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ABSTRACT

This study explores the application of the Derivations and Translations concept to various
Neutrosophic Fuzzy structures, including NFSA, NFI, NFIl, and NFPII. By introducing the notions
of DNFSA, DNFI, DNFII, and DNFPII, we uncover distinct results, examine the interconnections
between these structures, furthermore we introduced Neutrosophic fuzzy translation to Neutrosophic
fuzzy positive implicative ideals in BCK-algebras and investigate their related properties.
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I. Introduction

The concept of BCK-algebras was introduced by K. Iseki and Y. Imai in 1966 [2], pioneering a wave
of research into their various properties. Later, Iseki and Tanaka [3] introduced sub-algebras, ideals
(PII’s) in BCK-algebras. Zadeh [12] pioneered the concept of fuzzy sets in 1965 as a means of
representing uncertainty in the real world. Xi [11] defined fuzzy ideals and fuzzy implicative ideals
in 1991, delving into the study of fuzzy BCK-algebras. Building on Atanassov's [1] work, Jun and
Kim [4] investigated intuitionistic fuzzy sub-algebras and ideals in BCK-algebras. This section
defines and exemplifies intuitionistic fuzzy sub-algebras (IFSA) and intuitionistic fuzzy ideals (IFI)
in BCK-algebras, along with related results. Meng [6] established implicative ideals in BCK-
algebras, while fuzzy implicative ideals (FII) were introduced and their properties explored by Meng
et.al. [7]. In [9] Satyanarayana et. al., develop the concept of derivations of intuitionistic fuzzy
positive implicative ideals of BCK-algebra. Satyanarayana and Durga Prasad [10] then introduced
on fuzzy ideals in BCK-algebras and examined their properties. Lee et al. [5] in (2009)
examined fuzzy translations in fuzzy subalgebras and beliefs in BCK/BCl-algebras. Exploring the
connections between fuzzy translations, extensions and multiplications. In [8] Satyanarayana et. al.,
introduced intuitionistic fuzzy translations of implicative ideals of BCK-algebras, now we are
generalized [8, 9] work into Neutrosophic fuzzy logic. This historical overview showcases the
significant contributions to BCK-algebra development, paving the way for future research.

This paper explores the application of Left-Right Derivation ((L, R)-D) and Right-Left Derivation
((R, L)-D) a particular derivative approach to develop a deeper understanding (NFSA, NFI, and
DNFI). We introduce four new concepts: Derivations of Neutrosophic fuzzy sub-algebra (DNFSA),
Derivations of Neutrosophic fuzzy ideal (DNFI), Derivations of Neutrosophic fuzzy implicative ideal
(DNFII), and Derivations of Neutrosophic fuzzy positive implicative ideal (DNFPII). Our objective
is to explore the interrelationships between these concepts, uncover specific outcomes, and
investigate various associated properties, ultimately testing a range of related residency outcomes.
Finally, we discussed Neutrosophic fuzzy translation to Neutrosophic fuzzy positive implicative
ideals in BCK-algebras, analyzing some of their properties.
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The following abbreviations are utilized throughout this paper:

G denotes BCK-Algebra

NFS : Neutrosophic fuzzy set

NFPII : Neutrosophic fuzzy positive implicative ideal

DNFCI : Derivations of Neutrosophic fuzzy commutative ideal
LDI : Left Derivation Ideal

RDI : Right Derivation Ideal

RDNFI: Right derivation Neutrosophic fuzzy ideal

LDNFI: Left derivation Neutrosophic fuzzy ideal

RDNFII : Right derivation Neutrosophic fuzzy implicative ideal
LDNFII : Left derivation Neutrosophic fuzzy implicative ideal
N77 : Neutrosophic Fuzzy Ideal

NFPIT : Neutrosophic Fuzzy positive implicative ideal

NFT : Neutrosophic fuzzy Translation

NF? — T: Neutrosophic fuzzy - translation

I1. Preliminaries
Definition 2.1: G comprises (#9) set equipped with a binary operation % and a constant 0, if it
satisfies the following axioms v b,uy,y € G.

BCK-1) ((b*w) = (bx*y))*(y*w) =0

BCK-2) (b* (b*w))*wy =0

BCK-3)bx1 =0

BCK-4)0xb =0

BCK-5)bxuy =0and wyx b = 0implies = w.
Define a binary relation < on G by 5 < wy © b % w = 0. This yields a partial order on (G, <) with
minimal element 0. Furthermore, (G,%,0) constitutes a G iff It adheres to the following rules

) ((Bxuw)*(bxy) < (yxw)

i) (Bx(bx*xw)<y

i) <+

iv) 0<%

V) B<wandwy < bimpliessb=w, Vb u,ye€G

G is distinguished by the following attributes:

(P-1)bx0="53

(P-2)bxwy <5

(P3) (bxu) xy=(bxy)*xy

(P-4) (bxy) * (yxy) < (bxw)

(P5)bx(bx(bxu))=bx*y

PE)b<=wyw=bxy<w*xyandyxwy<yxb

P-Nbxwy<y=>bxy<uwy VbuyeEQC.
Anideal of Gif (i-1) 0 € 9, (i-2) b x wand wy € 9 impliesb €Y v b,y € G.
G is called implicative if 5 = b % (% b), v b, € G.
G is considered to be positive implicative when (b % wj) *y = (b y) % (y *y), Vb, u,y € G.
A non-empty subset 9 of G is a sub-algebra of G if the binary operation applied to any elements -
and uy in 9 yields a result within 9.
A subset 9 of G is an ideal of G if it meets the following criteria: (I-1) it contains the additive
identity (0 € 9), and (1-2) for any elements & and wy in G, if 5% w isin 9 and w is in Y, then b is
alsoin ).
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An implicative ideal(Il) if (11-1) and (11-3) (b* (%)) *y€Y and ye P imply €Y Vv

b,up,y €G.

Let's briefly review the concepts of Fuzzy sets(FS’s) and Intuitionistic fuzzy set(IFS’s) before

proceeding.

A FSin G is a function IP: G - [0, 1] and the complement of IP denoted by P the ) on G given by
P(b)=1-P(b) Vb €eG.

Consider FS’s P and 4. defined on G. For any membership values m and n in the unit interval [0, 1],

we define the upper m -level cut of P as U(IP,m) = {b € G| Po(b) = m} and the lower n -level cut

of 4 as L(4,n) = {k € G|d(b) < n}. These level cuts can be used to characterize the properties of

FS’s P and .

An IFS A in a (#¢) set G can be represented as: & = {b, Pa(b), d4(k)|b € G} where the functions

P,: G — [0,1] , and d4: G — [0, 1] denoted the degree of membership and non-membership of each

element 1 € G to the set A respectively and 0 < P(b) + du(b) <1 Vb €G.

Let P, d and 4. be the FS’s on G. For m, k,n € [0, 1] the set U(P,m) = {b € G| P4(k) = m},

U(d, k) = {b € G| d4(b) = k} are called upper m-level, upper k-level cuts of IP and d* and the set

L(d,n) = {b € G|da(b) < n} is called lower n-level cut of Jd and can be used to characterize of

P, dand 4 .

A NFS 4 in a non-empty set G is an object having the form & = {b, Po(b), Fa(h), da(b)|5 € G}

where the functions P,: G — [0,1], d4:G — [0,1] and d4: G — [0,1] denoted the degree of

membership, indeterminacy and non-membership of each element b € G to the set A respectively

and 0 < Pu(b) + d4(b) +da(b) <1 Vh EG.

Let G stand for a BCK-algebra.

A map A: G - G is referred to as (L, R)-D of G if:

A(b*u) = (A(B) *up) A (B *A(w)), v b, w €G.

A map A: G - G is referred to as (R, L)-D of Gif:

Ab*xw) = (BxA(W)) A (A(h) *wp), VB uw € G

A mapping A: G — G is defined as a derivation of G if it simultaneously satisfies (L, R)-D and (R, L)-

D conditions on G.

Suppose (G,%,0) isaG, A:G — G is a self-map, and # is a non-empty subset of G and b, w,y € G

is called (i) LDI of the G if it complies with: (D-1) 0 € & and (LD-2) A(b) * wy € Aand A(w) € 9

entail that A(b) € 9, v, € G.

(ii) RDI of the G if it complies with:

(D-1) 0 € Aand (RD-2) b % A(w) € Aand A(w) € Y entail that A(B) € Y, Vb, u € G.

And is designated as a derivation ideal(DI) of G, (D-1) and (D-2) A(b % uy) € A and A(w) € 9 entail

that A(b) €9, vb,u €G.

A subset A& of G, non-empty and containing b, uj, y € G, is called a derivation implicative ideal (DII)

of G if it meets specific criteria:

(DI1-1) 0 € A&

(DH-2) A((b* (w*B)) *y) € A and A(y) € A entail that A(5) € A The analogous concept holds

for left and right DII’s.

Definition 2.2: A self-mapping of a G is termed as regular if it meets the criterion A(0) = 0.
Corollary 2.3 : G possesses a regular derivation.
Proposition 2. 4: For all &,y in G, the following properties hold, given that A is a regular derivation

on G.
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Q) A(B) <b

i)  AMB)*xwy<bxA(w)

(i)  A(bxw) = A(b) *wy < A(h) * A(wy)

(iv) A71(0) = {k € G| A(b) = 0} is a sub algebra of G and A~1(0) c G.

Definition 2.5: A fuzzy set P in G qualifies as a fuzzy positive implicative ideal if it adheres to
(FP77 — 1) P(0) = P(b)
(FPIT —2) P(b *y) = min{P((b*w) *y),P(w *y)}, Vb u €G.

Definition 2.6: A NFS & = (P, ds,dy) in G is called VFJ (Neutrosophic fuzzy ideal) of G if it
satisfies:

(WFT = 1) Po(0) = Pa(h), da(0) = da(h) and d4(0) < da(h)

(VFT — 2) Pa(b) = min{Pa(b * w), Palw)}

(VFI = 3) dalb) = min {dFa(b * wp), Ia(w)}

(WFT = 4) da(b) < max {da(b * w), da(w)} Vb w € G,

Definition 2.7: A NFS & = (P4, ds, dy) in G is called F77 (Neutrosophic fuzzy implicative ideal)
of G if it satisfies:
(WFIT — 1) Px(0) = Pa(h), da(0) = da(B) and Ua(0) < da(h)

(NFIT = 2) Pa(B) 2 min {P, ((15 % (u % b)) * y) PA(Y)]
(NFIT = 3) da(b) 2 min{d, ((b* (w=b) *y), Iy}
(VFIT — 4) d(B) < max {dp (B % (w*H)) *y), L@} Vb u,y €G.

Definition 2.8: A NFS A = (Pa, ds, 1) in G is called NFPJJ (Neutrosophic fuzzy positive
implicative ideal) of G if it satisfies:

(NFPIT — 1) Po(0) = Po(k), da(0) = da(h) and dx(0) < du(h)

(WFPIT — 2) Po(b * y) = min{P,((b* w) *y), Pa(w * y)}

(WFPIT — 3) Fa(h * y) = min{da((b * w) * y), Falwy * y)}

(WFPIT — 4) da(b # y) < max{da((b* w) *y), da(w* )} v w,y€G

Example 2.9 : Let G = {0, %y, w,, 0o} be a BCK -algebra with the given table.

* 0 fo MWy Dy
00| 0] 0] o

Wy | Wg | Wo 0 Do
Do Do Do Do 0

Then (G,%,0) is a BCK -algebra. Define a NFS 4 in G by

P4(0) = 0.9, P4(%y) = Pa(wg) = Pa(ng) = 0.4.

d‘#(O) = 0.9, dA(fO) = d'A(IDO) = dA(DO) = 0.4 and

J,(0) = 0.4, du(fy) = Ju(wy) = da(og) = 0.9 where 0.4 and 0.9 € [0,1].

By usual calculations one can easily check that & = (Pa, ds, 1) is NFPIT of G.

I11.  DNFSA and DNFI’s in BCK-algebra
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Here, we employ the concept of Derivations, encompassing both (L, R)-D and (R, L)-D, to DNFSA,
DNFI and initiated insight into DNFSA, DNFI and corresponding properties are analyzed.

Definition 3.1: A:G — G is a mapping that acts on G. Let & = (P4, d's, 4s) be a non-empty NFS
of G. Then, 4 is said to be a left derivation Neutrosophic fuzzy ideal (LDNFI) of G if it fulfills the
following conditions v 5, u, y € G:

(LDNFI-1) P4(0) = P4(b), d4(0) = da(b) and 4, (0) < I, ()

(LDNFI-2) P4(A(B)) = min {PA(A(B) * w), Pa(A(w))}

(LDNFI-3) d4(A(B)) = min {da(A(B) * w), da(Au))}

(LDNFI-4) 4 (A(B)) < max {da(A(B) * w), da(A(w)}

RDNFI of G if it fulfills :

(RDNFI-1) P,(0) = P, (h), ds(0) = ds(h) and 4y (0) < Iy (b)

(RDNFI-2) Po(A(B)) = min {Pa(b * A(wp), Pa(A(w))}

(RDNFI-3) d4(A(k)) = min {da(b % A(w), da(A(up)}

(RDNFI-4) L, (A(B)) < max {da(b * A(w)), La(Au))}

DNFI of G if it fulfills :

(DNFI-1) P4 (0) = Pa(b), da(0) = da(h) and 44 (0) < da(h)

(DNFI-2) P5(A(B)) = min {P4(ACh % wp) ), Po(A(w))}

(DNFI-3) d(A(B)) = min {da(A(h * w)), da(A(w))}

(DNFI-4) 4s(A(B)) < max {(da(ACh % w)), da(A(u))}

Proposition 3. 2: Every DNFI P,, d, of G is of reversing order and J, of G is of preserving order
(or)
Let & = (P, d's,1s) be @ DNFI of G. If A(B) < A(w) in G, then Po(A(B)) = Pa(A(w)),
Fa(A(B)) = da(A(w)) and Jx(A(E)) < Ja(A(wW)) (i-€) P4, ds Of G is of reversing order and 4, of
G is of preserving order.
Proof: Let A(b) < A(w).
Since P, &, are DNFl on G.
By DNFI-2, we obtain P, (A(B)) = min{P,(A(h * wp)), Pa(A(w))}
DNFI-3, we obtainds(A(%)) = min {d4(A(k * w)), da(A(u))}
Since A(b) < A(wyp), then A(b) * A(w) =0
We know that A(b) * A(w) = A(b) *x = A(bxw)
Therefore, P4 (A(B)) = min {Po(A(h * w)), Pa(A(w))}
> min {P,(A(E) * A(w)), Pa(Aw))}
> min {P4(0), P4(A(w))}
= Pa(A(up)
Fa(A(B)) = min {da(ACh * up), da(Aw))}
> min {da(A(E) * A(w)), da(Aw))}
> min {d4(0), da(A(w))}
= da(A(w))
By DNFI-4, we obtain J4(A(B)) < max {d5(A(k * w)), da(A(w))}
< max {4a(A(h) % A(W)), da(ACup)}
< max{ds(0), 44 (A(w))}
= da(A(w))
Therefore Po(A(E)) = Pa(A(w), da(A(E)) = da(Alw)) andds(A(B)) < da(Alw)).
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IV.  DNFII’s of BCK-algebra

This section generalizes the derivation concept to NFlIs, introducing derivations of NFlls and
exploring their consequences, including interconnections between DNFSAs, DNFIs, and DNFII's,
and related properties.

Definition 4.1: A: G — G is a mapping that acts on G. Consider a non-empty NFS A = (P4, ds, ds)
of G. Then, A is said to be a left derivation Neutrosophic fuzzy implicative ideal (LDNFII) of G if it
fulfills the following conditions Vv b, u},y € G:

(LDNF11-1) P4 (0) = P4(h), da(0) = d,(h) and 4 (0) < du(h)

(LDNF11-2) P4 (A(E)) = min {P((ACh * (w % $))) * ¥), Pa(A(Y))}

(LDNFI1-3) d4(A(B)) = min{ds((A(b * (w * £))) *y), da(AK))}

(LDNF11-4) ds(A(B)) < max {da((A(b * (w * B))) *y), La(A))}

RDNFII of G if it fulfills:

(RDNFI1-1) P5(0) = P4(k), da(0) = ds(b) and du(0) < du(h)

(RDNFI11-2) P5(A(B)) = min {Pa((b * (w * ) * AY)), Pa(A(Y))}

(RDNFII-3) d(A(k)) = min {da((h * (w x5)) % AY)), da(AW))}

(RDNFI-4) 4 (A(k)) < max {da((b % (w * b)) x AY)), da(A(Y))}

DNFII of G if it fulfills:

(DNFI11-1) P4(0) = P4(h), da(0) = da(h) and dx(0) < du(b)

(DNF11-2) P,(A(K)) = min {P, (A ((b* uxb)) = y)) PA(AY))]
(DNF11-3) d4(A(E)) = min {d‘A (A ((15 * (u %)) * Y)) ) d‘A(A(y))}
(DNF11-4) 4, (A()) < max {qﬁ (A ((15 % (u * b)) * Y)) ,qﬁ(A(y))}

Example 4.2: Let G = {0,4,b,7,b} be a BCK-algebra, whose binary operation is defined by the
following Cayley table

oY | ||| *
=Y o |d|o|o

AR |v|olo>
=Y oo |o

oo || |Oo

S = =1=1=1

Establish a mapping A: G — G by A(k) = {O ‘fl;hi; J f’bb'”

Then it follows that A is a derivation on G and we define a NFS G = {0, £, b, n, h}

A = (P, ds,dy) in G defined by

P4(0) = Po(d) = mg, Pa(£) = Pa(n) = Pa(h) = my, da(0) = da(d) = ko, Fa(£) = daln) =

da(®) = ki and dx(0) = dx(d) =1y, Ra(£) = da(n) = ds(h) = ny, where m;, k;,ny € [0,1]
and m; + k; + ny, < 1, where i,j,k € [0,1] and suppose a derivation is defined on the NFS by
PyG->G , da:G->G and du:G - G such that PL(A(0)) = PA(A(D)) = 1, Po(A(R)) =
Pa(A(n)) = Pa(A(D)) = 0.5, da(A(0)) = Fa(A(D)) = 1, Fa(A(R)) = da(A(n)) = da(A(D)) =

0.5 andda(A(0)) = da(A(D)) = 0, Ja(A(R)) = da(A(n)) = Ha(A(D)) = 0.7
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Then, a brief inspection shows that & = (P4, ds, 1) is DNFII of G.

V. DNFPII of BCK-algebra
The concept of derivation is extended to NFPII’s in this section, which examines their properties,
derivations, and connections to DNFSA, DNFI, and DNFPII.

ANFS & = (Pa, ds,dy) in G is a DNFPII if it meets the following criteria:
(DNFPII-1) P5(0) = Po(A(B)), ds(0) = da(A(B)) and d4(0) < da(A(H))
(DNFPII-2) Po(A(E * y)) = min {P4(A((B * w) *¥)), Pa(Alw * y))}
(DNFPII-3) da(A(k % ¥)) = min {da(A((h * w) *y)), dFa(A(w *y))}
(DNFPI-4)d(A(h ¢ ¥)) < max {da(A((h * w) % v)), Ja(Aw % ¥))3,

v B,y € G

Example 5.1: Let G be a BCK-algebra with the underlying set {0, 1,2, 3,} and the following Cayley
table.

x |0 112 |3
010 |00 |0
11 Jo o3
2 |2 2 10 |3
33 |3 ]3]0
| | 0if% = 0
Establish a mapping A: G — G by A(k) = {3 ift=1,23

Then it follows that A is a derivation on G and we define a NFS & = (P4, ds, 1) in G by

P,(0) = 0.8, P,(1) = P4(2) = PA(3) = 0.3,

dA(0) = 0.8,d4(1) = d4(2) = d4(3) = 0.3 and

J4(0) = 0.3,44(1) = da(2) = J4(3) = 0.8 where m;, k;,ny, € [0,1] and m; + k; + ny < 1,
where i, j, k € [0,1] and suppose a derivation is defined on the NFS by P,:G —» G, ds: G - G and
Jd,: G - G such that

PA(A(0)) = 0.8, Po(A(1)) = Pa(A(2)) = P4(A(3)) = 0.3,

Fa(A(0)) = 0.8, d4(A(1)) = F4(A(2)) = F4(A(3)) = 0.3 and

da(A(0)) = 0.3, d4(A(1)) = da(A(2)) = 1a(A(3)) = 0.8,
Evidently & = (P4, ds, ds) is DNFPII of G.

Theorem 5.2: A DNFI A = (P4, ds,ds) is a DNFPII if and only if it satisfies the identity for all
elements b, w, y € G.

Pa(ACh % w)) = P, (A(@s %)) % u{)),

Fa(A(h * u)) = da(A((E * w) * wp)) and

Ja(ACh % W) < Iu(A((h % wp) x w)).

Theorem 5.3: ADNFI & = (P, ds, 1) of Gis DNFPII & it satisfies the identity and
Pa(A(h % w)) = Pa(A((h * w) * up),
da(ACh * W) = da(A((h * wp) * up)) and

Ja(Ah % w)) = Ja(A((h * w) *wp) ¥ b,w,y €G.
Proof: Straight Forward
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Theorem 5.4: A DNFI & = (P, &4, 1) of G is DNFII if and only if A is both DNFCI and DNFPII.
Proof: Straight Forward

Theorem 5.5: Let Y € G and & = (P4, s, Ia) be a NFS in G defined by
b ) b
P(A®) = {; 0P =D aaam) ={ TP and wu(am) = f, €Y

&4, otherwise’ 11, 0therwise {;,otherwise’
beEG where 0<6, <8, 0<m<nmyand 0<{,<¢; and 6;+n;+¢; <1, for i =0,1. The
next conditions are interchangeable:
(i) AisaDNFPIlof G
(i) Pisanllof G.
Proof: Let’s Suppose (i)
(i.e) A isa DNFPII of G
Letb,wye
Now P,(0) = PA(A(E)) = &
P,(0) >6,,0€9
Let b, w,y € G be such that Let (5 (w*y)) *xy €9
We have P4(A(B)) = min{P,(A((b* (w* b)) *y) ), Pa(A(Y)) }
= min{8,, &y}
=dpandsob €Y
Hence 9 is an Il of G.
Let’s Suppose (ii) and b € G
If £ € 9 then Po(0) = 8, Pa(A(E)) = 8
Since 0 € 9 we have = d(0) = 14, and s0 d4(0) = ds(A(E))
Also U (A(B)) = o and 50 1 (0) = I (A(E))
If b ¢ G= Pa(A()) = 615 Fa(A(B)) = 1y and Lu(A(E)) = ¢
Now P,(0) = 8, > &; = Pa(A(E))
Fa(0) = 1o >y = F4(A(k)) and d,(0) = G < §; = da(A(B)) VB EG.
Let b, w,y € Gbesuchthat (b (w*%))*yed, yea.
If (b (uxt))*yePandy e,
Since 9 is an Il of G, then we obtain b € 9 and so
PA(A(B)) = 8y = min{8y, 6o } = min{Pa(A((B * (w *B)) *y) ), Pa(AK)) }
da(A(B)) = 1o = min{no, no } = min{da(A((b * (w % $)) *y) ), da(AY)) } and
da(AMB)) = ¢ = max{Go, §o } = max{da(A((b * (W b)) x¥) ), da(AW) }
If (5% (b)) *yePandy & D, then we obtain t ¢ 9 and so
Pa(A(B)) = 8, = min{8y, 6o } = min{P,(A((b* (w*$)) *y) ), Pa(A(Y)) }
da(A(B)) = 0y = min{ng, 1o } = min{da(A((h * (w b)) xy) ), da(A(y)) } and
da(A(B)) = & = max{{o, o } = max{da(A((b % (w * ) *y) ), da(AY) }
If (5% (w*%b))*yePandy € Y, then we obtain + & 9 and so
PA(A(B)) = 6; = min{8;, 8, } = min{PA(A((b * (w* 1)) *y) ), Pa(A(Y)) }
da(A(E)) = ny = min{ny, 1o } = min{da(A((E* (w*B)) *y) ), da(A(Y)) } and
da(AB)) = & = max{y, o } = max{da(A((h = (w * 1)) *¥) ), da(A(Y) }
If (b (w*%b))*yePandy & 2, then we obtain + & 9 and so
PA(A(B)) = 61 = min{8;, 61 } = min{Pa(A((B * (w*1)) *y) ), Pa(A(Y)) }
da(A()) = ny = min{ny, 11 } = min{da(A((b * (W *$)) ¥ y) ), da(A(Y)) } and

for all
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“I-A(A(t)) ={ =max{{;,{; } = max{‘-IA(A((”h * (g % ”h)) *Y) )"‘I-A(A(Y)) }
Therefore  P(A(B)) = min{PA(A((B * (w*B)) *y) ), Pa(AY)) }
da(A(B)) = min{da(A((B * (=) *y) ), da(A(y)) }and

Ja(ACB)) < max{da(A((h * (w*B)) % y) ), da(A®)) }
Therefore #A is DNFPII of G.

Corollary 5. 6: Let 9 € G and & = (P, s, Js) be a NFS in G defined by

PA(A(t)) - {0, otherwise’ &A(A(t)) ~ |0, otherwise
_{ 0b€Y :
Ju(A(B)) = {1’ otherwise: TOF @l B € G. Then the following statements

are interchangeable:
0] A is a DNFII of G.
(i) P isan Il of G.

Proposition 5.7: A BCK-algebra G has the implicative property iff the same holds for
all its ideals.

Theorem 5.8: G is an implicative iff every DNFI is a DNFII-type.
Proof: G is assumed to be an implicative.

As a consequence of Proposition 5.7, all ideals of G are implicative.
Suppose & = (P4, da,da) is a DNFI of G.

Then A is DNFII of G.

On the opposite side, postulate all DNFIs of G have the DNFII property
To demonstrate that G is an implicative.

Let Y be an ideal of G

Establish a NFS A defined by

_( SnbEY _( M.b€D
Pa(h) = {81, otherwise’ Fa(h) = {771, otherwise’
_{ Gob€D
du(h) = {(1,otherwise' forall 5 € G,where 0 < 6§, < &y, 0 <1, <1,

and 0 < ¢, < ¢; and

5i+ni+€i < 1,f0ri =0,1.

Given that A is a DNFI of G

we can apply Theorem 5.5 to conclude that 9) is an 1l of G.

This implies that all ideals of G are implicative.

By virtue of Proposition 5.7, we can infer that G is implicative.

Combining this outcome with the preceding propositions and theorem leads to the
following corollary.

Corollary 5.9: G, as a BCK-algebra, has the following equivalent characteristics:
(i)  Implicative property

(i)  All ideals are implicative

(iii)  Every DNFI is a DNFII

(iv) Every DNFI is both a DNFCI and a DNFPII.

Theorem 5.10: Suppose & = (P4, ds, 14) is DNFI of G that fulfills the following criteria.
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() Pa(AC*wD) = min{Pa (A ((Ch % w) ¥ w) *y)), PaAw))
(i) Sa(ACk % w) = min {d (A (b w) % w) %) ), SuA)}

(i) La(ACh * w)) < max {ly (A ((Brw=uw)= y)) (AW)} v wy e
Then A becomes a DNFPII ideal of G.

Proof: Suppose A is a DNFI of G with the following constraints
Pa(ACh % w)) = min {4 (A ((Ch * w) * w) *v)), PA(A®))]

(6% w) = w) #v)) da A}

da(A(h x ) < max{ ( (CIOHETHE Y)) f“I-A(A(Y))}
To prove A is DNFPII of G.

Using (b x w) *y = (b % y) %y and

(bxy) % (yxy) <bxy Wehave

A((B*y) *y)* *y) < A((B*y) *w) = A((b*up) *y) Vb u,y €C.
Pa(A(((bxy) %) % () ) = Pa (A(Ch % w) # )
da (A ((Bxy)*y) = (W*Y))) > ds (A((h % up) %))
%(A(((”h*y) *y) x (W*Y))) < dy (A((5*w) *y))

It follows from hypothesis,
We obtain ~ Po(A(h *y)) 2 min{P, (A (b= y) *y) * (w y))) (A %))
> min {P (A((h % wp) * ) ), Pa(ACw * )}
da(A(h*y)) 2 min{dy, (A (((13 *y) xy) * (0 * Y)))  da(Aw % y))]
> min {d (A(Ch % w) * ) ), da(ACw * )}
Andd,(A(h * y)) < max {HL% (A (((13 xy) xy) % (y % Y))) g (Aw % Y))}

< max {l{A (A((’B x 1) % y)) ,da (A * y))} v b,uy € G.
Accordingly, A is a DNFPII of G.
Conversely, if & is a DNFPII of G, it follows that A is a DNFI of G.
Letdb=bx(yxy),h=bxy

since A (b * (w ) * (b % wp) ) < ACw * (g *y)
We have that
Po(A(( % B) % Y)) = P, (A (((15 * (W *y)) * (brup)» y))

> P, (A ((*15 % (W xy)) *Y))
= P4(0)
andso P, (A((']s s uyp) * (uy * Y))) = ]P’A(A((”]S % (u % Y)) % Y)) =Pa(dxy)
> min {[P)A (A((b %) * y)) Pa(A(D *¥)) }

da(A(h * W) = min d‘A
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= PA(AQH * V)
— PACA((h % W) *Y))
« Pa(A(Gh*w) * (1)) = Pa (A((B 2 w) xY)). Vb upy € C.
Similarly, We have that
Fa(A((d % b) ¥ ) = da(A((h * (w*y) * (b*w)) *y))
> Jy (A ((15 % (W *y)) % Y))
= d4(0)
and 50 ds (A((h *w) * (w + ) = da(A((B % (W *y)) ¥y)) = du (o *y)
> min {d (A((d * ) *Y)), da(A( * V) }

= da(A(h *Y))
= da(A((b * w) *Y))

O (A(Ch* up) = (+Y))) 2 Ga(A(Ch * w) %))
also we have that J, (A((d * B) * y)) = La(A((B * (w * y) * (b *w)) *y))
<y (A((*h % (W *y)) »rw)) = 1,(0)
and so s (A(Ch* w) * (W *))) = da(A((h * (w %) ¥ y)) = da(d % y)
< max {y (A((0 % B) *v)), L (A * V) }

= da(A() *¥))
= da(A((h * wp) * )

iy (A w) * (* ) < AaA(CE * ) * ) VB uy € C
Thus Proven.

Theorem 5.11: If & = (P,, ds, 4a) of G is a DNFPII of G then for any k,w,y,0,5 € G.

() A(((G%w) *w) ¥b)) < AD) imply that PAACH * w)) = min{PAA()), PAGH)),
da(A(h * wp)) = min{da(A(D)), d4(A(D))} and 4 (A(h * wp)) < max{d4(A(d)), da(A(H))}-

i) A ((((13 ) * w) % b)) < A(p) imply that

Pa (A * y) * (W %)) ) 2 min{P,(A®)), PoAD))}

da (A(((B % y) * (W %)) = min{da(A()), da(A®D))} and

da (A *¥) % ( *v)))) < max{da(A®)), da(A(H)))
Proof: Suppose & = (P, 0, 1s) isa DNFPII of G.

() Letd upy,b b € G be such that A ((((1;, £ up) % ) % b)) < AH)
We know that s (A((h % up) % w) ) = min{P4(A®)), Pa(A(H))}
da (A(( * w) * ) ) = min{ds(A®)), da(A®D))}
9 (A(G * w) * w) ) < max{Ua(A®D)), Ta(AGD))}
It follows that P» (A * w))) = min {Ps (A(Ch * w) * w) ), Po(ACw * w))
> min {P, (A((h * w) * w) ), Pa(A0))}
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> min {P (A((h % w) *w)), Po(0)}
= Pa (A(Ch* up) % w))

= min{P,(A(d)), Po(A(H))}
o Po(ACh % ) = min{P4(A(d)), Pa(A(D))}

Fa(ACh * up) 2 min {ds (A(Ch * w) * ), G (ACw * up)}
> min {d (A((’B %)) % m)) , 04 (A(0))}
> min {d (A((’B %)) % m)) , A (0))
= iy (A((h % ) % w))

= min {J(A()), Fa(A(D))}
. da(A(k * w)) = min{da(A(D)), s (A(D))}

And , (ACh * w)) < max {dy (A(Ch * w) * uy) ), La(ACw * wp)}
< max {4y (A((h * up) * ), 4 (A(0))}
< max {4y (A((h * up) * u)), 4 (0))
= s (A(Ch % ) = )

< max{t,(A(2)), La(A(h))}
o da(ACh % W) < max{da(A(D)), Ja(AD))}

(i) Leth u,y € C be such that A ((((15 £ ) % ) % b)) < AH)
Since A is DNFPII of G.
we get P, (A(((h * )  (w *¥)))) = min{P(A()), PA(A(H))}
da (A(((B % y) * (W %)) = min{da(A(®)), da(A®D)} and
Ia (A *y) * (W %)) ) < max{dy(A®)), La(A®))}

Therefore, the proof is complete.

Theorem 5.12: Consider & = (P4, d"s, ds) a NFS in G that fulfills the following conditions,
A (G u) % w) %) < ACY) imply that Po(A(k % w)) = min{Pa(A()), Pa(A®D))},

da(A(E * wp)) = min{da(AD)), da(A(D))} and L (ACk * wp)) < max{ds(A(d)), Ia(A(D))}, for
any b, w,y, d,b € G. Then A has the DNFPII
property in G.

VI.  Neutrosophic Fuzzy Translations of Positive Implicative Ideals of BCXK -algebras
In this phase, we introduce and practice the idea of Fuzzy Translations (FT) to Neutrosophic fuzzy
Positive Implicative ideals in BCK-algebras and few properties are examined.

Definition 6.1: Let & = (P4, ds,ds) be a NFS of G and let g € [0, C]. An object having the form
Az = ((Pa), (Fa)p (da)g) is called a NFF — T(Neutrosophic fuzzy B-translation) of # if

(Pa)p(B) = Pa(b) + B, (dw)p(h) = da(h) + B and (da)p (k) = da(B) =B VB EG.

For notational convenience, A is represented as A& = (P, da, da)-
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Theorem 6.2. For any NFPIJ A = (P4, &, Jy) of G, the NFF — TA} of Aof Gis
also NFP37 forall g € [0, C].
Proof: Given that A = (P, da,Jya) is a NFPIT of G, We have

(Pa)5(0) = PA(0) + B = Pa(h) + B = (Pa) 5 (h)
(da)5(0) = da(0) + B = da(h) + B = (da)(b) and
(da)5(0) = 94 (0) — B < du(h) — B = (da) 5 (B).
Now, (Pa)j (b % y) = Pa(h % y) + B = min{P((b x w) *y), Pa(w x y)} + B
= min{(Pa)p((b % w) *y), (P p(w % y)}
(Fa)p (b % y) = da(b xy) + B = min{da((bxw) xy), Falw x Y} + B
= min{(da) 5 ((b % w) *y), (da) (W x y)} and
() p(bxy) = da(b xy) — B < max{da((h * up) xy), da(w *y)} - B
= max{(da) 5 ((b * w) *y), (a) (W * )}
It follows that, (Pa) 5 (b x y) = min{(Pa)5((b % wp) xy), P4z (w x y)}
(Fa)5(h % y) = min{(ds) p((b* wp) xy), (da) p(w % y)} and
() p (B xy) < max{(da)p((b* w) *y), () p(w* Y} v u,y€G.
Therefore, the NF# — T#g of A is a NFPI7 of G,
Theorem 6.3. Let A = (P4, &, du) be a NFS of G such that the NFF — TA}; of Ais

a NFP77 of G for some B € [0, C]. Then A is NFPIJ of G.
Proof: Consider the case where AE isa NFPII of G for some B € [0, C].

Let b, w,y € G. We have (Py)3(0) = PA(0) + B = Pa(b) + B = (Pa)5(h)
(dw)5(0) = da(0) + B = da(h) + B = (da)5(h) and
(da)p(0) = du(0) = B < da(h) — B = (da) s ()
This leads to P, (0) = Px(b), d4(0) = da(h) and dx(0) < du(h).
Presently, we observe
Pa(h % y) + B = (PR (b xy) = min{(Py)5((bxw) % y), P (w * y)}
= min{Pa((b * w) xy) + B, Pa(w xy) + B}
= min{Pa((b % w) *y), Pa(w x y)} + B
Falb % y) + B = (Fa)5(h % y) = min{(d)p((b* w) xy), (Fa)p(w % )}
= min{da((b x w) *y) + B, Fa(w * y) + B}
= min{d*ﬁ((']s %)) * y), da(uy y)} + S and
da(bxy) — B = () p(b x y) < max{(da)p((h % wp) xy), (4 (w x y)}
= max{da((b % up xy) + B, da(w x y) — B}
= max{ds((b * w) *y), La(w =Y} - B
This yields Po(b * y) = min{Pa((b * w) * y), Palw * y)}
Fa(bxy) = min{d‘A((’s %)) * y), da(uy * y)} and

Ja(b *y) < max{da((b*w) *y), daly *y)} vb,u,y€G.
Therefore, we can deduce that & is NFPJJ of G.

Theorem 6.4 If the NFF — TA}; induced by # is a NFP77 of G for all B € [0, C], then it
must be VF7 of G.
Proof: Let the NFF — TAj of A is a NFPIJ of G, Sequently, we obtain
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(Pa)p(b* ) = min{(Po)5((b* up) xy), (P)5(w * y)}
(d‘A)};(t’ xy) = min{(d‘A)E((”h *up) *y), (dA)E(ul *y)} and

() p (b *y) < max{(da)p((b* w) *y), () p(w* Y} v u,y€G.
Givenany b € G, b % 0 = b, thus with the setting of y = 0 we attain

(Pa)5 (b % 0) = min{(Pa)5((b % w) % 0), (P4) 5 (w % 0)}
= (Pa)j(h) = min{(Pa) (b * up), (Pa)} (up}
(I3 (b x 0) = min{(d) (b % wp) * 0), (Fa) 5 (w % 0)}
= (d)p(b) = min{(dn)p(b x w), (dx)p(uw)} and
() p(b % 0) < max{(da)5((b * w) % 0), (da) 5 (wy * 0)}
= (da)p(b) < max{(dn)5 (b * up), (o))} v b, u,y €G.
Accordingly, A is a NF7 of G.

Remark 6.5 The converse of Theorem 6.4 does not necessarily hold, as illustrated by
the following counterexample.

Example 6.6 Let G = {0,, w, o, ¢} be a BCK-algebra with the given table

~|o |8 |w|o|%x
~|lo |8 |wo|o
~|o |8 |o|o|m
N -NI=1 =2k
o |lo|lo|lo|o|o
o|lo|o|o|o|n

Define a NFS A in G by
(P2)F(0) = 0.64, (PF(D) = 055, (P)f(w) = (PG(0) = (PAR(S) = 0.35
(FW)5(0) = 0.64, (5D = 055, (da)f(®) = (dW)(0) = (FW)5(0) = 035 and
()5 0) = 055, (4D = 0.62, (a5 (@) = (Ia)f(0) = (U (O) = 0.82.
Here, C = 0.35. let us take § = 0.32 then AE of A is given by
(P2F(0) = 096, (PF(D) = 087, (P)f(w) = (P} (0) = (P)F(S) = 0.67
(FW5(0) = 0.96, (da)F(H) = 087, (dw)h(w) = (F)5(0) = (da)5(c) = 0.67 and
(45 (0) = 023, (4 (D) = 0.30, (d0)F () = (Ua)f(0) = (U (©) = 0.50
By direct computation, we find that AE is indeed a VF7 of G.
However, it is not a N'FPJIJ of G, because

(Pa)p(c%0) = 0.67 < 0.96 = min{(IP4)p((c * 0) % 0), (Pa) (0 * 0)}
(d‘A)E(c %x0) = 0.67 < 0.96 = min{(d‘A)E((c % D) % D), (d‘A)fg(o % 0)} and

(QA)E(C %p) = 0.50 > 0.23 = max{(tlﬁ)g((c % D) % o), (QA)E(D % o)}.

Theorem 6.7 Let & = (P4, ds, 1) be a NFS such that NFF — Ta; of & is a NFPIT of G v €
[0, C] then the sets § = {o|o € G, (P4);(0) = (P4)(0)},6 = {o]o € G, (dx);(0) = (da)5(0)}

and $ = {o|o € G, (4a)5(0) = (da)(0)} are PII’s of G.

Proof: Assume that A% is a N'FPJ7 of G. Then (IP4) g, (da) and (da)} are PII’s of G.
Itisevidentthat 0 e & 0 € G and 0 € .
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Thus§ # 0, ® + @ and H # 0.
For (bxw) %y € §and w xy € & implies
(P p((b*w) xy) = (Pa)5(0) = (Pa)p(w x y)
We now turn to (IPa) (b % y) = min{(Pa)5((b * w) % y), (P (w * y)}

= min{(Pa)}(0), P (0)} = (P4);(0)

Which entails (P)5 (b x y) = (P4)(0)
This shows that P4 (b % y) + § = P4(0) + B or P4(b xy) = P4(0)
Inorderthat b xy € §, v b,u,y € G.
Thus § is Pl of G. Using a similar approach we can prove & and $ are PII’s of G.

Lemma 6.8 Let the NF# — TAE of & be a NFPI7 of G for all € [0, C] then

b<w= (Pa)p(h) = Pa)p(wp), (da)p(h) = (Fa)p(w) and (da) p(b) < (o) (w)
v b,y € G.
Proof: Let b,u; € G suchthat < w = bx%u = 0.

Consider (IPa)5(h) = (Pa)5(h % 0) = min{(Pa)5((b x w) % 0), (Pa)(w % 0)}

= min{(Pa)5 (b % wp), (P p(u)} = min{(Px)(0), (P ()} = (Pa)5(w).
Likewise (d2)3(b) = (d); (b % 0) = min{(dw);((b % w) % 0), (Fa) 5 (w * 0)}

= min{(da) 5 (b * wp), (Fa) (W)} = min{(da)5(0), (Fa) 5 (W)} = (da) p(w) and
(da)p(B) = (da)p (b % 0) < max{(da) 5 ((b % w) % 0), (a) 5 (w * 0)}

= max{(da); (b x w), (da) p(up} = max{(da)3(0), (d) ()} = (da)p(wp) .
Therefore, (Po);(5) = (Pa)p(w), (Fa)5(h) = (da)p(w) and (da) p(h) < (da)p(w)
v b, € G. Hence, the result.

Theorem 6.9 If G is PI BCK-algebra, then a NFJ must be a NFPI7.
Proof: Suppose AE isa VF7 of Gand G is a Pl, by definition

(bxw) xy=(bxy)x(yxy), VhuyeG
Since AE isa VF7J of G. Put b % y in place of - and uy * y in place of wj in N’F7 -2,3 and 4.
We obtain (P)% (b % y) = min{(PR)((h*y) * (wxy)), (PA)p(w * v)}
= min{(Pa)p((b % w) *y), (P p(w % y)}

(Fa)5 (b % y) =2 min{(d)p((b*y) * (wxy)), (d)p(w * )}

= min{(dp)p((b % w) % y), (da)p(w % y)} and
(Ua)p (b xy) < max{(d)p((b*y) * (wxy)), (da)p(w *y)}

= max{(da) p((b * up) xy), (da)3 (W * ) }.
Therefore, &5 is a NFPI7 of G.

Theorem 6.10 Let A3 be a N'F7 of G then A; is a NFPI7 of G, the following inequalities hold:
(PDE((bxy) x (Wxy)) = Pa)p((bxw) *y),

(FDF((Bx*y) * (w*y)) = (Fa)p((B*wp) *y) and

Mg (Bxy) * (Wxy) < (LDF((*w) *y) Vb uwy€eG

Proof: Assume that A% is a N'FP77 of G,

By Theorem 6.4, A} bea NFIof G. Letb,u,y€e Gandp =b* (yx*y)and » = b % w.
Since, for all 5, w,y € G,
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(P} (((t % (W y)) * (bxup)) y) > (PG ((w* (wxy) *y)
(@F (b Cax ) % (b w) % y) 2 (GF (% (%) xy) and
L (5% Quxp) = (bxw) *y) < (L ((wx G xp) *v)
Then (P)5((2 * ) *y) = (5 ((w* (w*y)) *y)
= (PO)F((w*y) * (w*y)) [by P-3]
= (P2)}(0) [by BCK-3]
SO (PA)E((W % 7) % Y) = (PA)E(O)
(@5 * ) *y) 2 (@5 ((w* (w=y)) *y)
= (W p((w*y) * (wxy)) [byP-3]
= (da)3(0) [by BCK-3]
50 (Fa)5((p % ) xy) = (Fa)3(0)
and (U2)5((p % ) %) < (45 ((w * (w * ) *y)
= ()3 ((wxy) % (wx*y)) [byP-3]
= (4a)3(0) [by BCK-3]
50 (U5 ((p % 7) % y) = (da)(0) .
By applying conditions (P-3), (NFPJT -2, 3 & 4), we obtain
PG *y) * (*y)) = PG ((B* (wxy) *y)
= min {(P)3((p % 7) xy), PR(r %)}
= min {(P4)(0), (P (+ % y)}
= (Pp(rxy) = PE((bxw) *vy)
(@G xy) * (w*y) = (@G ((b* (wxy) *y)
= min {(F)5((p % ) xy), (G p(r x )}
= min {(Fa)3(0), (G5 (r x ¥)}
= (dWp(r % y) = (Fa)3((B* w) % y) and
(F((B*y) * (wxy) = (15 ((b* (wxy)) *y)
< max {(da)5((p % 7) % y), ()5 (r % y)}
= max {(4a)3(0), () p(r % )}
= () xy) = ()5 ((bxw) *y).
Thus, (Pa)p((B*v) * (wxy)) = (PO)R((h*w) xy)
(IR ((Bxy) % (W*y)) = (d)F((b*w) xy) and
{IDE((Bxy) * (Wxy) < (TD5(B*uw) *y) vhw,y€eG.
In the converse direction, assume that AE is a VF7 of G satisfies the inequalities
(PE((Bxy) x (wxy)) = PE((bxw) *y)
(FDE((Bxy) = (W*y)) = (F)F((b*w) *y) and

()p((Bxy) * (wxy) < (E((Bxw) *y) v uwyeG
For any b, w, y € G, By applying conditions (NFPJ7 -2, 3 and 4), we obtain

(PR (b *y) = min {(POR((B*y) * (wxy)), (Pa)p(w*y)}

UGC CARE Group-1

82



Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

> min {(Pa)j((b % w) xy), (Pa)j(w % y))

(@5 xy) = min {(ID5((b*y) * (wxy)), (GG (W * )}
> min {(da)p((b % w) %), (Fa)p(w x y)} and

(L) g (b * y) < max {(d)F((B*y) * (w*y)), ()5 w *y)}

< max {(da) (b w) xy), () p(w * y)} v b,y €G.
Therefore, A} isa NFPIJ of G.

Theorem 6.11 Let A3 be a N'F7 of G. If A} is a NFPIJ of G then the inequalities
are satisfied.

(1) PEE % w) 2 (PLF((b % w) * w)
(2) (G)f( * w) 2 (FwE((h * w) * w)
(3) (ph*w) < (LE(B*w) *w) v w G,

Theorem 6.12. If & is a N'FP77 of G, then
(1) Forbw,p 7 €G ((b*u)x*w)x*p < implies
(Pa) 5 (b * up) = min {(Pa)5(2), (PAE ()}, (Fa)p(hxw) = min {(da) (), (Fa)5 ()} and
() p (b * wp) < max {(I) (@), () ()},
(2)  Forbwp, 7 €G ((b*u)*w)*p < implies
(PE((Bxy) % () = min {(PE(p), (PA); ()},
(FDE((bxy) * (w*y)) = min {(Fa)5 (), (Fa);(+)} and
() p((Bxy) * (W xy)) < max {(da)5 (@), (da); (1)},
Proof: Let A} be a NFPIJ of G. And let b, w, p, 7 € G such that ((k * u)) * ) * p < 7. We have
(PR ((b* w) * W) = min {(PY(p), (PR}
(Fa)p((b* w) % w) = min {(Fa) (), (da)p(+)} and
(a3 (b * up) x wp) < max {(da)3 (@), () ()}
Insert y = wy in NVFPJIJ -2, 3 and 4. We obtain
(P25 (b x w) = min {(Py)5((b* wp) x w), (Pa) 5 (w x w)}
= min {(Po)p((b * w) % wy), (P4);(0)}
= (P ((b* w) x wp) = min {(Pa)(), (P2}
(Fa)5 (b % wp) = min {(Fa)5((b * w) * wy), (da) 5 (W * wp)}
= min {(da)5((b * w) * w), (da)5(0)}
= (dw)5((b % wp) x wp) = min {(da);(P), (Fa)5 ()} and
() p (b % w) < max {(da)5((b * w) * wy), (da)p (W * w)}
= max {(da)p (b * up * w), (1) 5(0)}
= ()5 ((bx up = w) < max {(da) (), (L) ()}
Therefore, (Pa)% (b * w) = min {(Pa)5(»), (P (1)}
(T3 (b % wp) = min {(Fa)5 (), (Fa)5 ()} and
() p (b x W) < max {(da)3 @), (da) 5 ()}.
2. Let b, w, p,+ € Gsuchthat ((bx*w) *w) * p < .
Since A is a NFPI7 of G, we obtain
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(Pp((Bxy) * (Wxy) = (Pa)p((hxuw) *y)

> min {(Pa); (), (Pa)p (1)}
([Bp((Bxy) * (wxy)) = (Fa)p((bxw) xy)

> min {(da); (), (G (1)}
(BB xy) * (Wxy)) < ()R ((bxw) xy)
< max {(dn)p (@), () p()}.

This completes the proof.

Theorem 6.13. If A} is a F7 of G with the following conditions:
@5 w) = min {(@DF (((5*w) *w) *y), (PO}
(F)h (b * up) = min {(d)f (((b*w) * w) xy), (F)h(x)} and
(Ta)hCh % w) < max {(L)G (G up) xw) %), (DG} vhuw,y €C.
Then A3 is a NFPII of G.
Proof: Suppose A} is a VF7 of G, satisfying the following conditions.
(PG (b w) = min {(PF (((b*w) *w) *y), (PEW)}
(F)h (b x up) = min {(d)F (((b*w) * w) xy), (d)5(y)} and
()50 * up) < max {( ) ((Cb* w) *wp) xy), (LW}
Applying (P-3) and (P-4), we get

Wehave ((B*y) *y) * (wx*y) < (b*y)*w=(b*u)*y, vhu,yeGQG.
Thus, applying Lemma 6.8, it follows that,

@F (5 %) *y) * (W ¥)) = PF(Cb* up) *y)

(dﬁ)g ((('}5’ *y) ¥ Y) % (g % Y)) = (dﬁ)g(('}i SANES Y) and

(da)p (((']5 % y) % y) * (g % Y)) < (45((b x up xy).

By assumption,

(]P)A)E(']B %y) = min {(PA)E ((("h % y) % y) * (u * Y)) , (PA)E(W " Y)}
2 min {(Pa)p ((b * up) *y), Pa)j (w * y)}

(G5 *y) = min {(G0F (((5* ) xy) * (w*y)), (@)F(w * )}
> min {(da)p((5* w) *y), (da)g(w % y)} and

(LR *v) < max {(1f (b * ) * ) * (W), (W * v}

< max {(da)5((b x wp) xy), () p(w *y)} v b,u,y €G.
Thus, we conclude that AE isa NFPIT of G.

VII.  Conclusion

This research delves into the application of Left-Right Derivation ((L, R)-D) and Right-Left
Derivation ((R, L)-D) a particular derivative approach to develop a deeper understanding (NFSA,
NFI, and DNFI). We introduce four new concepts: Derivations of Neutrosophic fuzzy sub-algebra
(DNFSA), Derivations of Neutrosophic fuzzy ideal (DNFI), Derivations of Neutrosophic fuzzy
implicative ideal (DNFII), and Derivations of Neutrosophic fuzzy positive implicative ideal
(DNFPII). And also explore the interrelationships between these concepts, uncover specific
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outcomes, and investigate various associated properties, ultimately testing a range of related
residency outcomes. Finally, we discussed Neutrosophic fuzzy translation to Neutrosophic fuzzy
positive implicative ideals in BCK-algebras.
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