy it. In this paper, three types of the 

SRRs constraints incorporating the ramp rate limits and power balance considering losses are handled simultaneously without any 

restriction on the objective function. As it can be seen from (9), the reserve capacity has been included in the constraint as an extra 

term, i.e.,  , in addition to load and loss in each hour. Therefore, this constraint will affect the re- sults of the DED problem. 

Also, if the constraints (10) and (11) are not satisfied in each hour, the algorithm should be returned to the pervious hours and 

modified them until satisfaction of these equations. Thus in all of the cases with the fixed number of units, inclusion of the 

additional SRRs constraints consider- ably affect the solution search domain and the performance of the solution procedure. These 

lead to a more execution time and total fuel cost. To demonstrate this, the DED is solved for the case study II without considering 

SRRs constraints. The best production cost and the average CPU time taken by the MTLA method decreases to $1 016 748 and 

0.065 min, respectively. It is clear that the SRRs constraints increase the complexity, the number of computations and the total fuel 

cost. The same justi- fication can be implemented for other case studies. 

Only two types of SRRs have been considered in the previous work [18]. Indeed, [18] considers the RCDED problem while the 

reserve have been added as a penalty term to the fuel cost function. In the presence of the SRRs constraints, the best total fuel costs 

are $1 083 973 and $1 071 236 for SRRs constraints 

(9) and (10), respectively, in 10 unit test system in 12.506 and 

16.374 min time. Besides, in the viewpoint of optimization is- sues, increasing the number of constraints will significantly de- 

crease solution space. From the experiments in Tables I and II, it is clear that for all test cases, the MTLA method is better com- pared 

to the other methods, in terms of producing better solu- tion and computation time. According to the above tables, the results of 

MTLA are more comparable with other approaches, since there is a considerable computation time and cost saving by using this 

method. 
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