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Abstract:  The use of 3D plant models for high-throughput phenotyping is becoming an increasingly popular 

method for many plant scientists. Many camera-based imaging systems and reconstruction algorithms have 

been developed for 3D plant reconstruction. However, it remains difficult to create an imaging system that 

provides high quality results at low cost. Useful comparative information about existing imaging systems and 

their improvements is also limited, making it difficult for researchers to make informed choices. The purpose of 

this study is to find possible solutions to these problems. We are introducing two new systems for plants of 

different sizes and a pipeline to create high quality 3D point clouds and networks. The increased accuracy and 

efficiency of the proposed system make it a potentially valuable tool for improving high-throughput phenotyping 

by integrating 3D features to increase accuracy and measure features not applicable to 2D imaging methods. 

The study shows that phenotypic traits derived from 3D models are highly correlated with manually measured 

phenotypic traits (R2> 0.91). In addition, we present a systematic analysis and comparison of different imaging 

system setups with a conventional system, which provide recommendations for botanists to improve the 

accuracy of 3D construction. In summary, our proposed imaging system is proposed for 3D reconstruction of 

plants. In addition, the analysis results of the different configurations presented in this paper can be used to 

design new personalized imaging systems and improve their accuracy. 
Keywords: 3D reconstruction; point cloud; imaging system; high-throughput phenotyping 

 

 
1. Introduction 

High-throughput phenotyping is a critical component of plant science research 

aimed at improving crop performance for meeting the food, fiber, and fuel needs of 

society. Accurate and rapid quantification of plant phenotypes can enable researchers to 

bridge the genotype-to-phenotype gap, especially for traits associated with stress 

tolerance [1]. High- throughput phenotyping has the potential to accelerate the 

development of high-yielding, stress-tolerant crops [2]. 

It is challenging to develop cost-effective high-throughput phenotyping systems. 

One of the popular existing solutions is image-based methods. Compared to manual 

phenotyping, which is laborious, time-consuming, and usually destructive [2], image-based 

methods are desired for their efficiency, non-destructive aspect, and the capability of 

large- scale measurements. For example, Zhou et al. [3] presented a semi-automated 

phenotyping pipeline named Toolkit for Inflorescence Measurement (TIM) to extract 

traits from images of sorghum. Gage et al. [4] developed a Tassel image-based 

phenotyping system (TIPS) for tassel imaging in the field. Although image-based 

methods have successful applications 
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in phenotyping, there are still numerous limitations that could become the barrier 

for wider adoption by researchers. As images are projections of 3D objects onto 2D 

planes, image-based methods cannot present an accurate structural description of 3D 

objects due to the occlusion and inevitable loss of depth information. As a result, 

extra efforts are needed to estimate the spatial information of plants in 3D space [5]. 

Moreover, captured images are related to view-angles, and, thus, the traits of the same 

plant might be different if the spatial relationship between the camera and the plant 

changes. This instability leads to inaccuracies during phenotyping and makes it 

difficult for researchers to draw reliable conclusions on the genotype-to-phenotype 

linkages. 

In order to overcome some of the drawbacks of image-based methods, plant 

scientists are exploring available 3D approaches for improving phenotyping. 

Compared to images, 3D models of the plants (usually represented as point clouds or 

meshes) include the depth information intrinsically. Therefore, 3D models have shown 

the promising capacity to describe the complete spatial information of the plants and, 

thereby, avoid the issues of view-angle dependent traits. Moreover, similar to the image-

based methods, 3D methods can also be non-destructive and scalable for phenomics 

experiments. In general, there are two main types of methods to reconstruct a plant in 

3D space. The first is active methods, in which various sensors transmit and receive 

signals actively to capture the depth information. In these methods, plants are scanned 

from multiple view-angles to generate raw angle-specific point clouds. Then, the raw 

point clouds are registered and merged to construct the final point clouds. The 

advantage of this type of method is its easy access to 3D point clouds. For example, 

Thapa et al. [6], and Zhu et al. [7] proposed an instrument based on light detection 

and ranging (LiDAR) to capture the point clouds of maize and sorghum. The second 

type entails passive methods, which only involve 2D images captured by regular 

cameras. With the images from various view-angles, the depth information is calculated, 

and the 3D shapes of plants are reconstructed using various algorithms. One of the most 

favored algorithms is structure-from-motion (SfM), in which the positions of points of 

the plants in 3D space are calculated by constructing a 3D scene using paired images [8]. 

Another algorithm, multi-view environment (MVE), combines SfM and multi-view 

stereo (MVS) algorithms together and reconstructs a point cloud and 3D meshes [9]. 

MVE has been used to develop a pipeline for 3D reconstruction and phenotyping to study 

growth dynamics of rice inflorescences [10,11]. 

Although 3D phenotyping is typically more accurate than 2D image-based 

approaches, current 3D methods are limited due to several challenges. For example, 

McCormick et al. [12] proposed a pipeline to identify shoot architecture based on 

depth images captured by Microsoft Kinect. However, the average point spacing of 

Microsoft Kinect is 5 mm, while the diameter of an awn on a spike is less than 1 mm 

[13]. As a result, the awns can be easily considered as noise and erroneously removed in 

the reconstruction process. Cao et al. [14] developed a 3D imaging system with a 

stepper-motor-controlled frame and a regular camera for 3D reconstruction of 

soybean using SfM. This low-cost imaging system cannot be directly applied to plants 

with complex structures due to occlusion problems, since only 20 images are captured 

for each plant. Insufficient images and the occlusion caused by the proximal organs or 

leaves of the complex plant structure will lead to an incomplete 3D model and, hence, 

inaccurate phenotypes. He et al. [15] built an imaging system with a turntable to 

phenotype strawberries from local supermarkets. Here, the strawberries are placed on 

the center of a turntable and rotated at a certain speed while cameras capture images 

at a fixed position. Although such an imaging system has proved its potential in 

reconstructing 3D models of rigid objects such as strawberries, it is not suitable for 
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plants with non-rigid tissues such as leaves. Since the leaves will vibrate due to the 

motion of the plants, a high level of noise is inevitable when generating 3D models, 

especially at the leaf tips. Chaudhury et al. [16] proposed an imaging system with a 

robot arm holding a range scanner controlled by software. Nguyen et al. [17] built a 3D 

reconstruction system with a mechanical arm holding 10 cameras controlled by a 

software application. Wu et al. [18] generated their point clouds using multiple 

depth cameras and de-noising algorithms. 

Although they eliminate the vibration problem, these imaging systems are either too 

expensive or not easily accessible as a sophisticated mechanical set-up is required. 

More importantly, each of these imaging systems was designed for a specific plant, 

which may not be optimal for a different plant species. To the best of our knowledge, 

most existing work mainly focused on designing and implementing an imaging 

system for a specific type of plant and evaluating the quality of measurements obtained 

by the imaging system but lacked comparisons between different imaging systems. 

We have developed two new controlled environments imaging systems for 

plants (ISP), and proposed an end-to-end pipeline to generate de-noised point 

clouds. Our previous work has shown the potential of our imaging systems to 

capture dynamics of developing plants [10,11]. Our imaging systems designed for 

high-throughput phenotyp- ing are adaptable to various plant sizes with high accuracy 

and flexibility at a low cost. In this paper, we conduct a systemic analysis on the 

settings of our systems, and present a comparison study with the traditional turntable-

based image system. With the hypothesis that our imaging systems are accurate enough 

to estimate the phenotypic traits, we extend our work and design correlation analysis 

on manually measured data and estimated data from 3D models. By constructing the 

3D model of the same plant with various settings, we discuss how different 

parameters, such as the checkerboards in the imaging system and the number of 

images, affect the performance and the results from the presented systems. Further, 

by comparing results with a standard turntable-based imaging system, we provide 

insights on the performance and present evidence for increased accuracy from our 

imaging systems. 

2. Materials and Methods 

 Setting and Materials 

We performed multiple imaging settings and materials to optimize the 

experimental set-up by identifying the key factors affecting the quality of the final 

results. Inspired by the colorful Rubik’s cube used in the existing imaging system 

[19], we utilized specially designed color checkerboards to improve the quality of the 

reconstructed 3D models for this optimization. Black backdrops and black paint were 

used for the imaging systems described in this work. 

 Camera Setting 

Two digital color cameras (Sony α 6500, Sony Inc., Tokyo, Japan) were used to 

capture multi-view images. With a camera built-in application called “Time-lapse” [20], 
images were captured sequentially at the rate of up to one image per second. The total 
number of images can also be adjusted, with each camera capable of capturing up to 60 

images per minute with a resolution of 6000 pixels × 4000 pixels per image. 

 Color Checkerboards 

The specially designed color checkerboards consisted of 20 20 squares with 

ran- domly distributed colors in RGB color space. The size of each square was 1 cm2. 
They were placed around the target object to provide extra image features. Image 
features were pieces of local information in an image, and they were used to find 
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correspondences in paired images and help in recovering the camera parameters in a 
3D scene [9]. Because of the size, the relatively uniform color, and the irregular 
texture, the number of image features detected in the region of plants themselves 

was relatively limited. As a result, the parameters of cameras, such as position and 
orientation, cannot be correctly recovered, which may result in apparent errors in the 

generated point clouds. On the other hand, due to the randomly generated color and 
regular square shape, the image features (usually located at corners or edges of each 
square) can be easily detected by feature detection algorithms. These image features 

provided additional correspondences and led to more accurate and stable point 
clouds. 

 
 

 Black Backdrops and Black Paint 

Black backdrops and black paint were aimed at blocking the objects that were 

not of interest. If captured in images, these objects will also be constructed in the 3D 

scene and, thus, slow down the 3D reconstruction process. Moreover, the backdrops 

and paint also facilitated the selection of thresholds in the image preprocessing step. 

 Imaging Systems 

We built two novel imaging systems according to the size of the imaged 
objects. 

For comparison, we also built a typical turntable-based imaging system. 

 Our Imaging System for Whole Plants 

The first imaging system we developed was for reconstructing maize, and it can 

also be applied to any plant up to 2 m in height. As shown in Figure 1, we used a 

double-ring Lazy Susan turntable ring apparatus in the center of the system. The 

maize plant grown in a pot was placed detachedly in the middle of the ring 

apparatus.  The ring apparatus in the center had two layers. The inner layer was 

fixed on the floor, while the outer layer was attached to the end of a flat wooden 

board and rotated freely. On the other side of the wooden board, a robotic car was 

attached to provide the power for rotation. On the wooden board, there were two 

tripods holding the cameras at different adjustable heights. The view-angles of the two 

cameras toward the plant were 45◦ and 30◦ with respect to the horizontal direction. The 

cameras were set with ISO value at 1250, shutter speed at 1/50 s, and aperture value at 

f/22. The system included black backdrops and checkerboards mentioned above. The 

black backdrops were around the apparatus, and the checkerboards were placed on the 

ground around the target plant. Figure 2a shows the photograph of the imaging system. 
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Figure 1. Our first imaging system for whole plants. 

 Our Imaging System for Targeted Plant Organs 

The first imaging system worked perfectly for the whole plant on a large scale. How- 

ever, it was not compatible if the area of interest was a specific plant tissue or organ such 

as a rice panicle/inflorescence as the target tissue of interest was relatively small and 

usually occluded by leaves. As a result, it was difficult to generate 3D models of 

acceptable quality for panicles because the image features on panicles cannot be 

detected. To address the occlusion issue, we developed a second imaging system 

specially designed for small tissues of plants. As illustrated in Figure 3, we built a 

wooden table with a circular board in acustomized wooden chamber to host the 

imaging system. Similar to the first imaging system, a double-ring Lazy Susan 

turntable ring apparatus was installed on the wooden board. The inner layer of the 

ring apparatus was fixed while the outer layer was attached to a small wooden platform 

holding two mini tripods, the cameras, and a LED light (ESDDI PLV-380, 15 Watt, 

5000 LM, 5600 K). The cameras generated images with ISO value at 1600, shutter 

speed at 1/30 s, and aperture value at f/22. An electric motor system was connected 

to the outer layer of the apparatus with a timing belt to provide power for rotation. 

The electric motor system consisted of two parts: (i) a high torque motor powered by a 

DC power supply; (ii) an idler pulley to move the timing belt. When the power was 

on, the wooden platform rotated along with the ring apparatus as the belt moved. The 

top surface of the circular wooden board and the interior of the chamber were painted 

black. Color checkerboards were attached to the top surface of the circular wooden 

board and the chamber interior. When imaging panicles, we placed the plant under 

the table and passed the target panicle through the hole in the center of the board. A 

desktop motorized adjustable computer stand was adapted for height adjustment to 

keep the panicles at a similar height. The photograph of the imaging system is 

demonstrated in Figure 2b. 
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(a) (b) (c) 

Figure 2. The photograph of the three imaging systems: (a) our imaging system for whole plants; 

(b) our imaging system for small tissues; and (c) a conventional turntable-based imaging system. 

 

Figure 3. Our second imaging system for panicles. 

 Turntable-Based Imaging System for Whole Plants 

We also built a typical turntable-based imaging system for comparison. As 

demon- strated in Figure 4, a turntable with a plant was placed in a wooden chamber. 

Cameras installed on tripods were placed outside the chamber facing the plants with the 

same view- angle as in the first imaging system.  Similar to the second imaging system, 

the interior of the chamber was painted black. Instead of being attached to the 

chamber, the color checkerboards were cut and attached to the pot because the 

construction of the scene requires the static spatial relationship between the 

checkerboard and the plant. When the turntable was turned on, the plant began to rotate, 

and the rotating speed was constant in the imaging process. The photograph of this 

imaging system is shown in Figure 2c. 
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Figure 4. Conventional turntable-based imaging 
system. 

 Point Cloud Reconstruction 

We reconstructed 3D point clouds from 2D plant images generated by the above- 

described imaging systems. Our reconstruction pipeline consisted of three main steps: 

image pre-processing, 3D point cloud reconstruction, and point cloud post-processing. 

Our pipeline was applicable for both whole plants and targeted organs, and we detail 

its use for rice panicle reconstruction as an example. 

 Image Preprocessing 

Before 3D reconstruction, the images needed to be preprocessed to remove the 

back- ground. In this work, we conducted preprocessing by employing filtering and 

thresholding in the color space. The goal of filtering was to remove the pixels in the 

background to speed up the process of 3D reconstruction since fewer pixels were 

utilized. However, since the distribution of the pixels in the raw images was 

relatively uniform in the red, green, and blue (RGB) color space, it was challenging to 

select an effective color threshold. Therefore, we transformed the original images into 

the hue, saturation, and value (HSV) color space and filtered out pixels using 

thresholding on the HSV channels. In this work, pixels were removed if values of their 

hue, saturation, and value channels were not in the ranges of 0–1, 0–1, and 0.136–1, 

respectively. After color thresholding, a few pixels in the background still remained and 

were sparsely distributed. These pixels were considered in the 3D reconstruction 

pipeline as outliers and ignored.3D Reconstruction 

To reconstruct an accurate dense point cloud from the images, we implemented 

MVE [9] in this work. Figure 5 shows the pipeline of MVE. The input of MVE 

was the preprocessed images captured from various view angles shown in Figure 5a. 

First, SIFT [21] and SURF [22] were performed on these images to detect image 

features. An 
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example of images with detected image features was illustrated in Figure 5b, in 

which features were marked as red points (detected by SIFT) and green points (detected 

by SURF). Then, the parameters of the cameras, such as orientation and position, were 

recovered by matching the corresponding image features. As shown in Figure 5c, a 

3D scene was built with these recovered parameters, including a sparse point cloud 

and all the camera positions. The number of camera positions in the scene matched 

the number of the input images. After that, a depth map (Figure 5d) was generated for 

each image by calculating the depth information of each pixel. Then, a dense point 

cloud (Figure 5e) was produced by merging all these depth maps. Finally, FSSR [23] 

was employed on the dense point cloud to generate the de-noised point cloud as well 

as the mesh (Figure 5f). 

 

(a) (b) (c) 
 

(d) (e) (f) 

Figure 5. The pipeline of MVE: (a) input images captured from a set of view angles; (b) images with detected image 

features, where red and green points indicate image features detected by SIFT and SURF, respectively; (c) 

reconstructed 3D scene including camera positions and a sparse point cloud; (d) depth maps; (e) a dense 3D point 

cloud; and (f) a de-noised point cloud. 

 
 Point Cloud Post-processing 

Since the 3D model of a target plant was the only object of interest, the other parts, 

including the checkerboards in the point clouds, needed to be removed. As 

demonstrated in Figure 6, a two-step filtering was implemented to generate the final 
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point cloud. Panicles were utilized to illustrate the filtering process in this section. The 

first step was to segment the plant from the background. We performed 3D clustering on 

the de-noised point cloud generated by MVE (Figure 6a). The clustering algorithm was G-

DBSCAN [24], which was integrated with MATLAB function “pcsegdist”. Euclidean 

distance was used as the distance 

metric for clustering. Then, we set criteria to identify the points belonging to the target 

plant, and denoted these points as target points. Intuitively, these points were generally 

green. Thus, we implemented the criteria by setting a threshold on visible 
atmospherically resistant index (VARI) [25]. VARI is one of the most popular vegetation 
indices for remote sensing leaf chlorophyll content. VARI has been widely used in 
agricultural monitoring and vegetation detection [26–28]. Compared with green band 
information, these vegetation indices can reduce the variations due to extraneous factors 
such as ambient lights [29]. The formula of VARI was illustrated in Equation (1), 

VARI =
    G − R 

 
G + R − B 

 
(1) 
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where R, G, and B represent the values in red,  green,  and blue channels in the RGB 

color space of a point, respectively. The existing studies utilized various VARI values 

corresponding to a wide range of green class [30]. In this work, the panicle cluster was 

the main green object in our controlled environment, and, thus, we only need to 

estimate a VARI range to distinguish the color of the panicle cluster from the 

background. According to our empirical study, we set the threshold of VARI to 0.1 and 

marked points with VARI greater than this threshold as target points. Then, we 

counted the number of total points and target points within each cluster. With this 

threshold, we can successfully detect the panicle cluster as it had the highest percentage 

of the target points. The rest of the clusters, which belonged to the background, 

checkerboards, and the ring apparatus, were removed. However, since labels with 

barcode identifier, which were widely used in high-throughput phenotyping, were 

attached to the panicle as shown in Figure 6b, they cannot be filtered out in the first step. 

The second step was designed to remove these labels. We first identified all the target 

points using VARI again and removed them. Since the points that belonged to the 

labels were not target points, these points remained. After that, we fit these points to 

a plane as the labels were placed on the table and flat. Then, we removed the label 

by filtering out all the points near the fitted plane. After the two-step filtering, a clean 

segmentation of the panicle point cloud can be retrieved (Figure 6c). 

 

(a) (b) (c) 

Figure 6. Point cloud post-process: (a) the de-noised point cloud generated by MVE; (b) the point cloud of the panicle with 

background removed; and (c) the final point cloud of the plant with labels removed. 

 
3. Results 

In this section, we conducted comparisons based on the results of our 

experiments, and the 3D models were illustrated as a mesh for better visualization. 

After the plants grew to a suitable height, we started to image them using our imaging 

systems periodically for the duration of the experiments. Then, these images were 

utilized to build 3D shapes using our reconstruction pipeline. With the 3D shapes, we 

can extract multiple phenotype 

 
 

traits, such as leaf count, volume, and surface area [6,10,11]. In this work, the length 

of the panicles was utilized as the trait for results verification.  The imaging process 

took up to two minutes to capture a set of images for one plant. Therefore, once 

optimized, the systems had the potential for high-throughput phenotyping. 

 Results Verification 
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To verify the results, we first performed a correlation analysis on the phenotype 
traits estimated based on the ground truth and the 3D reconstructed models. The ground 
truth was obtained by manually measuring the panicle lengths after harvest. The 

estimated lengths were obtained using the Measuring Tool application in MeshLab 

[31,32] to measure the lengths of our corresponding 3D reconstructions of panicles. The 
estimated lengths were then rescaled using the ring apparatus. Since we already 
obtained the physical size of the ring apparatus, the estimated lengths in the physical 
unit can be computed. The accuracy and the error were assessed using coefficient of 

determination (R2) and mean absolute error (MAE), respectively. 

As shown in Figure 7, 36 panicles samples were utilized for verification. The R2 was 

0.911, which indicated a high correlation between the model-derived length values and 
the manually measured values. The MAE was 1.05 cm, and it represented an error rate of 

5.8% of the averaged panicle length given that the averaged panicle length was 18.15 cm 
in the experiment. The low MAE also implied a high accuracy of the estimated lengths 

and the high quality of the 3D models. 

 

Figure 7. Panicle lengths obtained by estimation from 3D model vs. manual measurement. 

 Comparison of 3D Models with Various Number of Images and Cameras 

The second experiment was conducted to evaluate the effect of the number of 

images and cameras on the reconstruction process. The computing platform we used 

was a computer with an Intel Core i7-8700 K CPU @3.70 GHz (Intel Co., Santa Clara, 

CA, USA) and 16 GB DDR4 random-access-memory. 

As demonstrated in Table 1, Figures 8 and 9, we built a 3D model of maize as an 

example with several images and cameras (15, 20, 30, 60, or 120 images with one or 

two cameras). Inspired by the methods proposed by Lehtola et al. [33], we 

conducted a subjective assessment to evaluate the quality of the point clouds with 

metrics such as completeness and number of outliers. We found that at least 60 

images were needed to build a good-quality 3D model, as shown in Figure 8a. As the 

number of images decreases, an obvious loss of quality of the 3D model can be 

observed. As illustrated in Figure 8b, there were holes on leaves in marked region 3, 

and part of the leaf was missing in marked 
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region 1 and 2 if only 30 images were used. This could possibly be due to a 

significant difference between sequential images when the total number of images 

was limited. A lack of matched image features between paired images can lead to an 

insufficient number of correspondences through all the images and,  thus,  an 

incomplete result.  Moreover, as illustrated in the first three rows in Table 1, if the 

number of images was too low (lower than 30 in this case), MVE would fail to reconstruct 

3D models since it cannot detect enough correspondences to generate 3D points. On 

the other hand, a higher number of images would not necessarily lead to a better 

result. Although the number of points in generated 3D models increased (shown in 

the last row in Table 1), the quality of the 3D model was not improved. For example, 

by comparing with the plants, we found fake branches in the reconstructed 3D model, 

as demonstrated in the marked region in Figure 8c. The reason for these fake branches 

was that the noise was erroneously considered as part of the stem. Additionally, when 

the number of images was too high, the computing time cost would increase 

dramatically, as shown in the last row in Table 1. 

 
Table 1. Results with Various Numbers of Images and Cameras. 

 

3D Model Generation 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure 8. The generated models of maize with a various number of images: (a) a reconstructed model with 60 

images (two cameras with 30 images per camera); (b) a reconstructed model with 30 images; and (c) a reconstructed 

model with 120 images. 
 

By comparing the results with the same number of images, we also discovered that 

in- creasing the number of cameras would lead to the improvement of 3D models, 

although the number of points in generated 3D models and time cost made no 

differences as shown in the fifth and sixth rows in Table 1. Figure 9 shows a result 

comparison between the models using 60 images captured by two cameras (i.e., 30 

#Images 
(by Cam. 1) 

#Images 
(by Cam. 2) 

#Images in Total 
Success in

 
#Point in 

Generated 3D Model 
Time Cost 

(sec.) 

15 0 15 No N/A N/A 
10 10 20 No N/A N/A 
15 15 30 No N/A N/A 
30 0 30 Yes 45,881 391 
30 30 60 Yes 98,101 1171 
60 0 60 Yes 96,766 1300 

60 60 120 Yes 129,657 2758 
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images per camera) and one camera. It can be observed that the 3D model using two 

cameras (Figure 9a) had better quality than the one using one camera (Figure 9b), 

especially in the branches (the marked region in the figure). One possible reason could 

be that the cameras with various heights and view-angles reduced the occlusion and 

hence provide more correspondences and enhanced 

 

3D reconstruction results. Therefore, there would be fewer missing points in the 3D 

models, especially in the region that can be easily occluded by the leaves or stem (such as 

branches). 

 

(a) (b) 

Figure 9. The generated models of maize with a various number of cameras: (a) reconstructed model with 60 images 

taken by two cameras (i.e., 30 images per camera); and (b) reconstructed model with 60 images taken by one camera. 

 
 Evaluation of Color Checkerboards 

One of the main differences between our imaging systems and existing ones 

was the usage of checkerboards. In this section, the importance of these 

checkerboards was evaluated with respect to image features and generated models. 

 Evaluation with Respect to Image Features 

Image features were crucial for finding pixel pairs among images for 3D 

reconstruction. As a result, the quality of the reconstructed 3D shape would be greatly 

enhanced if the number of detected features was increased for each image. To evaluate 

the effect of color checkerboards with respect to image features, we captured panicle 

images from a similar view-angle with and without the checkerboards. As shown in 

Figure 10, the detected image features were visualized as red points (detected by SIFT) 

and green points (detected by SURF). By utilizing checkerboards in the imaging system, 

the number of detected image features increased from 2289 (1602 SIFT features and 687 

SURF features) to 4141 (2690 SIFT features and 1451 SURF features). A higher number of 

image features facilitated us to generate more accurate parameters (e.g., camera 

parameters) in reconstruction. 
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(a) (b) 

Figure 10. An example of detected imaging features: (a) In an image without checkerboards, 2289 features were 

found in total (1602 SIFT features and 687 SURF features). (b) In an image with checkerboards, 4141 features were 

found in total (2690 SIFT features and 1451 SURF features). Red points and green points indicate image features 

detected by SIFT and SURF, respectively. 

 Evaluation with Respect to Models 

To further evaluate the effect of checkerboards, we also examined the models recon- 

structed by applying the same pipeline with and without checkerboards. In Figure 

11, the first and second rows show the images and 3D shapes with and without 

checkerboards, respectively. By comparing the results generated using the same number 

of images, it was evident that the absence of checkerboards reduces the 3D 

reconstruction quality. Compared to the model generated from images with 

checkerboards (Figure 11b), the one without checkerboards included several 

missing parts in the marked regions (Figure 11d). 
 

(a) (b) 
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(c) (d) 

Figure 11. An example of input images and generated models: (a) input images with 
checkerboards; 

(b) generated models using 60 images from (a); (c) input images without checkerboards; and 

(d) generated models using 60 images from (c). 

 Evaluation of Stability 

Another essential improvement of our systems was that we increased the 

system stability by rotating cameras rather than plants. In our systems, the positions of 

3D points to be reconstructed were stationary, and the shutter speed was fast 

enough to eliminate possible camera instabilities incurred by the rotation of cameras. 

Therefore, the quality of the reconstructed models was improved. In this section, the 

importance of stability was evaluated by comparing the reconstructed models using our 

systems to the ones using the traditional turntable-based imaging system where plants 

were continuously rotated. The experiments were conducted on both maize and rice 

plants. For maize, both of the imaging systems were capable of generating models, as 

shown in Figure 12. However, the 3D shapes generated by the traditional turntable-

based imaging system were consistent of lower quality for non-rigid plant parts in our 

experiments. Due to the motion of the plants, tissues such as leaves vibrated. The random 

vibration may lead to duplicated points in the final results. Figure 12b shows the model 

reconstructed using the traditional system, which included duplicated parts of leaves 

(e.g., the part in the marked region of Figure 12b). Asshown in Figure 12a, this issue 

was addressed in the result generated from our system because of the detaching of 

the plants and the ring apparatus. 

For rice, we attempted to use the traditional system to reconstruct the whole 

plant and then retrieve the panicle segmentation for comparison. However, the 

models cannot be generated due to the complex plant architecture and higher 

vibrations of the long and flexible rice leaves and panicles when rotating the plant 

using the traditional turntable- based imaging system. In contrast, our system was able 

to generate high-quality 3D models for panicles, as shown in Figure 11b. 
 

(a) (b) 

Figure 12. An example of models of maize from two imaging systems: (a) the model from our imaging system; and (b) 

the model from the traditional turntable-based imaging system. 

4. Conclusions 

In this work, we presented two imaging systems for plants of various sizes, as 

well as an end-to-end pipeline to reconstruct the 3D models. Our experimental set-

up and 

pipelines overcome several limitations of existing imaging systems and have the 

potentials for enhancing 3D high-throughput phenotyping. In both systems, plants 
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remain still in the center, and the cameras rotate around the plants for stability. We 

also designed color checkerboards to provide additional image features that improve 

the accuracy of the reconstruction. In our experiments, we discussed how the number 

of images, number of cameras,  and extra image features provided by checkerboards 

affect the generated 3D models. By comparison of the results from our systems and a 

traditional turntable imaging system, we illustrated the importance of plant stability. In 

summary, the proposed imaging systems can be directly used to reconstruct accurate 

3D models of plants. For designers of new imaging systems, we provide our 

recommendations for various settings, such as checkerboards, plant stability, and 

multiple cameras, to improve accuracy of 3D reconstruction results. In the future, we 

plan to build a portable version of the imaging systems in a chamber to tackle wind 

and sunlight under outdoor conditions. We also would like to use species-specific priors 

to enhance the performance of the pipeline, and reduce the computation time 

complexity by developing a GPU-based pipel
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