

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 50, Issue 7, No. 1, July 2021

UGC CARE Group-1, Sr. No.-155 (Sciences) 55

WEB APPLICATION RECOGNITION AND STATISTICAL ANALYSIS TO

REDUCE VULNERABILITIES IN DATA MINING

Modem. Jeevan Kumar, Dept of Computer Science and Engineering, Sree

Venkateswara College Of Engineering, Nellore (Dt), Andhra Pradesh, India.

 k. Srikanth Reddy, Dept of Computer Science and Engineering, Sree Venkateswara

College Of Engineering, Nellore (Dt), Andhra Pradesh, India.

P. Mohan, Dept of Computer Science and Engineering, Sree Venkateswara College Of

Engineering, Nellore (Dt), Andhra Pradesh, India.

 P.Sravan Kumar Reddy,
4
Dept of Electronics and Communication Engineering, Sree

Venkateswara College Of Engineering, Nellore (Dt), Andhra Pradesh, India.

ABSTRACT

Despite extensive research on the subject for more than ten years, web application

security is still a problem. Vulnerable source code, which is frequently written in

dangerous languages like PHP, is a major contributor to this issue. While static analysis

techniques can help find vulnerabilities in the original code, they frequently produce

false positives and demand a lot of manual work from programmers to fix the code. We

investigate how to employ several techniques to find source code errors while

generating fewer false positives. To anticipate the likelihood of false positives, we

integrate data mining with taint analysis, which identifies potential vulnerabilities.

Humans have programmed their understanding of vulnerabilities (for taint analysis),

and they have combined that knowledge with what appears to be an orthogonal method

of mechanically gathering that information (using machine learning, for data mining).

This method combines these two ostensibly irreconcilable tactics. In light of this better

way of detection, we advise implementing fixes in the source code to execute automatic

code rectification. We completed an experimental evaluation with a substantial number

of PHP applications and included our strategy into the WAP tool. In 1.4 million lines of

code, 388 vulnerabilities were discovered by our tool. It performed about 5.2% and

46% better than accuracy and precision.

Keywords: CNN, RCNN, SSD, dataset, weapon detection.

1. INTRODUCTION

Agriculture is India's main source of welfare. Rain is essential to the success of

agriculture. Additionally, it enhances water resources. Previous rainfall data allows

farmers to better manage their crops, which benefits the economy of the country.

Precipitation forecasting aids in flood prevention, protecting lives and property. Due to

fluctuations in timing and amount of precipitation, meteorologists find it difficult to

anticipate rainfall. One of the most challenging difficulties for academics from a variety

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 50, Issue 7, No. 1, July 2021

UGC CARE Group-1, Sr. No.-155 (Sciences) 56

of fields, such as meteorological data mining, environmental machine learning,

functional hydrology, and numerical forecasting, is developing a prediction model for

precise rainfall. A common question in these challenges is how to leverage future

predictions and infer past projections.. The main process in rainfall is often made up of a

number of smaller processes. Precipitation forecasts made by its global system are not

always accurate. Climate forecasting stands out among all the benefits and services

provided by the meteorological department for all countries on the earth. The work is

particularly challenging since precise figures must be used and all signals must be

indicated without confidence. The need for precision precipitation forecasting has long

been acknowledged by hydrological science since early warning of impending natural

disasters can help prevent harm and loss of life. The integration of several models and

the modular model theory have recently drawn more attention as solutions to this

problem. There are several different techniques for predicting rainfall in India. In India,

there are essentially two methods for predicting rainfall. Regression, Artificial Neural

Networks (ANN), decision tree algorithms, fuzzy logic, and group data processing

methods are the most widely used computing approaches for weather forecasting.

Following informational norms and linkages while acquiring illusory and sometimes

expensive knowledge is the main objective. Artificial neural networks are one potential

area within this large topic. The scientific community, corporations, governments, and

risk management organisations have all raised concern about how challenging it is to

predict when it will rain. The amount of rainfall is a climatic factor that affects a number

of human endeavours, such as forestry, power production, tourism, and agricultural

output [1]. Because it is most frequently associated with unfavourable natural

occurrences like landslides, flooding, mass movements, and avalanches, rainfall

prediction is essential in this regard. These events have had a long-lasting effect on

society [2]. By employing a suitable method for rainfall prediction, it is therefore

possible to implement preventative and mitigation measures for these natural

phenomena.

To remove this ambiguity, we developed precise forecasts using a variety of machine

learning models and methods. A full overview of the machine learning life cycle, from

data preprocessing to model deployment and evaluation, is the goal of these papers. The

feature transformation, categorical feature encoding, feature scaling, and feature selection

procedures are part of the data preprocessing process. To serve as an evaluation, models

like Logistic Regression, Decision Trees, K Nearest Neighbour, Rule-based, and

Ensembles were used.

2. LITERATURE SURVEY

W. Halfond, A. Orso,andP. Manolios, Today, many software programmes include a

web-based component that allows users to access them online and exposes them to

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 50, Issue 7, No. 1, July 2021

UGC CARE Group-1, Sr. No.-155 (Sciences) 57

various web-based attacks.SQL injection is one of these risks, and it has become

increasingly common and harmful. It can grant attackers full access to the databases that

support Web applications.In comparison to the majority of existing methodologies, the

novel highly automated methodology presented in this study has both conceptual and

practical advantages. The novel idea of positive tainting and the concept of syntax-

aware evaluation serve as the method's conceptual pillars. In terms of practise, our

method is precise and efficient, needs little work for deployment, and often only has a

little performance overhead. We put our methods into practise with the Web application

SQL-injection preventer (WASP) tool, which we utilised to conduct an empirical

evaluation on a variety of Web applications that we put through a wide range of attacks

and authorised accesses. All of the otherwise successful attacks could be stopped by

WASP, and no false positives were produced.

C. V. Berghe and Pietraszek Application-level security is seriously threatened by

injection vulnerabilities. SQL injection, cross-site scripting, and shell injection

vulnerabilities are a few of the most prevalent varieties. Existing defences against

injection attacks, or assaults that take advantage of these flaws, rely mainly on the

application developers and are consequently prone to error.

X. Wang, C. Pan, P. Liu, and S.Zhu We recommend SigFree, an application-layer

approach that blocks code-injection buffer overflow attack messages targeted at various

Internet services, such as Web services, online and without the need for a signature.

SigFree prevents attacks by spotting the presence of code since it was developed in

response to the observation that normal client requests almost never include executables

whereas buffer overflow assaults frequently do. SigFree uses a new data-flow analysis

method called code abstraction that is general, quick, and challenging for exploit code to

dodge in contrast to the previous code detection algorithms.

J.Antunes,N.F.Neves,M.Correia,P. Verissimo Higher degrees of dependability are

required when networked computer systems are relied upon more frequently. This is

even more important because systems' security is continually being jeopardised by

emerging threats and attack vectors. This work offers an attack injection mechanism for

the automatic detection of vulnerabilities in software components in order to address this

issue. The suggested methodology, used in AJECT, adopts a strategy used by security

researchers and hackers to identify holes in network-connected systems. AJECT

automatically generates a huge number of assaults using established test case generating

techniques and a definition of the server's communication protocol.. Then, as it launches

these attacks over the network, it keeps an eye on the target system's server's operation

and the client responses. When an unusual behaviour is seen, it is possible that a

vulnerability existed and was exploited by a specific attack (or set of assaults). The attack

can then be used to duplicate the anomaly and aid in fixing the mistake. Several attack

injection campaigns were run with 16 publicly accessible POP and IMAP servers to

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 50, Issue 7, No. 1, July 2021

UGC CARE Group-1, Sr. No.-155 (Sciences) 58

evaluate the efficacy of this strategy. The findings demonstrate that AJECT might be

successfully leveraged to find vulnerabilities, even on well-known servers evaluated over

time.

3. EXISTING SYSTEM

There is a substantial body of relevant literature, thus in order to save space, we only

briefly examine the key subjects by highlighting a few exemplary works. Static analysis

software automates the auditing of source, binary, and intermediate code. The unspoiled

qualifier identifies if a function or parameter either gives reliable data (such as a

sanitization function) or whether a function parameter needs reliable data (such as

mysql_query) in order to annotate source code. These qualifiers are used by taint analysis

programmes like CQUAL and Splint (both for C code). It is referred to as being

contaminated when a function or parameter produces unreliable results (this includes

functions that read user input, for example).

4. PROPOSED SYSTEM

This study looks into a strategy for automatically securing web applications with the

programmer involved. The process involves looking for input validation flaws in the

source code of the web application, then introducing fixes to fix these issues in the same

code. By letting the programmer know where the vulnerabilities were found and how

they were fixed, the programmer is kept up to date. By eliminating vulnerabilities, this

method directly increases the security of online applications, and it indirectly increases

security by allowing programmers to learn from their mistakes. This final feature is made

possible by including solutions that adhere to best practises for security coding, allowing

programmers to learn these techniques by observing the vulnerabilities and how they

were fixed. We investigate the application of a unique approach combination—

combining static analysis with data mining—to find this kind of vulnerability. Static

analysis is a useful tool for identifying vulnerabilities in source code, but because of its

unfavourable nature, it frequently reports false positives (vulnerabilities that don't exist).

The taint analyzer is a static analysis tool that works with an AST made for PHP 5 in

our example by a lexer and a parser. All symbols (variables, functions) are unaltered at

the start of the analysis unless they constitute an entry point. Each cell in the tainted

symbol table (TST) created by the tree walkers contains a programme statement from

which we want to gather information. Each cell has an AST subtree as well as some

data. For example, the TST cell in the sentence $x = $b + $c comprises the subtree of

the AST that symbolises the dependence of $x on $b and $c.

Predicting False Positives

It is well known that Turing's halting problem and the static analysis problem are

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 50, Issue 7, No. 1, July 2021

UGC CARE Group-1, Sr. No.-155 (Sciences) 59

inseparable for non-trivial languages. In fact, the solution to this issue is as simple as

doing a partial analysis of specific language structures, making static analysis tools

ineffective. This problem might occur, for instance, while using our approach to

manipulate strings. It is unclear what should be done with the state of a malformed string

when it is put through operations, like those that return a substring or concatenate it with

another string. If either operation will untaint the string, we cannot be certain. We

decided to taint the string because there could be erroneous positives but no false

negatives.

Code Correction

Our solution involves automatically conducting code correction after the taint analyzer

and the data mining component have found the vulnerabilities. Information on the

vulnerability is provided by the taint analyzer, including its class (for instance, SQLI)

and the impacted code segment. A repair is a call to a function that cleans up or verifies

data before it is sent to a sensitive sink. Sanitization entails altering the data to remove

any potentially harmful Meta characters or metadata. Validation entails examining the

data and deciding whether to run the sensitive sink or not in light of the verification.

5. RESULTS

Our patches were created to prevent changing the programmes' intended (proper)

behaviour. We have not yet observed any instances in which a WAP-fixed application

started to operate wrongly or in which the repairs themselves performed poorly. To

boost the certainty of this observation, however, we suggest applying software testing

approaches to a programme to see, for example, if the programme has mistakes in

general or if changes to the programme have produced errors. By examining if these test

scenarios result in unexpected or wrong behaviour or outputs, this verification is carried

out. For each of these two verifications, we employ one of the following two software

testing methodologies like retesting and program mutation.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 50, Issue 7, No. 1, July 2021

UGC CARE Group-1, Sr. No.-155 (Sciences) 60

Fig.1.Login page

Fig.2.Home page

Fig.3.User page

Fig.4.Login code page

CONCLUSION

This paper describes a technique for identifying and fixing faults in online applications,

as well as a tool that applies the technique to fix input validation bugs and PHP

programming problems. Static source code analysis and data mining are used by both

the technique and the software to look for vulnerabilities. Once the top 3 machine

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 50, Issue 7, No. 1, July 2021

UGC CARE Group-1, Sr. No.-155 (Sciences) 61

learning classifiers have identified false positives, an induction rule classifier is used to

confirm their existence. All classifiers were chosen after carefully examining all of the

potential outcomes. It's crucial to remember that this combination of detection methods

doesn't always produce trustworthy results.Data mining can only generate results with a

high degree of probability when used to address the static analysis problem because the

problem cannot be separated. By adding fixes, such as sanitization and validation

functions, the tool fixes the code. Testing is done to ensure that the fixes work as

intended and do not affect the applications' (proper) behaviour. Both synthetic code and

open source PHP programmes with intended flaws were used to test the tool on a huge

number of different occasions. It was also compared to two source code analysis

programmes, Pixy and PhpMiner II. The programme is able to find and patch

vulnerabilities in the classes it is intended to handle, according to this review. It was

able to identify 388 bugs in 1.4 million lines of code. It outperformed PhpMinerII and

Pixy in terms of accuracy and precision by roughly 5% and 45%, respectively.

REFERENCES

1. Symantec,Internetthreatreport.2012trends,vol. 18, Apr. 2013.

2. W.Halfond,A.Orso,andP.Manolios,“WASP:protectingwebapplicationsusingpositi

ve tainting and syntax aware evaluation,”IEEE Trans. Softw. Eng., vol. 34, no. 1,

pp. 65–81, 2008.

3. T. Pietraszek and C. V. Berghe,

“Defendingagainstinjectionattacksthroughcontext-sensitive string evaluation,” in

Proc. 8th Int.Conf. Recent Advances in Intrusion Detection,2005, pp. 124–145.

4. X.Wang,C.Pan,P.Liu,andS.Zhu,“SigFree:Asignature-freebufferoverflowattack

blocker,” in Proc. 15th USENIX SecuritySymp.,Aug. 2006, pp. 225–240.

5. J.Antunes,N.F.Neves,M.Correia,P.Verissimo,andR.Neves,“Vulnerabilityremoval

withattackinjection,”IEEETrans.Softw. Eng., vol. 36, no.3, pp. 357–370, 2010.

6. R. Banabic and G. Candea, “Fast black-boxtesting of system recovery code,” in

Proc. 7thACM Eur. Conf. Computer Systems, 2012, pp.281–294.

7. Y.-W.Huangetal.,“Webapplicationsecurityassessmentbyfaultinjectionandbehavior

monitoring,” in Proc. 12th Int. Conf.WorldWide Web, 2003,pp. 148–159.

8. Y.-W.Huangetal.,“Securingwebapplication code by static analysis and

runtimeprotection,”inProc.13thInt.Conf.WorldWideWeb, 2004, pp. 40–52.

9. N. Jovanovic, C.Kruegel,andE.Kirda,“Precisealiasanalysisforstaticdetectionof

webapplicationvulnerabilities,”inProc.2006WorkshopProgrammingLanguagesand

Analysisfor Security,Jun. 2006,pp. 27–36.

10. U. Shankar, K. Talwar, J. S. Foster, and

D.Wagner,“Detectingformatstringvulnerabilities with type qualifiers,”

inProc.10th USENIX Security Symp., Aug. 2001, vol.10,pp. 16–16.

