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ABSTRACT Edge computing is a promising alternative to cloud computing for offloading computationally  heavy tasks from 

resource-constrained mobile user devices. Placed at the edge of the network, edge computing is particularly advantageous to 

delay-limited applications for having a short distance to end- users. However, when a mobile user moves away from the 

service coverage of the associated edge server, the advantage gradually vanishes, increasing response time. Although service 

migration has been studied to address this problem focusing on minimizing the service downtime, both zero-downtime and 

the amount of traffic generated as a result of migration need further study. In this paper, an optimal live migration for 

containerized edge computing service is studied. This paper presents three zero-downtime migration techniques based on 

state duplication and state reproduction techniques, and then, proposes an optimal migration technique selection algorithm 

that jointly minimizes the response time and network traffic during migration. For validation and performance comparison, 

the proposed migration techniques are implemented on off-the-shelf hardware with Linux operating system. The evaluation 

results showed that compared with a naive migration, the optimal approach reduced the response time and network load by at 

least 74.75% and 94.79%, respectively, under considered scenarios. 

 

INDEX TERMS Container, docker, edge computing, implementation, live migration, optimal decision, 

service migration. 
 

I. INTRODUCTION 

We are living in an era where Internet of Things (IoT) devices in the vicinity of users continuously produce massive data [1] and 

process them [2] to enable user-centric applications to be running on smart handheld devices. In particular, computa- tionally 

heavy tasks, such as big data analytics, virtual reality (VR)/augmented reality (AR), image processing, etc., are the key 

ingredients for the further success of such applications. However, neither IoT devices nor handheld devices suffice to provide 

real-time interactions while running such computa- tionally heavy applications due to their limited resources [3]. The need for 

enriching user experience has popularized cloudcomputing which allows low-power devices to offload com- putationally heavy 

tasks [4]. Centralizing a massive amount of IT resources, cloud computing can provision computing resources on demand, and 

adapt to varying service demand (e.g., auto scaling [5]). In addition, virtualization plays a key role in cloud computing to 

achieve high resource utilization, resource isolation and multi-tenancy [6]. 

To the resource-limited devices, the task offloading to cloud computing significantly helps to reduce the job processing 

time and the battery uses [1]. However, the large distance to end devices may incur high delay, making it unsuitable to 

delay-sensitive applications such as healthcare, connected vehicles, AR, and surveillance/ monitoring [7]–[9]. To provide 

additional computing resources to resource-limited end devices and minimize the 
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FIGURE 1. Mobile edge computing system where a mobile user communicates with its associated access point, and the offloading service running on the 
co-located edge server allows a mobile user to offload its tasks to edge server. 

 
 

 

latency at the same time, edge computing [1], [7], [9]–[14] has emerged as a promising alternative [15], [16]. In partic- ular, 

edge computing places computing/storage resources at the edge of the network. Thus, the reduced distance to end devices 

effectively decreases the network delay. 

Edge computing is a distributed and downsized form of cloud computing, and thus, it can be an alternative to cloud 

computing [15], [16] with additional benefits. Both cloud computing and edge computing can provide an isolated com- 

puting/storage resource to an individual user with virtualiza- tion. Thus, a user can offload its computationally-heavy tasks to its 

dedicated virtual machine or container running on either cloud or edge computing. Although both cloud and edge computing can 

be used interchangeably in some applications, the short distance to a user in edge computing can bring many advantages. Reduced 

security/privacy threat, bandwidth cost and response time are some of such advantages due the fact that network 

transmission occurs only in the vicinity of users [10], [11]. 

In some literature, the definition of edge includes the end devices such as smart phones. However, in this paper, edge is 

assumed to be the end of the radio access network operated and managed by the network operator. Thus, the scenarios where 

the end devices participate in task offloading are not considered in this work. Also, the partial offloading case where a 

fraction of a task is offloaded to an edge server whereas the remainder is processed locally at the user device is beyond the 

scope of this paper. 

The Fig.1 shows an example network diagram with edge computing. An edge server (ES) is attached to an access point (AP), 

and the users associated with an AP can offload their tasks to the co-located ES. Each user has its own service running on an 

ES, and due to virtualization and multi-tenancy, it does not violate the operation of other active services on the same ES. 

When a user moves out of the wireless coverage of the associated AP, the handoff procedure is trig- gered to transfer the 

connection of the user to another AP. To keep the service delay minimized while users movearound, transferring a service 

running on an ES to another has been proposed, called service migration. In particular, stateful and live service migration is 

challenging [11], [14] since it migrates a running service as it is without interrupting the ongoing service. In order to expedite 

the service migration process, the use of light-weight containerized virtualization has received much attention, such as Docker 

[17]. As reported in [18] and [19], Docker can achieve close-to native perfor- mance. 

There have been a few studies proposing service migra- tion techniques, but the major limitation is that they did not 

jointly consider the characteristics of the to-be-migrated service and migration technique to use. Since each service has 

different properties, to efficiently migrate containerized services, different migration technique should be chosen in an 

autonomous manner. Also, as it can be seen in Fig.1, the network traffic generated as a result of migration is injected to 

the core network, and it may cause network congestion if the traffic is voluminous. Thus, one should carefully design a 

migration method in order not to generate too much network traffic while keeping the migration time minimized. 

In this paper, three live, stateful container migrations and an autonomous system that selects the optimal migration are 

proposed. To the best of our knowledge, this is the first comprehensive study of the containerized service migration in the 

sense that 1) different migration techniques are consid- ered together to choose the optimal migration technique, and 

2) the migration techniques as well as the optimal selection system has been validated by implementation. The major 

contribution of this study is summarized below. 

• This paper proposes enhanced container migration tech- niques that migrate both the persistent files and volatile states 

(e.g., CPU context and memory state). In par- ticular, by introducing packet relay and replay buffer during migration, 
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the proposed techniques achieve zero-downtime during migration. 

• This paper identifies the key characteristics of both three migration techniques and containerized services to be migrated. 

Then, this paper analyzes which technique outperforms the rest in which services in terms of migra- tion time and network 

load. 

• This paper proposes an optimal migration selection method that minimizes both the expected migration time and the 

expected amount of traffic to be generated. 

• This paper also proposes a low-cost optimal migration selection algorithm for for it to run in real-time. 

• This paper proposes a system design to carry out the optimal migration selection and the chosen migration procedure in 
an autonomous manner. 

• This paper introduces the practical and technical details on how to implement the migration techniques on the widely-

used Docker platform. 

• The proposed migration techniques and the automated optimal migration selection system are implemented on off-the-
shelf computing devices. 

 
 

• This paper presents an empirical evaluation results, and shows that the proposed algorithm can effectively and efficiently 
migrate containerizes services. 

The rest of the paper is organized as follows. In Section II a summary of previous studies on containerized service migra- tion is 

presented, followed by a brief introduction to the backgrounds on the container migration on Docker. The pro- posed three 

different live container migration techniques are introduced in Section III, and then, the proposed optimal migration selection 

algorithm along with the overall system design is presented in Section IV. The following Section V explains the overall 

methodology used in this work. The empirical evaluation results are presented and discussed in Section VI, and finally, the 

paper is concluded by Section VII. The frequently used abbreviations and acronyms throughout this paper are summarized in 

Table 1. 

 
TABLE 1. Frequently used abbreviations and acronyms. 

 

  

  

 
 

  
 

 
II. LITERATURE REVIEW AND BACKGROUNDS 

In this section, previous studies on the containerized service migration are discussed, followed by a brief introduction to the 

backgrounds on the container migration on Docker. 

 

A. RELATED WORK 

Puliafito et al. [6] compares pre-copy, post-copy and hybrid migration performance in terms of migration time, service down 

time and the amount of transferred data. In short, pre-copy iteratively transfers most of the states (i.e., dirty pages) before 

stopping ES(src), while post-copy minimizes the amount of pre-copy and transmits dirty pages when it is requested at ES(tgt). 

The hybrid is the combination of both. The tools used in their paper are CRIU [20] for checkpointing, rsync for file transfer, and 

runC for container runtime. How- ever, the authors assumed that writing to disk is not allowed for some applications, and did 

not transfer the persistent files. Karhula et al. [21] demonstrated the migration of IoT edge functions using Docker and CRIU 

for checkpointing. How- ever, their proposed method is limited in that persistent files are not synchronized between ES(src) 

and ES(tgt), and there is no consideration on the changed states after the checkpoint has been made. 

Nadgowda et al. [22] proposed a stateful migration on Docker. The proposed Voyager transfers the memory state to the 

ES(tgt). In addition, to minimize the service down- time during the local file system migration, a dual-band datatransfer is 

proposed by using a network file system. However, if the network-attached storage is not available, the migrated service may 
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suffer from frequent faults for the files that are being copied in background, which may significantly degrade the quality of 

service (QoS). Dupont et al. [23] proposed a migration orchestration system, called Cloud4IoT. By using Docker and 

Kubernetes [24], the proposed system can per- form horizontal and vertical migration of IoT functions. The limitation in their 

work is the underlying assumption that ser- vices are stateless. Thus, Cloud4IoT does not transfer states, and it cannot be used 

when stateful migration is necessary. 

Al-Dhuraibi et al. [25] proposed an automatic vertical scaling system for Docker containers, called ElasticDocker. 

Although it is different from containerized service migration, ElasticDocker does perform live migration when there is no 

resource left on the host for scale-up. The live migration in ElasticDocker first transfers the file system differences, and then, 

transmits memory states. Their proposed live migration is similar to FC that is proposed in this paper (see Section III for detail). 

The limitation of ElasticDocker is that it freezes the container at the final memory dump stage. If a user sends requests before 

the container on ES(tgt) starts, they may get lost, resulting in QoS decrease or state inconsistency. 

Ma et al. [26], [27] proposed a container live migra- tion leveraging the layered storage of Docker. Their pro- posed 

method can be summarized in three steps. 1) Image layer synchronization: the different image layers are trans- mitted to 

ES(tgt). 2) Memory difference transmission: this stage transmits the checkpoint for consistent memory state. 

3) Container stop and container layer synchronization: this step synchronizes the writable container layer, i.e., the user’s 

modifications to files/directories are transmitted to ES(tgt). The limitation of this work is twofold. In the pre-dump con- tainer 

stage, memory snapshots are transmitted to all potential target servers, and it may incur unnecessary network load. Also, the 

later stage of migration terminates the ES(src) before ES(tgt) becomes ready to provide service. This may cause a short 

period of service interruption (i.e., downtime), or in the worst case, permanent service down when the ES(tgt) falls into faulty 

state. 

Yu et al. [28] proposed a container migration with log- ging and replay. The proposed 3-stage migration runs as follows: 1) 

exporting and transferring the entire image includ- ing the container layer, 2) logging the changes while the image transmission 

is in progress and replaying the changes on ES(tgt), 3) stopping ES(src) and resuming ES(tgt). Although the migration 

scheme can migrate the persistent files, some memory pages are not to be migrated. This can be a limitation to stateful 

applications. A similar approach has been proposed for virtual machine (VM) environment. Liu et al. [29] proposed a VM 

migration scheme that first transmits the checkpoint of a running VM. Until the VM on the target host is in the consistent 

state with the source host, the system events are recorded and replayed at the target host. However, this approach does not 

consider trans- ferring the persistent files on the local file system of the 
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source host. In addition, in some applications logging- and-replay by itself can be a better solution than the com- bination of 

checkpointing and logging-and-replay. 

As it can be seen in the previous literature, there are differ- ent ways of stateful migration: state-transfer or state-rebuild by 

logging and replay. Also, different services have different properties which will be discussed in the following sections. 

However, none of the aforementioned studies jointly consid- ers both to choose the optimal migration technique in terms of 

migration time and network load for minimizing service disruption and network congestion, respectively. This paper proposes 

three effective migration methods, and then, pro- poses to jointly consider the properties of different migration techniques and 

the service applications to be migrated in order to migrate services in an time and network-efficient manner. Furthermore, this 

paper presents an autonomous migration selection system that selects the optimal migration given the extracted properties of the 

container to be migrated. 

 

B. BACKGROUNDS: STATEFUL CONTAINER MIGRATION WITH DOCKER 

Virtualization is a key component to enable cloud/edge com- puting for high resource utilization, resource isolation and multi-

tenancy. Among different virtualization technologies, containerization has become more popular in the edge com- puting 

domain for their high performance and light-weight nature [6], [30], [31]. Although Docker is not the only containerized 

virtualization solution (e.g., LXC [32] and OpenVZ [33]), it is studied in this paper for its widespread use and large market 

share, i.e., approximately 25% [34]. Also, it is shown that Docker containers operate at the close-to native performance even on 

single-board computers [35]. This section introduces some Docker features that play a key role in the proposed live 

container migration and its implementation. 

A container is a complete runtime environment including an application and its dependencies. In particular, Docker iso- lates 

resources between different containers by using names- pace, and cgroups to control/monitor resources such as CPU and 

memory [37]. By sharing the kernel, containers can be lightweight [25], which is a distinguishable feature from virtual 

machine software such as VirtualBox and VMWare (see [13], [37] for an in-depth comparison between containers and virtual 

machines). 

A Docker container is created from a downloaded or cus- tom image which is a set of read-only layers constituting an 

application or service. When a container is started from an image, a writable layer, called container layer, is added as a top 

layer. Docker supports different storage drivers to store image layers (e.g., overlay2, btrfs and aufs), and overlay2 is used in 

this paper as officially recommended [38]. The writable container layer is denoted by upperlayer in the over- lay2 driver, and it 

contains the differences or changes in the file system (i.e., modified, added or deleted files/directories). In other words, the list or 

files and directories that are different from those in the image can be found in the upperlayerdirectory, which is also 

available by using the Docker diff 

command. 

Docker also records the container’s STDOUT and STDERR as logs in a JSON format by default. The log file can be found in 

the LogPath directory of which path is located in the docker inspect result. Also, the log can be retrieved by using the 

docker logs command. This is particularly useful to trace the history of actions executed mostly by user and applied to the 

container. 

CRIU is a utility to checkpoint and restore the state of a Linux process. CRIU captures memory state, process states, open 

files, network sockets and so forth, and dumps as a collection of files. The size of the checkpoint depends on the pagemap size 

of the process [22]. The Dockers experimental checkpoint function [39] relies on CRIU, and this play a key role in migration to 

let the volatile state of ES(tgt) be the same to that of ES(src). 

 
III. PROPOSED STATEFUL  LIVE  MIGRATION 

To achieve seamless, live migration that is transparent [8] to users, this section introduces the three enhanced migration 

techniques that are proposed in this paper. 

 
A. ASSUMPTIONS 

In the assumed system in this paper, an ES is co-located with an AP since deploying an ES at the AP reduces the service delay 

and avoids network congestion [7]. In this study, mobile users access the network via an IEEE 802.11 AP, which is wire-

connected to the core network. A user entering the coverage of an AP associates with the AP for wireless connec- tion, and it 

triggers a handoff procedure [40] if the user is in association with another AP at the moment. A user associated with AP-n 

receives computation offloading service from its dedicated container running on the ES-n which is co-located with AP-n. 

When a user handoffs to another AP, container migration is triggered and the user’s container is moved to the new AP so as 
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to keep the network delay minimized. 

When migration is triggered from ES(src) to ES(tgt), widely-available docker images, for example, those that are accessible 

in either public/private repositories, are assumed to be locally available (or pre-cached) on the ES(tgt) [36]. How- ever, in the case 

of containers running customizes images, this assumption does not hold, and it can be handled by using the proposed FC to 

be explained shortly. ES hosts have similar computing power, and the default resource-limit configuration [41] is applied to all 

Docker containers. 

 
B. PROPOSED LIVE CONTAINER MIGRATION 

The proposed live migration techniques synchronizes ES(tgt) with ES(src), and ES(tgt) will eventually have the same persistent 

state (i.e., files and directories in the file system) and volatile state (i.e., memory layout, network sockets, open files, etc.) as 

ES(src) has. The proposed three migration tech- niques can be roughly classified into two methods, namely state duplication 

and state reproduction. State duplication copies the state from ES(src) and then transfers to ES(tgt) so 

 
 

that ES(tgt) can start from the most recent state of ES(src). On the other hand, state reproduction transfers an instruction 

execution log/trace to ES(tgt) so that ES(tgt) can reproduce a container with the consistent state to ES(src) by executing the 

instructions in the received log. Throughout this paper, the scenario in Fig. 2 is assumed as an illustrative example. A user 

associated with AP-1 is receiving offloading service from a container on ES-1. As a user moves away from AP-1, it re-

associates with AP-2, which initiates the containerized service migration. To be specific, the container migration is triggered 

by receiving the corresponding message from the controller, which is explained in Section IV. The controller sends different 

messages to ES(src) and ES(tgt), namely, the identification (i.e., IP address) of the ES(tgt) to ES(src) and the name of the base 

image to ES(tgt). The base image name is not used in FC since it transfers the complete image, but in both DC and LR it can be 

used to check if the image is locally cached on ES(tgt). 

 

FIGURE 2. An example scenario that a user handoffs to AP-2, which triggers migration of the containerized service from ES-1 to ES-2. 

 
The distinct features of the proposed migration techniques compared to the previous works are as follows. 

1) The proposed techniques migrate and synchronize both persistent files and volatile states. 

2) By using the packet relay during migration, the pro- posed migrations can effectively prevent service outage and achieve 

zero-downtime. 

3) By using the replay buffer during migration, the migrated container can synchronize its state with the migrating 

container without requiring any additional state transfer. 

 
1) FULL-COPY MIGRATION, FC 

FC is a naive state duplication method to be used mainly as a performance baseline in this study. When a container on ES(src) 

at AP-1 is migrated to ES(tgt) at AP-2 all container layers (i.e., writable layers and read-only layers) as well as execution state 

are transferred to ES(tgt) so that a container with the consistent state can be started on ES(tgt) only by using what has been 

transmitted. 

The overall procedure of FC migration is illustrated in Fig. 3. When a migration is triggered, the to-be-migrated 
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FIGURE 3. Flowchart of the proposed Full-Copy migration: FC migrates the entire container image as well as the checkpoint so that ES(tgt) can resume 
the service only with what has been transmitted. The buffering and packet replay is used to trace and replay the state changes occurring during 
migration. 

 

 
container on ES(src) is exported and saved as a new image including both writable and read-only layers. Docker commit 

and save commands are used for this task. Then, the new image including the persistent state of the container is transferred to 

ES(tgt). The following step is to transfer the execution state, and it can be done by checkpointing by using checkpoint 

create command and sending it to ES(tgt). All file transmissions are carried out by a secure copy protocol tool, scp. 

In this work, when exporting and checkpointing the container, the container is configured to keep running by using --

pause=false and --leave-running=true option, respectively, so that it can continuously provide ser- vice to the user 

until its replica becomes ready on ES(tgt). From the moment MU handoffs to AP-2 to when the con- tainer becomes ready on 

ES(tgt), a non-negligible amount of time passes, during which the container’s state might change. To trace such changes, the 

proposed migration employs packet relay and buffering technique. 

Right after a user handoffs to AP-2 its serving container is still operating on ES(src), while the user accesses AP-2 for 

communication. Until the container on ES(tgt) becomes ready for service, the proposed migration allows AP-2 to relay the 

user requests to AP-1 so that ES(src) can pro- vide service. In the meantime, AP-2 buffers the same user requests locally. 

When the container on ES(tgt) starts, all buffered requests are replayed on the container. As soon as the buffer becomes empty, 

ES(tgt) notifies AP-2 of its readiness. AP-2, then, stops packet relay and buffering so that its local ES, i.e., ES(tgt), can 

provide service to the user. Also, AP-2 sends service stop request to ES(src) so that ES(src) can stop and release the container 

resource. ES(src) may delay the container stop for a certain amount of time, called grace period, if there are waiting jobs in 

its queue.DIFFERENTIAL-COPY MIGRATION, DC 

DC does not transfer the read-only layers, and thus, it can achieve an efficient state duplication compared to FC. The 

reduced amount of data transmission not only shortens the migration time, but also alleviates network congestion com- pared 

to FC. As aforementioned in Section II-B, a container consists of a writable layer at the top and read-only layers below. If the 

base image from which the container has started is locally cached on ES(tgt), the consistent state in terms of the persistent 

state can be achieved only by migrating the writable layer. The checkpointing is also used in DC to transfer the volatile state to 

ES(tgt). The overall procedure of DC is illustrated in Fig. 4 assuming that when migrating a containerized service, the base image 

is pre-cached on ES(tgt) or it can be pulled from nearby repository instantly. 
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FIGURE 4. Flowchart of the proposed Differential-Copy migration: 

DC migrates the writable layer as well as the checkpoint so that ES(tgt) can resume the service in a consistent state with reduced data transmission. 
The buffering and packet replay is used to trace 
and replay the state changes occurring during migration. 

 
When the migration is triggered by receiving the corre- sponding message from the controller, ES(src) extracts the file 

system changes (i.e., writable-layer contents), and ES(tgt) checks if the base image is locally available. The name of the base 

image is known to ES(tgt) by Controller. The writable-layer contents can be extracted in two ways. One is to list the changes by 

using docker diff command and extract them with docker cp. The other is to locate the path in which the changes are 

saved on the ES host’s file system. The path is identifiable from the docker inspect result by using the value of the 

UpperDir label. The former is safe but it requires parsing the docker diff result, and thus, the proposed DC uses the later 

for efficiency. 

After transmitting the writable-layer contents, ES(src) makes checkpoint and then transmits it to ES(tgt). Upon receiving 

both, ES(tgt) resumes the container from the up- to-date state. Any changes that are not included in either the writable layer or 

the checkpoint are handled by the packet replay and buffering method.DC is similar to FC in the sense that both transfer 

state to ES(tgt). However, FC transfers much larger data, and as a result, it longer and incurs larger network load than DC. 

 
2) LOG-REPLAY MIGRATION, LR 

LR is a state reproduction method which is different from FC and DC. Instead of receiving state from ES(src), ES(tgt) collects 

the command trace executed at ES(src), starts the base image from scratch, and replays the commands locally to reconstruct 

the consistent state. The overall procedure of LR migration is illustrated in Fig. 5. 
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The proposed replay buffer plays a key role in capturing the last-minute state changes that are not included in what has been 

transmitted from ES(src) to ES(tgt). The container on ES(tgt) notifies AP-2 of its readiness only when the replay buffer is 

empty and all queued commands are successfully replay on ES(tgt). In the meantime, the user’s offloading request packet 

received by AP-2 is relayed to ES(src) at AP-1. This packet relay and replay buffer scheme is particu- larly useful for 

container migration for the following two reasons. The common stateful container migration approach is based on iterative 

transmission of memory dumps until a pre-defined number of iterations is reached [6]. If there are remaining dumps to 

transmit after the iteration limit, it may fail to recover the exactly same container at ES(tgt). Also, during migration the 

amount of last-minute state changes (i.e., dirty pages) to transmit can be larger than the com- mand itself which caused 

the changes. If so, transmitting the command log can be more efficient than sending the dirty pages in terms of bandwidth 

and time. The other is related to the service availability and the fail-safe property. In general, common container migration 

techniques stop the container on ES(src), and then, resume its replica on ES(tgt) at some points of migration procedure. However, 

such approach incurs ser- vice downtime no matter how short the period is. Also, if, for some reasons, it fails to launch 

the replica container on ES(tgt) after stopping the original container on ES(src), the containerized service becomes 

unavailable, violating 

QoS requirement. 

The proposed migration techniques, on the other hand, can effectively overcome the two problems. The container on ES(src) 

keeps providing service until its replica on ES(tgt) becomes ready and fully-functioning, and as a result, there is no service-

unavailable period. Also, if ES(tgt) fails to launch a container replica, the original one on ES(src) can continue the service. 
 

C. USE CASES AND APPLICATION PROPERTIES 

The proposed three migration techniques have different char- acteristics and different use cases. Choosing an efficient 

migration technique in terms of migration time and network load depends on both how each migration technique works and 

the properties of the containerized service to be migrated. FC is a send-all migration and generates a large amount of network 

traffic since it transfers the   base   image (i.e., read-only layers) as well. Despite of its seemingly inef- ficiency, it is the only 

working solution when the base image of the to-be-migrated container is available only at ES(tgt). 

If it is not the case, however, FC is always inferior to DC in terms of bandwidth use and migration time. 

DC is particularly useful when state reproduction takes example, as reported in [42], training an Inception3 deep learning 

model for a plant leaf disease detection appli- cation took approximately 2 hours. However, the resulting model is only about 

90MB in size. In such cases, as long as the network delay between ES(src) and ES(tgt) is small andbandwidth is large 

enough, transferring the trained model, i.e., DC, is more time and bandwidth efficient than receiving the training data set and 

training the model at the ES(tgt), i.e., LR. 

On the other hand, LR outperforms the rest if the state restoration is faster than transferring the state. For example, 

augmentation [43] is a common trick to multiply the data set in deep learning for image-related applications to enhance the 

generalization performance of a trained model. It can be implemented with only a few lines of code (or command). The 

augmentation techniques are based on simple linear oper- ations, such as rotation, shift, shearing, zooming and flipping, and can be 

quickly done, while resulting in an additional voluminous data set. In such cases, instead of transferring all augmented data 

(i.e., DC), replaying the augmentation on ES(tgt) can save time and bandwidth. 
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IV. PROPOSED OPTIMAL MIGRATION SYSTEM 

This section introduces an optimal migration decision algo- rithm that chooses the best migration technique with respect to 

both the migration time and the network load. To do so, the algorithms considers characteristics of migration techniques and the 

application to be migrated together. Also, this section proposes a system design that can perform optimal migration 

autonomously. 

 
A. PROPOSED SYSTEM DESIGN: OVERALL ARCHITECTURE The design of the proposed autonomous system that can perform 

optimal live migration is depicted in Fig. 6, and one possible deployment scenario is shown in Fig. 7. Note that a 

resourceful AP may include the ES inside, and both Controller and Logger can be implemented in a single 

machine. The proposed system design consists of the follow- ing modules: 

 

FIGURE 6. The proposed autonomous optimal container migration system design consists of controller, logger, AP, and edge server. 

 
• Controller: When a handoff event is reported by Logger, Controller determines the optimal migration technique 
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FIGURE 7. An illustrative deployment scenario of the proposed system. 

 

 
and notifies both ES(src) and ES(tgt) of the decision as well as some extra information required to perform the chosen 

migration. 

• Logger: It collects all event logs, and saves them to its local or remote storage. When the user handoff event is 

reported by an AP, Logger pushes the event to Controller. 

• ES: It carries out containerized services and migration procedure. 

• AP: In addition to providing the network access to associated users, AP is responsible for packet relay and replay buffer. 

• Mobile User (MU) or user: MU continuously offloads tasks to containers, and due to its mobility, it incurs handoff 

between nearby APs. 

The components inside each module are introduced below by using the example scenario (Fig. 2) introduced in Section III. 

Suppose a user joins   the   network   by   associating with AP-1. The MU also initiates a containerized offloading service 

at ES-1, and AP-1 sends all event logs to Logger by Event Reporter. Logger receives the logs and stores them by Log 

Writer. Among the received logs, certain events are pushed to Controller by the Event Push component. For example, 

user’s association with AP-1 and the name of the base image used for the containerized service are the events to be pushed to 

Controller. Then, Controller saves the AP ID (e.g., SSID, IP address and MAC address) and the image ID (e.g., image name 

and tag) in Association DB and Image DB, 

respectively. 

In this paper, it is assumed that when a user triggers a handoff event, migration always executes. This is a reason- able 

assumption especially when the coverage of AP is large and user devices are moving at slow speed. In the case of IEEE 

802.11, during the handoff procedure, a MU sends REASSOCIATION REQUEST to the new AP (i.e., AP-2 in 

Fig. 2), and this is the earliest moment a handoff event is detected except the AUTHENTICATION message exchange. The re-

association event log is also sent to the Logger, and the Event Push component in Logger passes the handoff event to Controller. 

When Controller is notified of   the   handoff   event, the Migration Decision component starts by requesting information, 

called profile, to ES-1 that is needed to choosean optimal migration. ES-1’s Profile Extractor gathers pro- file and sends it 

back to Controller. The set of information included in a profile is introduced in the following subsection. Also, Controller sends 

the AP-1 ID to AP-2, and AP-2 ID to AP-1. Upon receiving the profile, Controller determines the optimal migration 

technique, and sends the decision to both AP-1 and AP-2. Migration Agent at ES responds to the decision, and begins 

container migration. When AP-1 finishes state of log transmission, it sends a container start request to AP-2. AP-2’s Migration 

Agent then allows Docker engine to start the container and carries out any remaining migration procedures, if any, before 

replaying commands in the replay buffer. Once the migration procedure finishes, the commands in the replay buffer is played 

on the container on ES-2 until the buffer becomes empty. When there is no more commands to replay, ES-2 notifies AP-2 of its 

availability, which is then passed to AP-1 so that it can stop its container at ES-1. 

 

B. PROPOSED OPTIMAL MIGRATION DECISION ALGORITHM 

The proposed optimal migration decision algorithm jointly considers the migration time and the traffic load to be injected to the 

network as a result of migration. The migration time is the time interval from when the migration is started at ES(src) to the 

moment the migrated container at ES(tgt) is ready to provide offloading service. The migration time affects service delay 

because when migration is in progress, a user request received by AP-2 is relayed to ES(src) at AP-1. Also, shortening the 

migration time saves computing resource on AP-1, since the container on ES(src) can stop and release the container 

resources only when the migration is finished. 
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Note that in this work, it is assumed that QoS is defined as a function of the service delay. However, there is no 

predetermined delay upper bound in this work since it can vary depending on application, domain, physical network 

performance, etc. Thus, in the remainder of this paper, it is presumed that a lower service delay is preferred. Also, the raw 

service delay will be measured and used for comparison in Section VI. Yet, one QoS constraint we force in this study is that an 

infinite delay is not permitted, which happens when there is a service outage. 

Which migration to execute affects the network load or congestion since different migration technique injects differ- ent 

amount of traffic to the network. No matter how short the routing path from ES(src) to ES(tgt) is, the network traffic as a 

result of migration enters the core network (see Fig. 1). Thus, if the chosen migration technique generates too much network 

traffic, it may result in network congestion. Also, having more bits to transfer may increase the probability of transmission 

errors. Such errors incurs re-transmissions, increasing the migration time. 

To formulate the optimal migration decision problem, the first step is to express the expected migration time of each 

migration technique. Let TFC be the migration time for FC, which is defined by the sum of the following 

 
 

terms: time to generate an image timggen, time to generate a checkpoint tchkgen, time to transmit the container image timgtx, time to 

transmit the checkpoint tchktx, time to start the con- tainer tctst, time to replay the buffered commands during migration tbufrep. 

Let TDC be the migration time for DC, which is defined by the sum of the following terms: time to gener-as shown in Table 4 

and 5. Therefore, the optimal migration decision among three techniques can be reduced to choosing the best migration between 

DC and LR. The corresponding optimal migration decision problem is given below (denoted by P. 4). 

1 
ate a checkpoint tchkgen, time to transmit the writable layer contents tdifftx, time to transmit the checkpoint tchktx, time to start the 

container tctst, time to replay the buffered commandsf (x) = 
α 

{x · TDC + (1 − x)TLR} 

1 
+ w

β 
{x · LDC + (1 − x)LLR} (4a) 
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= = → 
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during migration tbufrep. Let TLR be the migration time for LR, which is defined by the sum of the following terms: time to 

generate a command trace ttrgen, time to transmit the trace ttrtx, time to start the container tctst, time to replay the received trace 

trep, time to replay the buffered commands during migration tbufrep. 

Given that the amount of user commands executed at a container affects the amount of memory state changes, it is assumed 

that tchkgen ttrgen. Then, C can be defined as the common time factor included in TFC, TDC and TLR. To be 

specific, C = tchkgen + tctst + tbufrep for TFC and TDC, while C = ttrgen + tctst + tbufrep for TLR. Finally, a shortened migration 

time expressions can be given as follows: 

TFC = timggen + timgtx + tchktx + C, (1) 

TDC = tdifftx + tchktx + C, (2) 

TLR = ttrtx + trep + C. (3) 

Note that the terms mentioned here are in the unit of seconds. Transmission times are the functions of both the number of bits to 

transfer and the bandwidth B (bits per second), where the latter is assumed to be known. The value of C to be used for 

evaluation in Section VI is acquired by the average of multiple experiments. 

The amount of network traffic to be generated by three migration techniques is defined as follows. Let LFC be the network 

load to be generated as a result of executing FC, and it is defined by the sum of the following terms: amount of data for 

transmitting an image limgtx and amount of data for transmitting a checkpoint lchktx. Let LDC be the network load to be 

generated as a result of executing DC, and it is defined by the sum of the following terms: amount of data for transmitting an 

writable layer ldifftx and amount of data for transmitting a checkpoint lchktx. Let LLR be the network load to be generated as a 

result of executing LR, and it is the amount of data for transmitting a command trace ltrtx. The terms mentioned here are in the 

unit of bits. 

From the above equations for migration time and network load, it is obvious that DC is always superior to FC. This is because 

the complete container image, i.e., read-only layers and a writable layer, includes the writable layer, and in may cases, the size 

of the complete image is much larger than that of the writable layer. Therefore, in terms of both migration time and network 

traffic to be generated, DC always outper- forms FC. This claim also accords closely with the evaluation results to be introduced 

in Section VI-A. For example, the migration time of FC is 10-20 times larger than that of DCsubject to: x ∈ {0, 1},

 (4b) 

where TDC and TLR are defined in Eq. 2 and Eq. 3, respec- tively, w + is a non-negative design parameter indi- cating the 

weight to the network load, tdifftx   ldifftx/B, tchktx       lchktx/B, ttrtx       ltrtx/B. As w        0, the migration 

technique minimizing the migration time is chosen as optimal solution, while as w gets larger, minimizing the network traffic 

becomes more important. The bandwidth B can be estimated by using well-known techniques such as packet pair probing [44]. 

The time-related terms, i.e., TDC and TLR, are measured in seconds, while network load-related terms, i.e., LDC and LLR, are in 

bits. This unit discrepancy may result in the problem of one having much large value than the other by nature. To make 

different terms have the same scale, both α and β are introduced to normalize the corresponding terms in the objective 

function, (4a). 

The values needed to solve P. 4 are given, calculated or estimated right before solving the problem without actually 

performing either DC or LR. Some of the values are derived by the averaged values acquired from multiple evaluations. For 

example, the approach used for evaluation (Section VI) is to carry out multiple runs of experiments in advance to obtain the 

averaged values of tchkgen, tctst , ttrgen and timggen for each scenario profile. On the other hand, other values can be calculated as 

follows. The size of the command trace can be given by parsing the log file as mentioned in Section III. The size of the 

writable layer can be calculated by the du -h 

-apparent-size command running at the UpperDir 

as aforementioned in Section III. The size of the checkpoint can be calculated by creating a checkpoint, which can be quickly 

done. The approximate size can also be found by using docker stats command which shows the real-time memory usage 

of containers. The size of the image that consists of read-only layers is given by checking the image size, and B can also be 

estimated with high precision as mentioned earlier. The only value that cannot be obtained when solving P. 4 is tbufrep since it 

is hard to know which user actions might be performed during migration in advance. However, as it can be seen in Section VI, 

in some scenario profiles, DC and LR migration can quickly be done, and thus, it has a negligible effect. Most importantly, 

tbufrep is part of the common constant time factor C and applied to both DC and LR. Such constant will be ignored when 

searching for an optimal solution. 
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problems are in general intractable, due to the small size of P. 4 that has only two binary decision variables, the optimal 

solution can be quickly found, for example by using the branch and bound algorithm [45]. However, instead of com- puting 

the optimum for P. 4 by using conventional solution methods, the proposed algorithm evaluates the problem with each possible 

value of x separately, and chooses the best that results in the smallest objective value. The decision variable x takes value only 

between 0 and 1, and the terms included in f (x) are linear, and thus, the proposed brute-force algorithm can quickly terminate. 

 
V. METHODOLOGY 

This section explains the implementation detail, the set of scenarios used for evaluation, and the method of validation, 

performance measurement and analysis. 

 
A. IMPLEMENTATION 

For validation and performance evaluation, the proposed three migration methods and automated optimal migration system 

(Fig. 6) has been implemented, where the Python 3.8 has been used to implement the programs for user, Controller, Logger, Edge 

Server, and AP. The testbed consists of off- the-shelf three Desktop PCs and a laptop: PC #1 for Con- troller and Logger, PC 

#2 for both AP-1 and ES-1, PC #3 for both AP-2 and ES-2, and the laptop for a MU. For both wired and wireless 

connectivity, a WiFi router (ipTIME A8004NS-M) has been used. The four machines are within a single local area network, 

where PCs and a laptop are connected via Ethernet cables and IEEE 802.11ac wireless channel, respectively. PCs are 

homogeneous with the follow- ing specifications: Intel Core(TM) i5-8500 CPU, 16GB RAM, 128GB SSD and 1000Mbps 

network interface card (NIC). The laptop is equipped with Intel Core(TM) i5-1035G4 CPU, 8GB RAM, 256GB SSD, and IEEE 

802.11ac-compatible NIC. PCs are installed with Ubuntu 18.04.5 LTS oper- ating system, while Windows 10 is installed 

on the lap- top. The particular Docker and CRIU version used for implementation is 17.03.2-ce (build f5ec1e2) and 3.15, 

respectively. 

In the testbed network, the background traffic has been controlled to be as little as possible so that it does not affect the 

delay and transmission rate during experiment. On aver- age, the round trip time (RTT) measured by a series of ICMP message 

exchanges between any two entities was approxi- mately 20 ms. To control both the bandwidth and latency of APs, tc (i.e., 

a Linux tool to configure Linux Traffic Control) [46], has been used. With tc, the one-way net- work delay between two APs 

has been configured to be 100 ms, which increases the service delay when the migration is in progress for the proposed 

packet relay. In this work, to precisely schedule handover events, sim- plified APs are implemented, and the user movements 

are emulated so that handover occurs at a scheduled moment in time.SCENARIO 

Each user exclusively accesses its dedicated and isolated container for offloading service. As illustrated in the example 

scenario (Fig. 2) in Section III, MU associates with AP-1 and offloads tasks to ES-1(src), at the beginning. As MU moves 

towards AP-2, handoff occurs, and the containerized service is migrated to ES-2(tgt). 

To evaluate the proposed method on practical and con- trolled scenarios, the followings have been designed and 

implemented: two application services, service 1 (SVC-1) and service 2 (SVC-2), and two sequence of user actions (or 

commands) for task offloading, ACT-1 and ACT-2, that are applicable to both services. SVC-1 is a simple, light-weight 

application container that can startup fast and generates a small amount of data to be stored on the writable layer. On the other 

hand, SVC-2 is a relatively heavy application container that takes longer to startup, and user requests can generate a large 

amount of data to store. ACT-1 consists of actions that do not take long to complete. However, ACT-2 is a set of actions 

that takes longer than that of ACT-1. In addi- tion, the network bandwidth has been configured with two different 

configurations, namely, small bandwidth and large bandwidth. With the two applications, two action sequences, and two 

network bandwidth setups, eight scenarios or profiles are generated as summarized in Table 2. 

 
TABLE 2. Eight different scenario profiles used for evaluation. Each profile/scenario is characterized by which service to use, which action sequence 
to execute, and which network bandwidth configuration to apply for evaluation. 
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∈ { } 

∈ { } 

 
The combination of a service type, action sequence, and network configuration constitutes a scenario profile, labeled by 

AC-st/NC-b as shown in Table 2. By quantitatively ana- lyzing the effect of each action sequence on each applica- tion 

service with multiple experiments, it is found that each scenario generates a certain amount of data to be written to memory 

and writable layer, and also causes a certain period of time for state reproduction on average. Based on such findings, an AC-

st label is attached to each scenario, whereas NC-b simply indicates the size of the bandwidth configured. The detail 

explanation on the labels are given below, and the configuration details are listed in Table 3. 

• s L, H (Low, High): the total sum of both the amount 

of data to be stored at the writable layer and the size of the checkpoint (for DC), 

• t F, S (Fast, Slow): the state reproduction time for 

LR (note: this is different from replaying the commands buffered during packet relay), and 
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∈ { } 

TABLE 3. Application and network configurations for evaluation: four configurations for the containerized application and two configurations for the 
network bandwidth make eight different scenario profiles in total, where WL is short for writable layer. 

 
  

 

 
  

 

 
 

   

  

 

 
• b L, H (Low, High): the size of the configured network bandwidth. 

The configuration label s and t are related to DC and LR, respectively, while the label b affects the performance of all three 

migration techniques. In the case of FC, the amount of data to transfer is the size of the complete container image (i.e., read-

only layers and a writable layer) and the check- point, and the former is not mentioned above. As discussed in Section IV, FC is 

always outperformed by DC, and thus, this work mainly focus on the performance comparison between DC and LR. The base 

image used for evaluation is the offi- cial python:3.8 at DockerHub, and it is approximately 909MB in size. 

For each scenario, each evaluation run lasts for 200 or 100 seconds, and MU generates a service request at the default rate, 

i.e., 1 request/second. MU handoffs from AP-1 to AP-2 after 50 seconds from the beginning or when sending 50th request to its 

associated AP. 

 
B. PERFORMANCE MEASUREMENT 

The key performance metrics considered in this study are the service delay, the migration time, the amount of traffic to be 

injected to the network as a result of migration, and the time taken to reproduce the given state. Since the timestamped logs that 

are related to service delay and migration time are sent to Logger, both are measured by inspecting the accumulated logs 

which act as regarded as raw data in this study. The timestamp included in each log does not represent when it is received by 

Logger, but when the event actually occurred. On the other hand, The amount of traffic and the state repro- duction time have 

been computed in advance. 

To precisely measure the service delay before/during/after migration, a MU is configured to generate offloading ser- vice 

request at a fixed interval, i.e., 1 REQ/s. A user’s offloading request is forwarded by an associated AP to the co-located ES, 

where the request is actually processed. Once the ES completes processing the offloaded task, it sends an application-layer 

positive acknowledge (ACK) back to the user via the AP. Thus, the response time or service delay can be measured by the 

elapsed time between the moment a user sends an offloading request and the moment the user receives the corresponding 

ACK. The corresponding logs are transmitted to Logger, and by identifying both logs, the migration time can be 

calculated.The migration time is the elapsed time between the moment the migration is started at ES-1(src) and the moment the 

migrated container at ES-2(tgt) is ready to provide the offloading service. The corresponding logs are transmitted to Logger, 

and by which, the migration time can be calculated. There are predefined scenario profiles and they assumed to be the same 

throughout the experiments. Thus, for a scenario profile, the number of bits to be transmitted as well as the state reproduction time 

remains the same. Multiple experiments have been carried out and then the average has been taken in advance to calculate 

both. 

Note that the task offloading, in general, can reduce the energy consumption of an end device, but the direct relation- ship 

between the proposed migration and the saved power consumption is beyond the scope of this study. In a nutshell, as studied 

in [47], [48], the power consumption of a user device is proportional to the computation load or the number of CPU cycles 

required to process a given job. Since an offloaded job is processed not on user device, but on edge server, edge computing 

can effectively achieve power saving of end devices. 

 
C. VALIDATION 

The validation of the proposed optimal migration has been carried out from various aspects based on the accumulated logs at 

Logger. The occurrence of migration has been vali- dated by inspecting the logs indicating which ES processed the 

offloading requests from the user. Whether the ES car- ried out the chosen, optimal migration has been validated by 

inspecting the log from Controller regarding its decision and the logs from both ES-1(src) and ES-2(tgt) regrading the 

migration they actually performed. Each task offload- ing request from a user is sequentially numbered, and the 

corresponding ACK from the serving ES includes the same number. Thus, whether or not there has been any offloading 
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service outage has been validated by inspecting the numbers of the request-ACK pairs. If there are N number of requests and 

the corresponding ACKs in the logs without anything missing, it is regarded that there was no offloading service outage. 

 
D. RESULTS ANALYSIS 

For each scenario profile, five runs of experiments have been carried out. To minimize the effect of the outliers and to draw the 

common behavior on each scenario, an average has been taken out of the results from multiple experiments. Such averaged 

results are, then, used for performance comparison and analysis. 

 
VI. EXPERIMENTAL EVALUATION 

This sections shows the performance evaluation results of the proposed optimal migration running on the testbed with the 

scenarios configurations that are introduced in Section V. Note that for all experiments carried out and report in this section, 

there was no service outage, which is validated by checking any missing requests or ACKs in the log at Logger. 
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IN-DEPTH INSPECTION ON THE BEHAVIORS OF THE THREE MIGRATION TECHNIQUES 

1) MIGRATION ON AC-LF/NC-L SCENARIO 

To begin with, AC-LF/NC-L and AC-LF/NC-H scenarios have been carried out to take a close look at how each migration 

technique behaves and how the per-request service delay (i.e., response time) varies. Both AC-LF/NC-L and AC- LF/NC-H have 

the same application configuration. However, the network bandwidth is different, which affects the elapsed time to transmit the 

migration-related data, resulting in dif- ferent migration time. Fig. 8 and Fig. 9 show the experi- ment result for the AC-

LF/NC-L scenario profile that lasted for 200 seconds. To be specific, Fig. 8 shows the per-request response time trace for FC 

(Fig. 8(a)), DC (Fig. 8(b)) and LR (Fig. 8(c)). Fig. 9 shows the on average per-request response time for three migrations 

together. 

 

 

 
 

FIGURE 8. Dark solid line shows the average per-request response time trace on the AC-LF/NC-L scenario. The migration is triggered when the 50th request 
is sent out from the MU. The red and blue dotted line represents the largest and shortest response time for each request, respectively. 

 

 

FIGURE 9. Average per-request response time trace for three migrations on the AC-LF/NC-L scenario. 

 
As expected, FC spent the most time on migration, result- ing in the largest response time among the three migration 
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= = 

TABLE 4. Average migration time and response time for three migrations on the AC-LF/NC-L scenario. 

 
 

 

 
 

 
 

 

    

 

 
techniques. The response time is proportional to the migration time, because the packet relays occur between AP-1 and AP-2 

during migration, and the RTT between the two is relatively large. While migration is in progress, the MU that has asso- 

ciated with AP-2 communicates with AP-2. However, its functioning container is still in ES-1 at AP-1, and the one that 

is co-located with AP-2 has not been started yet. Thus, AP-2 has to relay the MU’s requests to AP-1 so that the MU’s container 

in ES-1 can respond to the requests. Due to this relaying, the response time becomes larger during migration. In this work, 

ES(src) with FC is implemented to perform the following tasks in sequence for migration: T1) generates a complete 

container image, including both the read-only layer and the writable layer, T2) transmits the image, T3) creates a 

checkpoint, and 4) transmits the checkpoint. In the testbed setup, T1 takes a few seconds due to the large size of the 

image. Also, for the low bandwidth in the AC-LF/NC-L scenario profile, it took approximately 100 sec- onds long to transmit 

the image. This is because the entire traffic FC generates is approximately 960MB (i.e., 909MB for the read-only image and 

50MB for both checkpoint and writable layer contents). Upon receiving the complete con- tainer image and the checkpoint, 

ES-2 performs the following tasks: T1) loads the received image, T2) creates a container from the image, T3) starts the 

container with the received checkpoint. The three tasks also requires a few seconds of 

time. 

On the other hand, both DC and LR resulted in a much shorter migration time than FC. The main reason is the 

reduced amount of data to transmit. DC spends approxi- mately 5 second in transmission to deliver 50MB of data which is 

the sum of the writable layer and checkpoint. LR transmits only a small-sized text, i.e., command log, which is 

approximately 1MB, and spends 5 seconds in replay- ing the received command trace. LR migration was slightly shorter than DC, 

although the difference is negligible. This is mainly because of the time taken to generate and restore from a checkpoint. 

As it can be seen in the summary of migration time and response time on average shown in Table 4, the migration time 

directly affects the service delay or the response time for the user requests. As a result, FC resulted in the largest response time 

of 0.2029 seconds on average. The migration time of DC is slightly longer than that of LR, but, the average response time 

between the two does not much differ. This is because the additional delay incurred by DC compared to LR has become 

insignificant as the experiment progresses. If the experiment lasts longer, the average delay between DC and LR will become 

much closer. 

 

 

 

  
 

 

 
 

FIGURE 12. Objective value of P. 4 evaluated for the AC-LF/NC-H 
scenario. The blue dashed line and black dotted line show the objective 
value when x 1 and x 0, respectively, and the red solid line shows 
the optimal migration with respect to the weight w . 

 

 
  

 

FIGURE 10. Dark solid line shows the average per-request response time trace on the AC-LF/NC-H scenario. The migration is triggered when the 50th 

request is sent out from the MU. The red and blue dotted line represents the largest and shortest response time for each request, respectively. 
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FIGURE 11. Average per-request response time trace for three migrations on the AC-LF/NC-H scenario. 

 

TABLE 5. Average migration and response time for three migrations on the AC-LF/NC-H scenario. 

 
    

    

 
From the optimal migration point of view, LR is always optimal for this scenario profile. LR always injects less traffic to the 

network. Moreover, for the AC-LF/NC-L configura- tion, LR resulted in a shorter migration time. Thus, LR is to be chosen as 

optimal for any value of the weight parameter w. Note that the values of alpha and beta are configured to 0.01 and 2, respectively, 

which are empirically obtained. 

 
2) MIGRATION ON AC-LF/NC-H SCENARIO 

Fig. 10, Fig. 11 and Table 5 show the evaluation results for the AC-LF/NC-H scenario profile. The evaluation is carried out 

for 100 seconds, not 200, and this affects the on average response time. It is worth noting thatmigration methods that 

transfer much data take advantage of the increased bandwidth. As a result, the migration time for both FC and DC 

decreased much, while that of LR did not significantly change compared to the previous AC-LF/NC-L scenario profile. As a 

result, the migration time of FC reduced to 37.1064 seconds, which contributed to the reduced per-request response time. The 

increased bandwidth also reduced the migration time of DC. How- ever, the migration time of LR is not significantly changed, 

because LR transmits only a little from ES-1 to ES-2. The only data to transmit is the command trace which is a text-only, 

small-sized file. The reduced migration time of DC made the response time shorter than that of LR on average. 

From the optimal migration point of view, an interesting 

result was found as shown in Fig. 12. Although LR injects less traffic to the network, DC resulted in a shorter migration time 

for the AC-LF/NC-H configuration. Thus, in contrast to the previous AC-LF/NC-L scenario profile, LR is not always the 

optimal migration on AC-LF/NC-H. A small value of w tends to ignore the effect of the amount of network traffic to generate, 

and thus chooses DC as an optimal solution. How- ever, when w > 11.1277 the importance on the migration time vanishes, and 

thus, LR is chosen to be optimal. 

From the evaluation results on both AC-LF/NC-L and 

AC-LF/NC-H, it can be seen that the change in bandwidth affects the performance of both FC and DC that have relatively large 

traffic to transmit. On the other hand, the performance of LR that does not have much to transmit does not vary much for the 

bandwidth size. 

A. PERFORMANCE COMPARISON BETWEEN DC AND LR 

MIGRATION 

As discussed in Section IV, FC is always outperformed by DC. Thus, from now on, the performance comparison between DC and 

LR will be discussed, excluding FC. Also, the evaluation is carried out only for 100 seconds. 
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1) MIGRATION OF SERVICE 1 CONTAINER 

Both Fig. 13 and Table 6 show the evaluation results of DC and LR on the AC-LS/NC-L and AC-LS/NC-H scenario profiles. As it 

can be seen, the migration time of DC changed much 
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FIGURE 13. Average per-request response time trace for DC and LR on AC-LS/NC-L and AC-LS/NC-H scenario profiles. 

 
 

TABLE 6. Average migration time and response time for DC and LR on AC-LS/NC-L and AC-LS/NC-H scenario profiles. 

 
    

    

    

 

 

  

FIGURE 14. Objective value of P. 4 evaluated for AC-LS/NC-L and 

AC-LS/NC-H scenario profiles. The blue dashed line and black dotted line show the objective value when x 1 and x 0, respectively, and the red solid line 
shows the optimal migration with respect to the weight w . 

 
between the two scenario profiles for the network bandwidth difference, but it was not the case to LR. With the ACT-2 action 

sequence, the ES-2 spends approximately 10 seconds only to replay the commands in the log. On the other hand, DC only 

needed to transmit the writable layer and checkpoint which amount to 50 MB in total, and as a result, the migration time is smaller 

than that of LR. 

Fig. 14 shows the change of the objective value of P. 4 

evaluated for AC-LS/NC-L and AC-LS/NC-H scenario pro- files. From the perspective of migration time, LR is outper- formed 

by DC, and thus, the optimal migration changes as w increases. For AC-LS/NC-L and AC-LS/NC-H scenario profiles, the 

optimal solution changes from DC to LR when w 14.2179 and w 29.2057, respectively. On the AC- LS/NC-H scenario 

profile, a larger value of w is required to switch the optimal solution from DC to LR compared to the AC-LS/NC-L scenario 

profile. This is because the migration time of DC in AC-LS/NC-H is less than that in AC-LS/NC-L, while LR results in almost 

identical migration time in both scenario profiles. 

 
2) MIGRATION OF SERVICE 2 CONTAINER 

The startup procedure of the SVC-2 application container from scratch is more complex than that of SVC-1, and it affects the 

migration time of LR. During migration, DC starts 
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FIGURE 15. Average per-request response time trace for DC and LR on AC-HF/NC-L, AC-HF/NC-H, AC-HS/NC-L and AC-HS/NC-H scenario profiles. 

 
TABLE 7. Average migration time and response time for DC and LR on 
AC-HF/NC-L, AC-HF/NC-H, AC-HS/NC-L and AC-HS/NC-H scenario profiles. 

 
    

    

    

    

    

 
a container at ES-2 from the most-recent state, and it does not start a container from scratch. On the other hand, LR starts a 

container from scratch on ES-2, and then, replays the received the trace log. The time-consuming startup of SVC-2 delays the 

entire LR migration process, which is noticeable in the experiment results. 

The evaluation with the container running SVC-2 has been carried out on different action sequence and network band- width 

configurations, and the results are shown in Fig. 15 and Table 7. SVC-2 containers result in a larger checkpoint and writable 

layer than SVC-1 containers, and the amount of network traffic to generate by DC is increased to 200 MB. This is why DC took 

much longer for migration than LR when the network bandwidth is small–see Fig. 15(a) and Fig. 15(c). On the other hand, when 

the network bandwidth is large, the migration time for DC is close to or shorter than that of LR by reducing the data 

transmission time. 

The migration time of DC largely depends on the network bandwidth, and thus, DC resulted in a shorter migration time when 

the bandwidth is larger, i.e., Fig. 15(b) and Fig. 15(d). On the other hand, the migration time of LR is largely affected by the time 

taken to replay the transmitted log. Thus, LR resulted in a shorter migration time only when the replay time is shorter, i.e., Fig. 

15(a) and Fig. 15(b). 

Out of the four scenario profiles, DC outperforms LR only on the AC-HS/NC-H scenario profile with respect to the 
 

  
 

 
 

FIGURE 16. Objective value of P. 4 evaluated for AC-HF/NC-L, 

AC-HF/NC-H, AC-HS/NC-L and AC-HS/NC-H scenario profiles. The blue dashed line and black dotted line show the objective value when x 1 and x 0, 
respectively, and the red solid line shows the optimal migration with respect to the weight w . 

 
migration time. Thus, for the other three scenario profiles, LR is chosen to be optimal as shown in Fig. 16. On the AC-HS/NC-H 

scenario profile, the migration time of DC is slightly less than that of LR. Thus, for a small value of w, DC is chosen to be optimal. 

However, for the value of w > 2.7602, LR is taken as an optimal migration technique. 
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VII. CONCLUSION 

This paper has proposed three seamless, stateful migration techniques for containerized services. Both FC and DC are state 

duplication methods in that they transfer state to the target edge server. On the other hand, LR is a state reproduc- tion method 

that replays the command trace to build a con- tainer with a consistent state. To capture the last-minute state changes, i.e., the 

state changes that are not included in what has been transmitted to the target edge server, this paper has proposed a packet 

relay and buffer replay method. Then, this paper has proposed a system design for an autonomous opti- mal migration selection 

system. It chooses the optimal migra- tion technique considering the characteristics of the appli- cation to be migrated and the 

migration methods together. The proposed optimal migration selection problem considers both the migration time and the 

network load, and makes an optimal decision according to the tunable weight parameter. This paper has introduced 

implementation details on the three migration techniques as well as the autonomous migration system, and also carried out 

experiments. The results have revealed that the change in bandwidth largely affects the performance of DC. On the other 

hand, the performance of LR depends mainly on the application property of the trace replay time. As a result, it is found that both 

the characteristics of migration techniques and the properties of the applications to be migrated should be jointly considered 

when making a decision on optimal migration. 
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