

Volume : 54, Issue 2, No.1, February : 2025

ON INTERVAL-VALUED NEUTROSOPHIC FUZZY HYPER BCK-IDEALS AND IMPLICATIVE HYPER BCK-IDEALS OF HYPER BCK-ALGEBRAS

Anjaneyulu Naik Kalavath, Research Scholar, Department of Mathematics, Acharya Nagarjuna University, E-mail: nelu.fuzzy@gmail.com

Bhuvaneswari Dhanala, Research Scholar, Department of Mathematics, Acharya Nagarjuna University, E-mail: bhuvanadhanala9328@gmail.com

Satyanarayana Bavanari, Professor, Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar-522 510, Guntur, Andhra Pradesh, India E-mail: drbsn63@yahoo.co.in

ABSTRACT

This study explores the application of interval-valued Neutrosophic fuzzy sets (IVNFS) to hyper BCK-ideals (h-BCK-Is) within hyper BCK-algebras (h-BCK-A's). We introduce the concept of interval-valued Neutrosophic fuzzification (IVN- fuzzification) of (*strong*, *weak*, *s-weak*) h-BCK-Is and establish that every IVNF-s-weak-h-BCK-I of *K* is an IVNF-weak-h-BCK-I. Furthermore, we define the notions of Neutrosophic fuzzy (*weak*) implicative hyper BCK-ideals of hyper BCK-algebras and present theorems that characterize these notions according to the level subsets. We also analyze the properties and provide characterizations of IVNF h-BCK-Is, and obtain the relationship among these notions, Neutrosophic fuzzy (*strong*, *weak*, *reflexive*) hyper BCK-ideals, and Neutrosophic fuzzy positive implicative hyper BCK-ideals of types-1, 2 ...8, yielding related results that contribute to the development of Neutrosophic fuzzy set theory in hyper BCK-algebras.

Keywords:

Interval-Valued Neutrosophic Fuzzy-*strong*-hyper BCK-ideal, Interval-Valued Neutrosophic Fuzzy-*weak*-hyper BCK-ideal, Interval-Valued Neutrosophic Fuzzy-s-*weak*-hyper-BCK-ideal, Neutrosophic Fuzzy Sets, Hyper BCK-algebras.

I. Introduction

Mathematics is built upon algebraic structures, which have far-reaching applications in various fields, including theoretical physics, computer science, and information science. However, the complexities of uncertainty necessitate the use of non-classical logic (a major development and broadening of classical logic), a more comprehensive and powerful framework than classical logic. Consequently, non-classical logic has emerged as a valuable tool in computer science. Furthermore, non-classical logic is particularly well-suited to handle fuzzy information and uncertainty. Zadeh's groundbreaking work in 1965 [12, 13] pioneered the concept of fuzzy subsets, facilitating the representation of uncertainty in real-world physical systems. Building upon the notion of fuzzy sets (FSs), numerous researchers have expanded the field by developing higher-order fuzzy sets, including interval-valued fuzzy sets (IVFSs) and intuitionistic fuzzy sets (IFSs). The developed frameworks facilitate the effective handling of imperfect and imprecise information. Furthermore, Atanassov's [1, 2] IFSs and the IVIFSs, generalize ordinary fuzzy sets. In 1934, Marty [8] introduced the hyper-structure theory, also known as multi-algebras, at the 8th Congress of Scandinavian Mathematicians, laying the groundwork for subsequent applications. Hyper structures have a wide range of applications in various disciplines of both pure science and applied science. The application of hyper-structure to BCK-algebras by Jun [6] et al. has led to the development of hyper BCKalgebras, which represents a significant generalization of BCK-algebras. Expanding on Atanassov's work, [4] Borzooei and Jun introduced intuitionistic fuzzy (IF) versions of strong, weak, and s-weak hyper BCK-ideals in hyper BCK-algebras, and studied their behaviour. In [7], Jun et al. introduced the notion of implicative hyper BCK-ideals and obtain some related results. Recently, Satyanarayana et.al., [9, 11] introduced the notion of IVIF-h-BCK-Is of hyper BCK-algebras, and also introduced

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

IFI-h-BCK-Is. Now, in this work we generalized to interval-valued Neutrosophic fuzzy hyper BCK-logic within the hyper BCK-algebras.

We introduce and develops interval-valued Neutrosophic fuzzy (IVNF) hyper BCK-ideals in K, investigating their properties and characteristics. The notions of interval-valued Neutrosophic fuzzy implicative hyper BCK-ideals are defined and examined, revealing relationships with related concepts, including Neutrosophic fuzzy hyper BCK-ideals and this research defines. Additionally, Neutrosophic fuzzy positive implicative hyper BCK-ideals of types 1-8., Furthermore, The relationships among these notions, Neutrosophic fuzzy strong, weak, s-weak, and reflexive hyper BCK-ideals, are also explored, providing related results.

The following abbreviations are utilized throughout this paper:

- ➤ h-BCK-A's (or) *K* : hyper BCK-algebras.
- ➤ h-BCK-Is: hyper BCK-ideals.
- > FS: fuzzy set.
- > IVFS: interval-valued fuzzy set.
- > IVIFS: interval-valued intuitionistic fuzzy-set.
- ➤ IVNFS: interval-valued Neutrosophic fuzzy set.
- ➤ IVIF-h-BCK-Is: interval-valued intuitionistic fuzzy-hyper-BCK-ideals.
- ➤ IVIF-(strong, weak, s-weak)-h-BCK-I: interval-valued intuitionistic fuzzy-(strong, weak, s-weak)-hyper BCK-ideal.
- ➤ IVNF-h-BCK-Is: interval-valued Neutrosophic fuzzy hyper BCK-ideals.
- ➤ IVNF-(strong, weak, s-weak)-h-BCK-I: interval-valued Neutrosophic fuzzy (strong, weak, s-weak) hyper BCK-ideal.
- ➤ IVIF(rep., I) PI-h-BCK-I: interval-valued intuitionistic fuzzy (rep., implicative) positive implicative hyper BCK-ideal.
- ➤ IVN(rep., I)PI-h-BCK-Is: interval-valued Neutrosophic(rep., implicative) positive implicative hyper BCK-ideal.
- > FPII: Fuzzy positive implicative ideal.
- (rep., I).PI-h-BCK-Is: (rep., implicative) positive implicative hyper BCK-ideals.

II. Preliminaries

This section provides, some basic information's about in the present research work, which are crucial for the subsequent development of this article.

Consider a nonempty set K endowed with a hyper operation, denoted by " \star ", which maps $K \times K$ to $Q^*(K)$, the set of all nonempty subsets of K. For any two subsets $\mathfrak{C} \& \mathcal{G}$ of K, the hyper operation is defined as: as $\mathfrak{C} \star \mathcal{G} = \bigcup_{\mathfrak{m} \in \mathfrak{C}, \mathfrak{n} \in \mathcal{G}} \mathfrak{m} \star \mathfrak{n}$. For notational simplicity, we will use $\mathfrak{f} \star \mathfrak{g}$ to represent $\mathfrak{f} \star \mathfrak{g}$, $\mathfrak{f} \star \mathfrak{g}$ or $\mathfrak{f} \star \mathfrak{g}$.

A h-BCK-A $(K, \star, 0)$ is defined as a nonempty set K equipped with a hyper operation " \star " and a constant 0, fulfilling the below conditions:

$$(hBCK1)$$
 $(f \star h) \star (g \star h) \ll f \star g$,

$$(hBCK2) (f \star g) \star h = (f \star h) \star g,$$

(hBCK3) f $\star K \ll \{f\},$

(hBCK4) f \ll g and g \ll f implies f = g, for all f, g, $h \in K$.

We can define a relation " \ll " on K by letting $\mathbb{f} \ll g \Leftrightarrow 0 \in \mathbb{f} \star g$ and for every $\mathfrak{C}, \mathcal{G} \subseteq K$, $\mathfrak{C} \ll \mathcal{G}$ is defined $\forall m \in \mathfrak{C} \ni n \in \mathcal{G} \ni m \ll n$. In such case, we call the relation " \ll " the hyper-order in K.

Observe that condition (hBCK3) is equivalent to (\mathcal{P}_1) f \star g \ll {f}, for all f, g \in K

The following hold in any h-BCK-A K:

$$(\mathcal{P}_2)$$
 f * 0 \leftleft \{f\}, 0 * f = \{0\} and 0 * 0 = \{0\},

OF INDUSTRIAL STATES

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 54, Issue 2, No.1, February: 2025

 (\mathcal{P}_3) ($\mathfrak{C} \star \mathcal{G}$) $\star \mathcal{S} = (\mathfrak{C} \star \mathcal{S}) \star \mathcal{G}$, $\mathfrak{C} \star \mathcal{G} \ll \mathfrak{C}$ and $0 \star \mathfrak{C} = \{0\}$,

 $(\mathcal{P}_4) \ 0 \star 0 = \{0\},\$

 $(\mathcal{P}_5) \ 0 \ll f$

 (\mathcal{P}_6) f \ll f,

 $(\mathcal{P}_7) \mathfrak{C} \ll \mathfrak{C},$

 $(\mathcal{P}_{\mathbf{R}}) \ \mathfrak{C} \subseteq \mathcal{G} \Rightarrow \mathfrak{C} \ll \mathcal{G},$

 $(\mathcal{P}_9) \ 0 \star f = \{0\}, (\mathcal{P}_{10}) \ f \star 0 = \{f\},\$

 $(\mathcal{P}_{11}) \ 0 \star \mathfrak{C} = \{0\},\$

 $(\mathcal{P}_{12}) \ \mathfrak{C} \ll \{0\} \Rightarrow \mathfrak{C} = \{0\},\$

 $(\mathcal{P}_{13}) \, \mathbb{C} \star \mathcal{G} \ll \mathbb{C},$

 (\mathcal{P}_{14}) $f \in f \star 0$,

 (\mathcal{P}_{15}) f \star 0 \ll {g} \Rightarrow f \ll g,

 $(\mathcal{P}_{16}) g \ll h \Rightarrow f \star h \ll f \star g,$

 (\mathcal{P}_{17}) f \star g = $\{0\} \Rightarrow (f \star h) \star (g \star h) = \{0\}$ and f $\star h \ll g \star h$,

 $(\mathcal{P}_{18}) \ \mathbb{C} \star \{0\} = \{0\} \Rightarrow \mathbb{C} = \{0\} \text{ for all } f, g, h \in K \text{ and for any non-empty sub-sets } \mathbb{C}, \mathcal{G} \text{ and } S \text{ of } K.$

Let \Im be a non-empty sub-set of h-BCK-A K and $0 \in \Im$. Then \Im is said to be

 (\mathfrak{F}_1) a weak-h-BCK-I of K, if $f \star g \subseteq \mathfrak{F}$ and $g \in \mathfrak{F} \Rightarrow f \in \mathfrak{F}, \forall f, g \in K$.

 (\mathfrak{F}_2) a h-BCK-I of K, if $f \star g \ll \mathfrak{F}$ and $g \in \mathfrak{F} \Rightarrow f \in \mathfrak{F}, \forall f, g \in K$.

 (\mathfrak{F}_3) a strong -h-BCK-I of K, if $f \star g \cap \mathfrak{F} \neq \emptyset$ and $g \in \mathfrak{F} \Rightarrow f \in \mathfrak{F}, \forall f, g \in K$.

 (\mathfrak{F}_4) \mathfrak{F} is said to be *reflexive* if $f \star f \subseteq \mathfrak{F}, \forall f \in K$.

 (\mathfrak{F}_5) S-reflexive, if $\star \mathfrak{g} \cap \mathfrak{F} \neq \emptyset \Rightarrow \mathfrak{f} \star \mathfrak{g} \ll \mathfrak{F}, \forall \mathfrak{f}, \mathfrak{g} \in K$.

 (\mathfrak{F}_6) closed if $\mathbb{f} \ll \mathfrak{F}$ and $g \in \mathfrak{F} \Rightarrow \mathbb{f} \in \mathfrak{F}, \forall \mathbb{f}, g \in K$.

Every S-reflexive subset of *K* is clearly reflexive.

Let K be a h-BCK-A then K is said to be a PI-h-BCK-A, if for all $f, g, h \in K$, $(f \star g) \star h = (f \star h) \star (g \star h)$ [5].

Let $\mathfrak I$ be a nonempty subset of K and $0 \in \mathfrak I$. Then $\mathfrak I$ is called to be a (*weak*-I-h-BCK-I) *weak* implicative hyper BCK-ideal of K if $(\mathfrak I \star h) \star (\mathfrak I \star \mathfrak I) \subseteq \mathfrak I$ and $h \in \mathfrak I \Rightarrow \mathfrak I \in \mathfrak I$ an implicative hyper BCK-ideal of K, if $(\mathfrak I \star h) \star (\mathfrak I \star \mathfrak I) \ll \mathfrak I$ and $h \in \mathfrak I \Rightarrow \mathfrak I \in \mathfrak I$, $\forall \mathfrak I, \mathfrak I, h \in K$.

A fuzzy set(FS) in a set K is a function $\xi: K \to [0,1]$, and the complement of ξ , denoted by ξ^c , is the FS in K given by $\xi^c(\mathbb{f}) = 1 - \xi(\mathbb{f})$, for all $\mathbb{f} \in K$. Let ξ and ϖ be the FSs of K. For $s, v \in [0,1]$ the set $\mathcal{U}(\xi; s) = \{\mathbb{f} \in \mathfrak{U} \mid \xi(\mathbb{f}) \geq s\}$ is called upper s-level cut of ξ and the set $\mathcal{L}(\varpi; v) = \{\mathbb{f} \in \mathfrak{U} \mid \varpi(\mathbb{f}) \leq v\}$ is called lower v-level cut of ϖ .

Let ξ be a fuzzy sub-set of K and $\xi(0) \ge \xi(f)$, $\forall f \in K$. Then ξ is said to be a

i. (F-weak-I-h-BCK-I) fuzzy weak implicative hyper BCK-ideal of K if

$$\xi(f) \ge \min \left\{ \inf_{\mathfrak{m} \in (f \star \hbar) \star (g \star f)} \xi(\mathfrak{m}), \xi(\hbar) \right\},$$

ii. (FI-h-BCK-I) fuzzy implicative hyper BCK-ideal of K, if

$$\xi(\mathbb{f}) \ge \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \xi(\mathfrak{m}), \xi(\hbar) \right\},$$

 \forall f, g, $h \in K$.

Although comparing two real numbers to determine the max and min is a simple task, extending this comparison to intervals is more complex. Biswas [3] introduced a methodology to calculate the max/sup and min/inf of two intervals and interval collections.

In the context of interval numbers \tilde{p} on [0, 1], we mean (cf.[2]) an interval $[p^-, p^+]$,

OF INDUSTRACE I

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 54, Issue 2, No.1, February: 2025

where $0 \le p^- \le p^+ \le 1$. We denote by $\mathbb{A}[0,1]$ the collection of all closed sub-intervals of the interval [0,1]. The interval [p,p] is identified with the number $p \in [0,1]$.

For an interval numbers $\tilde{p}_i = [p_i^-, q_i^+] \in \mathbb{A}[0, 1], i \in \mathfrak{J}$. We define

$$\inf \tilde{\mathcal{P}}_i = \left[\min_{i \in \mathfrak{I}} \mathcal{P}_i^-, \min_{i \in \mathfrak{I}} \mathfrak{q}_i^+ \right]$$

$$\sup \tilde{\mathcal{p}}_i = \left[\max_{i \in \mathfrak{I}} \, \mathcal{p}_i^-, \max_{i \in \mathfrak{I}} \, \mathfrak{q}_i^+ \right]$$

And put

$$(\mathbf{i}) \quad \tilde{\mathcal{p}}_1 \cap \tilde{\mathcal{p}}_2 = \min(\tilde{\mathcal{p}}_1, \tilde{\mathcal{p}}_2) = \min([\mathcal{p}_1^-, \, \mathfrak{q}_1^+], [\mathcal{p}_2^-, \, \mathfrak{q}_2^+]) = [\min\{\mathcal{p}_1^-, \mathcal{p}_2^+\}, \min\{\mathfrak{q}_1^-, \mathfrak{q}_2^+\}]$$

$$(ii) \quad \tilde{\mathcal{p}}_1 \cup \tilde{\mathcal{p}}_2 = \max(\tilde{\mathcal{p}}_1, \tilde{\mathcal{p}}_2) = \max([\mathcal{p}_1^-, \ \mathfrak{q}_1^+], [\mathcal{p}_2^-, \ \mathfrak{q}_2^+]) = [\max\{\mathcal{p}_1^-, \mathcal{p}_2^+\}, \max\{\mathfrak{q}_1^-, \mathfrak{q}_2^+\}]$$

(iii)
$$\tilde{p}_1 + \tilde{p}_2 = [p_1^- + p_2^- - p_1^-, p_2^-, q_1^+ + q_2^+ - q_1^+, q_2^+]$$

(iv)
$$\tilde{p}_1 \le \tilde{p}_2 \Leftrightarrow p_1^- \le p_2^-$$
 and $q_1^+ \le q_2^+$

(v)
$$\tilde{p}_1 = \tilde{p}_2 \Leftrightarrow p_1^- = p_2^- \text{ and } q_1^+ = q_2^+,$$

(vi)
$$mA = m[p_1^-, q_1^+] = [mp_1^-, mq_1^+]$$
, where $0 \le m \le 1$.

It is evident that, the structure (A[0,1], \leq , V, Λ) constitutes a complete lattice with [0,0] and [1,1] serving as its least and greatest elements, respectively.

Assigning membership values has proven to be a challenging task for decision makers. To address this issue, Zadeh [12] introduced s IVFSs, where membership values are represented as intervals within [0,1], rather than single numerical values. We denote the collection of all closed subintervals of [0,1] as $\mathbb{A}[0,1]$.

Let K be a given non-empty set. An IVFS " $\widetilde{\mathfrak{N}}$ " over K is an object having the form $\widetilde{\mathfrak{N}} = \{(\mathbb{f}, [\xi_{\mathfrak{N}}^-(\mathbb{f}), \xi_{\mathfrak{N}}^+(\mathbb{f})]) : \mathbb{f} \in K\}$, where $\xi_{\mathfrak{N}}^-(\mathbb{f})$ and $\xi_{\mathfrak{N}}^+(\mathbb{f})$ are FSs of K such that $\xi_{\mathfrak{N}}^-(\mathbb{f}) \leq \xi_{\mathfrak{N}}^+(\mathbb{f})$ for all $\mathbb{f} \in K$. Let $\widetilde{\xi}_{\mathfrak{N}}(\mathbb{f}) = [\xi_{\mathfrak{N}}^-(\mathbb{f}), \xi_{\mathfrak{N}}^+(\mathbb{f})]$ then $\widetilde{\mathfrak{N}} = \{(\mathbb{f}, \widetilde{\xi}_{\mathfrak{N}}(\mathbb{f})) : \mathbb{f} \in K\}$, where $\widetilde{\xi}_{\mathfrak{N}} : K \to \mathbb{A}[0,1]$.

Building on the foundations of IFS and IVFS, Atanassov and Gargav [2] introduced IVIFSs, a generalized framework encompassing both IFS and IVFS concepts.

An IVIFS " $\widetilde{\mathfrak{K}}$ " over K is an object having the form $\widetilde{\mathfrak{K}} = \{(\mathfrak{f}, \widetilde{\xi}_{\mathfrak{K}}(\mathfrak{f}), \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{f})) : \mathfrak{f} \in K\}$, where $\widetilde{\xi}_{\mathfrak{K}} : K \to \mathbb{A}[0,1]$, and $\widetilde{\varpi}_{\mathfrak{K}} : K \to \mathbb{A}[0,1]$, the intervals $\widetilde{\xi}_{\mathfrak{K}}(\mathfrak{f})$ and $\widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{f})$ represent the degree of membership and non-membership, respectively, of element \mathfrak{f} to the set $\widetilde{\mathfrak{K}}$, where $\widetilde{\xi}_{\mathfrak{K}}(\mathfrak{f}) = [\xi_{\mathfrak{K}}^-(\mathfrak{f}), \xi_{\mathfrak{K}}^+(\mathfrak{f})]$, and $\widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{f}) = [\varpi_{\mathfrak{K}}^-(\mathfrak{f}), \varpi_{\mathfrak{K}}^+(\mathfrak{f})]$ for all $\mathfrak{f} \in \mathfrak{U}$ with the condition $[0,0] \leq \widetilde{\xi}_{\mathfrak{K}}(\mathfrak{f}) + \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{f}) \leq [1,1]$ for all $\mathfrak{f} \in K$.

An IVNFS " $\widetilde{\mathfrak{M}}$ " over K is an object having the form $\widetilde{\mathfrak{M}} = \left\{ \left(\mathbb{f}, \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}), \widetilde{\sigma}_{\mathfrak{M}}(\mathbb{f}) \right) : \mathbb{f} \in K \right\}$, where $\tilde{\xi}_{\mathfrak{M}}: K \to \mathbb{A}[0,1]$ and $\widetilde{\sigma}_{\mathfrak{M}}: K \to \mathbb{A}[0,1]$, the intervals $\tilde{\xi}_{\mathfrak{M}}(\mathbb{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f})$ and $\widetilde{\sigma}_{\mathfrak{M}}(\mathbb{f})$ represent the degree of membership, indeterminacy and non-membership, respectively, of the element \mathbb{f} to the set $\widetilde{\mathfrak{M}}$, where $\tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) = [\xi_{\mathfrak{M}}^{-}(\mathbb{f}), \xi_{\mathfrak{M}}^{+}(\mathbb{f})], \ \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) = [\zeta_{\mathfrak{M}}^{-}(\mathbb{f}), \zeta_{\mathfrak{M}}^{+}(\mathbb{f})]$ and $\widetilde{\sigma}_{\mathfrak{M}}(\mathbb{f}) = [\overline{\sigma}_{\mathfrak{M}}(\mathbb{f}), \overline{\sigma}_{\mathfrak{M}}^{+}(\mathbb{f})]$ for all $\mathbb{f} \in \mathfrak{A}$ with the condition $[0,0] \leq \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) + \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) + \widetilde{\sigma}_{\mathfrak{M}}(\mathbb{f}) \leq [1,1]$ for all

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

 $\mathbb{F} \in \mathfrak{A}$. For the purpose of clarity, we introduce the notation $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is represented IVNFS, where $\mathbb{A}[0,1]$ is the collection of all closed sub-intervals of the interval [0,1]. Let $\tilde{\xi}$ be an interval-valued fuzzy sub-set of K and $\tilde{\xi}(0) \geq \tilde{\xi}(f)$, $\forall f \in K$. Then $\tilde{\xi}$ is said to be a

(IVF-weak-I-h-BCK-I-1) interval-valued fuzzy weak implicative hyper BCK-ideal of K if

$$\tilde{\xi}(\mathbf{f}) \ge \min \left\{ \inf_{\mathbf{m} \in (\mathbf{f} \star \hbar) \star (\mathbf{g} \star \mathbf{f})} \tilde{\xi}(\mathbf{m}), \tilde{\xi}(\hbar) \right\},$$

(IVFI-h-BCK-I-2) interval-valued fuzzy implicative hyper BCK-ideal of K, if

$$\tilde{\xi}(\mathbf{f}) \geq \min \left\{ \sup_{\mathbf{m} \in (\mathbf{f} \star \mathbf{h}) \star (\mathbf{g} \star \mathbf{f})} \tilde{\xi}(\mathbf{m}), \tilde{\xi}(\mathbf{h}) \right\}, \quad \forall \mathbf{f}, \mathbf{g}, \mathbf{h} \in K.$$

Definition 2.1[9]. An IVIFS $\widetilde{\mathfrak{R}} = (\widetilde{\xi}_{\mathfrak{R}}, \widetilde{\varpi}_{\mathfrak{R}})$ in K is said to be an IVIF-h-BCK-I of K if it fulfils

 $(IVIFhBCKI-1) \text{ } \mathbb{f} \ll \mathbb{g} \Rightarrow \tilde{\xi}_{\mathfrak{K}}(\mathbb{f}) \geq \tilde{\xi}_{\mathfrak{K}}(\mathbb{g}), \text{ and } \widetilde{\varpi}_{\mathfrak{K}}(\mathbb{f}) \leq \widetilde{\varpi}_{\mathfrak{K}}(\mathbb{g})$

$$(\mathit{IVIFhBCKI}-2)\ \tilde{\xi}_{\mathfrak{K}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{m} \in \mathbb{f} \star \mathfrak{g}} \tilde{\xi}_{\mathfrak{K}}(\mathfrak{m}) \, , \tilde{\xi}_{\mathfrak{K}}(\mathfrak{g}) \right\}$$

$$(IVIFhBCKI - 3) \ \widetilde{\varpi}_{\mathfrak{K}}(\mathbb{f}) \leq \max \left\{ \sup_{\mathfrak{n} \in \mathbb{f} \star \mathfrak{g}} \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{n}), \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{g}) \right\}, \text{ for all } \mathbb{f}, \mathfrak{g} \in K.$$

Definition 2.2[9]. An IVIFS $\widetilde{\mathfrak{K}} = (\widetilde{\xi}_{\mathfrak{K}}, \widetilde{\varpi}_{\mathfrak{K}})$ in K is said to be an IVIF-strong-h-BCK-I of K if it fulfils

$$(IVIFShBCKI - 1) \inf_{\mathfrak{m} \in \mathbb{F} \star \mathfrak{g}} \tilde{\xi}_{\mathfrak{K}}(\mathfrak{m}) \geq \tilde{\xi}_{\mathfrak{K}}(\mathfrak{f}) \geq \min \left\{ \sup_{\mathfrak{n} \in \mathbb{F} \star \mathfrak{g}} \tilde{\xi}_{\mathfrak{K}}(\mathfrak{n}), \tilde{\xi}_{\mathfrak{K}}(\mathfrak{g}) \right\} \text{ and }$$

$$(IVIFShBCKI - 2) \sup_{\mathfrak{x} \in \mathbb{F}^{\star_{\mathfrak{g}}}} \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{x}) \leq \widetilde{\varpi}_{\mathfrak{K}}(\mathbb{f}) \leq \max \left\{ \inf_{\mathfrak{y} \in \mathbb{F}^{\star_{\mathfrak{g}}}} \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{y}), \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{g}) \right\},$$

for all $f, g \in K$.

Definition 2.3[9]. An IVIF $\widetilde{\mathfrak{K}} = (\widetilde{\xi}_{\widetilde{\mathfrak{K}}}, \widetilde{\varpi}_{\widetilde{\mathfrak{K}}})$ in K is said to be an IVIF-s-weak -h-BCK-I of K if it fulfils

 $(\mathit{IVIFsWhBCKI}-1)\ \tilde{\xi}_{\mathfrak{K}}(0) \geq \tilde{\xi}_{\mathfrak{K}}(\mathfrak{g}), \ \text{and} \ \widetilde{\varpi}_{\mathfrak{K}}(0) \leq \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{g}), \ \text{for all } \mathbb{f}, \mathfrak{g} \in \mathit{K}.$

(IVIFsWhBCKI-2) for every $f,g \in K$ there exists $m,n \in f \star g$ such that

$$\tilde{\xi}_{\mathfrak{K}}(\mathfrak{f}) \geq \min\{\tilde{\xi}_{\mathfrak{K}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{K}}(\mathfrak{g})\} \text{ and } \widetilde{\omega}_{\mathfrak{K}}(\mathfrak{f}) \leq \max\{\widetilde{\omega}_{\mathfrak{K}}(\mathfrak{n}), \widetilde{\omega}_{\mathfrak{K}}(\mathfrak{g})\}.$$

Definition 2.4[9]. An IVIF $\widetilde{\mathfrak{K}} = (\widetilde{\xi}_{\mathfrak{K}}, \widetilde{\varpi}_{\mathfrak{K}})$ in K is said to be an IVIF- weak-h-BCK-I of K if it fulfils

$$(\textit{IVIFWhBCKI} - \mathbf{1}) \ \tilde{\xi}_{\mathfrak{K}}(0) \geq \tilde{\xi}_{\mathfrak{K}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{m} \in \mathbb{f} \star_{\mathfrak{g}}} \tilde{\xi}_{\mathfrak{K}}(\mathfrak{m}) \,, \tilde{\xi}_{\mathfrak{K}}(\mathfrak{g}) \right\} \ \text{and}$$

$$(\textit{IVIFWhBCKI}-2)\ \widetilde{\varpi}_{\mathfrak{K}}(0) \leq \widetilde{\varpi}_{\mathfrak{K}}(\mathbb{f}) \leq \max \left\{ \sup_{\mathfrak{n} \in \mathbb{f} \star \mathfrak{g}} \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{n}) \, , \, \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{g}) \right\},$$

for all $f, g \in K$.

Definition 2.5[9]. An IVIFS $\widetilde{\mathfrak{K}} = (\widetilde{\xi}_{\mathfrak{K}}, \widetilde{\varpi}_{\mathfrak{K}})$ in K is said to fulfil the "inf-sup" property if for any subset Z of $K \ni \mathbb{f}_0$, $\mathfrak{g}_0 \in Z \ni \widetilde{\xi}_{\mathfrak{K}}(\mathbb{f}_0) = \inf_{\mathbb{f} \in Z} \widetilde{\xi}_{\mathfrak{K}}(\mathbb{f})$ and $\widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{g}_0) = \sup_{\mathfrak{q} \in Z} \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{g})$.

An IVIFS $\widetilde{\mathfrak{K}} = (\widetilde{\xi}_{\mathfrak{K}}, \widetilde{\varpi}_{\mathfrak{K}})$ in K is said to fulfil the "sup-inf" property if for any sub-set Z of K there exists \mathbb{f}_0 , $\mathbb{g}_0 \in Z$ such that

$$\tilde{\xi}_{\mathfrak{K}}(\mathbb{f}_0) = \sup_{\mathbb{f} \in \mathcal{Z}} \tilde{\xi}_{\mathfrak{K}}(\mathbb{f}) \text{ and } \widetilde{\varpi}_{\mathfrak{K}}(g_0) = \inf_{g \in \mathcal{Z}} \widetilde{\varpi}_{\mathfrak{K}}(g).$$

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

Definition 2.6. Let $\widetilde{\Re} = (\widetilde{\xi}_{\Re}, \widetilde{\varpi}_{\Re})$ be an IVIFS on K and $\widetilde{\xi}_{\Re}(0) \geq \widetilde{\xi}_{\Re}(f)$, $\widetilde{\varpi}_{\Re}(0) \leq \widetilde{\varpi}_{\Re}(f)$, $\forall f, g \in K$. Then $\widetilde{\mathfrak{M}}$ is said to be an

(i) IVIF-weak-I-h-BCK-I of *K*, if

$$\begin{split} &\tilde{\xi}_{\mathfrak{K}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{K}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{K}}(\hbar) \right\} \\ &\tilde{\varpi}_{\mathfrak{K}}(\mathbb{f}) \leq \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\varpi}_{\mathfrak{K}}(\mathfrak{x}), \tilde{\varpi}_{\mathfrak{K}}(\hbar) \right\} \end{split}$$

(ii) IVIF-I-h-BCK-I of K, if

$$\begin{split} &\tilde{\xi}_{\mathfrak{K}}(\mathbb{f}) \geq \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{K}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{K}}(\hbar) \right\}, \\ &\widetilde{\varpi}_{\mathfrak{K}}(\mathbb{f}) \leq \max \left\{ \inf_{\mathfrak{x} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \widetilde{\varpi}_{\mathfrak{K}}(\mathfrak{x}), \widetilde{\varpi}_{\mathfrak{K}}(\hbar) \right\} \end{split}$$

 \forall f, g, $h \in K$.

Definition 2.7[10]. Let $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVIF subset of K and $\tilde{\xi}_{\mathfrak{M}}(0) \geq \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}), \ \widetilde{\varpi}_{\mathfrak{M}}(0) \leq \tilde{\xi}_{\mathfrak{M}}(0)$ $\widetilde{\omega}_{\mathfrak{M}}(f), \forall f, g \in K$. Then $\widetilde{\mathfrak{M}}$ is said to be an IVIFPI-h-BCK-I of:

(*IVNFPIhBCKI*₁) Type 1, if for all $v \in \mathbb{F} \star h$,

$$\begin{split} \tilde{\xi}_{\mathfrak{M}}(v) &\geq \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star \mathfrak{g}) \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \inf_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{n}) \right\} \\ \widetilde{\varpi}_{\mathfrak{M}}(v) &\leq \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{f} \star \mathfrak{g}) \star \hbar} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \sup_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{n}) \right\} \\ (\textit{IVNFPIhBCKI}_{2}) \text{ Type 2, if for all } v \in \mathbb{f} \star \hbar, \end{split}$$

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(v) \geq \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{f} \star \mathfrak{g}) \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \inf_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{n}) \right\} \\ &\tilde{\varpi}_{\mathfrak{M}}(v) \leq \max \left\{ \inf_{\mathfrak{x} \in (\mathbb{f} \star \mathfrak{g}) \star \hbar} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \sup_{\mathfrak{y} \in \mathfrak{g} \star \hbar} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{y}) \right\} \end{split}$$

(*IVNFPIhBCKI*₃) Type 3, if for all $v \in \mathbb{F} \star h$

$$\tilde{\xi}_{\mathfrak{M}}(v) \geq \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{F} \star \mathfrak{g}) \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \sup_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{n}) \right\}$$

$$\tilde{\omega}_{\mathfrak{M}}(v) \leq \max \left\{ \inf_{\mathfrak{x} \in (\mathbb{F} \star \mathfrak{g}) \star \hbar} \tilde{\omega}_{\mathfrak{M}}(\mathfrak{x}), \inf_{\mathfrak{y} \in \mathfrak{g} \star \hbar} \tilde{\omega}_{\mathfrak{M}}(\mathfrak{y}) \right\}$$

$$\widetilde{\omega}_{\mathfrak{M}}(v) \leq \max \left\{ \inf_{\mathfrak{x} \in (\mathbb{I}^{\star}\mathfrak{g}) \star \hbar} \widetilde{\omega}_{\mathfrak{M}}(\mathfrak{x}), \inf_{\mathfrak{y} \in \mathfrak{g} \star \hbar} \widetilde{\omega}_{\mathfrak{M}}(\mathfrak{y}) \right\}$$

(*IVNFPIhBCKI*₄) Type 4, if for all $v \in \mathbb{F}$

$$\begin{split} \tilde{\xi}_{\mathfrak{M}}(v) &\geq \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star \mathfrak{g}) \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \sup_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{n}) \right\} \\ \widetilde{\varpi}_{\mathfrak{M}}(v) &\leq \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{f} \star \mathfrak{q}) \star \hbar} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \inf_{\mathfrak{y} \in \mathfrak{g} \star \hbar} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{y}) \right\} \end{split}$$

for all f, g, $h \in K$.

Definition 2.8[10]. Let $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVIF subset of K. Then $\widetilde{\mathfrak{M}}$ is said to be an IVIFPI-h-BCK-I of

Type 5, if there exists $v \in \mathbb{F} \star h$ such that (i)

$$\tilde{\xi}_{\mathfrak{M}}(v) \geq \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{F}^{\star}\mathfrak{g}) \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \inf_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{n}) \right\}$$

$$\tilde{\omega}_{\mathfrak{M}}(v) \leq \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{F}^{\star}\mathfrak{g}) \star \hbar} \tilde{\omega}_{\mathfrak{M}}(\mathfrak{x}), \sup_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\omega}_{\mathfrak{M}}(\mathfrak{n}) \right\}.$$

Type 6, if there exists $v \in \mathbb{f} \star h$ such the (ii)

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

$$\tilde{\xi}_{\mathfrak{M}}(v) \geq \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{F} \star \mathfrak{g}) \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \sup_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{n}) \right\}$$

$$\tilde{\varpi}_{\mathfrak{M}}(v) \leq \max \left\{ \inf_{\mathfrak{x} \in (\mathbb{F} \star \mathfrak{g}) \star \hbar} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \inf_{\mathfrak{y} \in \mathfrak{g} \star \hbar} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{y}) \right\}.$$
(iii) Type 7, if there exists $v \in \mathbb{F} \star \hbar$ such that

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(v) \geq \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star \mathfrak{g}) \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \sup_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{n}) \right\} \\ &\tilde{\varpi}_{\mathfrak{M}}(v) \leq \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{f} \star \mathfrak{g}) \star \hbar} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \inf_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{n}) \right\}. \end{split}$$

(iv) Type 8, if there exists $v \in \mathbb{F} \star h$ such that

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(v) \geq \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{f} \star \mathfrak{g}) \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \inf_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{n}) \right\} \\ &\tilde{\varpi}_{\mathfrak{M}}(v) \leq \max \left\{ \inf_{\mathfrak{x} \in (\mathbb{f} \star \mathfrak{g}) \star \hbar} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \sup_{\mathfrak{n} \in \mathfrak{g} \star \hbar} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{n}) \right\}. \end{split}$$

for all f, g, $h \in K$.

III. Interval-Valued Neutrosophic Fuzzy Hyper BCK-Ideals of Hyper BCK-algebras

In the subsequent discussion, the idea of interval-valued fuzzy sets to Neutrosophic fuzzy hyper BCK-ideals in hyper BCK-algebras and related properties are explore; in this article the symbol K will represent a h-BCK-A, unless alternative notation is stated. And also "*" becomes a binary hyper operator Composition.

Definition 3.1 An IVNF
$$\widetilde{\mathfrak{M}} = \left(\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}}\right)$$
 in K is said to be an IVNF-h-BCK-I of K if it fulfils $(IVNFhBCKI-1)$ $\mathbb{f} \ll \mathfrak{g} \Rightarrow \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}), \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g})$ and $\widetilde{\varpi}_{\mathfrak{M}}(\mathbb{f}) \leq \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{g})$ $(IVNFhBCKI-2)$ $\tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathbb{f} \in \mathbb{f} \star \mathfrak{g}} \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}), \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\}$ $(IVNFhBCKI-3)$ $\tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathbb{f} \in \mathbb{f} \star \mathfrak{g}} \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\}$ for all $\mathbb{f}, \mathfrak{q} \in K$.

Example 3.2 Let $K = \{0, m, n\}$ be a set equipped with the binary operation "*" defined by

*	0	m	n
0	{0}	{0}	{0}
m	{m}	$\{0, m\}$	$\{0, m\}$
n	{n}	{ <i>m</i> , <i>n</i> }	$\{0, m, n\}$

Then
$$(K,0)$$
 is a h-BCK-A [4]. Define an IVNFS $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ in K by $\tilde{\xi}_{\mathfrak{M}}(0) = [0.85, 0.9], \, \tilde{\xi}_{\mathfrak{M}}(m) = [0.55, 0.6], \, \tilde{\xi}_{\mathfrak{M}}(n) = [0.3, 0.5],$ $\tilde{\zeta}_{\mathfrak{M}}(0) = [0.75, 0.8], \, \tilde{\zeta}_{\mathfrak{M}}(m) = [0.45, 0.5], \, \tilde{\zeta}_{\mathfrak{M}}(n) = [0.2, 0.3] \, \text{and}$ $\widetilde{\varpi}_{\mathfrak{M}}(0) = [0.08, 0.09], \, \widetilde{\varpi}_{\mathfrak{M}}(m) = [0.5, 0.65], \, \widetilde{\varpi}_{\mathfrak{M}}(n) = [0.7, 0.75].$ Simple verification shows that $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-h-BCK-I of K .

Definition 3.3 An IVNFS $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ in K is said to be an IVNF-strong-h-BCK-I of K if it fulfils

ISSN: 0970-2555

Volume: 54, Issue 2, No.1, February: 2025

$$(IVNFShBCKI - 1) \inf_{\mathfrak{m} \in \mathbb{F} \star \mathbb{F}} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{\xi}_{\mathfrak{M}}(\mathbb{F}) \geq \min \left\{ \sup_{\mathfrak{n} \in \mathbb{F} \star \mathfrak{g}} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{n}), \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\},$$

$$(\mathit{IVNFShBCKI} - 2) \inf_{\mathfrak{f} \in \mathbb{f} \star \mathbb{f}} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \geq \min \left\{ \sup_{\mathfrak{l} \in \mathfrak{f} \star \mathfrak{g}} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{l}), \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\} \text{ and }$$

$$(IVNFShBCKI - 3) \sup_{\mathfrak{x} \in \mathfrak{f} \star \mathfrak{f}} \widetilde{\omega}_{\mathfrak{M}}(\mathfrak{x}) \leq \widetilde{\omega}_{\mathfrak{M}}(\mathfrak{f}) \leq \max \left\{ \inf_{\mathfrak{y} \in \mathfrak{f} \star \mathfrak{g}} \widetilde{\omega}_{\mathfrak{M}}(\mathfrak{y}), \widetilde{\omega}_{\mathfrak{M}}(\mathfrak{g}) \right\},$$

for all $f, g \in K$.

Example 3.4 Let $K = \{0, m, n\}$ be a set equipped with the binary operation "*" defined by:

*	0	m	n
0	{0}	{0}	{0}
m	{m}	{0}	{ <i>m</i> }
n.	{n}	{n}	$\{0, n\}$

Then (K, 0) is a h-BCK-A [4]. Define an IVNFS $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ in K by

$$\tilde{\xi}_{\mathfrak{M}}(0) = [0.75, 0.8], \, \tilde{\xi}_{\mathfrak{M}}(m) = [0.4, 0.5], \, \tilde{\xi}_{\mathfrak{M}}(n) = [0.15, 0.2],$$

$$\tilde{\zeta}_{\mathfrak{M}}(0)=[0.65,0.7],\, \tilde{\zeta}_{\mathfrak{M}}(m)=[0.35,0.4],\, \tilde{\zeta}_{\mathfrak{M}}(n)=[0.14,0.1]$$
 and

$$\widetilde{\omega}_{\mathfrak{M}}(0) = [0.07, 0.08], \, \widetilde{\omega}_{\mathfrak{M}}(m) = [0.14, 0.18], \, \widetilde{\omega}_{\mathfrak{M}}(n) = [0.21, 0.26].$$

Simple verification shows that $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-strong-h-BCK-I of K.

Definition 3.5 An IVNF $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ in K is said to be an IVNF-s-weak-h-BCK-I of K if it fulfils

$$(IVNFsWhBCKI - 1) \ \tilde{\xi}_{\mathfrak{M}}(0) \geq \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}), \ \tilde{\zeta}_{\mathfrak{M}}(0) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \ \text{and} \ \widetilde{\varpi}_{\mathfrak{M}}(0) \leq \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{g}), (IVNFsWhBCKI - 2) \ \text{for every } \mathbb{f}, \mathfrak{g} \in K \ \text{there exists m, } \mathfrak{f}, \mathfrak{x} \in \mathbb{f} \star \mathfrak{g} \ \text{such that} \\ \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \min\{\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g})\},$$

$$\tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}) \geq \min\{\tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathbf{g})\}$$
 and

$$\widetilde{\omega}_{\mathfrak{M}}(\mathfrak{f}) \leq \max\{\widetilde{\omega}_{\mathfrak{M}}(\mathfrak{x}), \widetilde{\omega}_{\mathfrak{M}}(\mathfrak{g})\}.$$

for all $f, g \in K$.

Definition 3.6 An IVNF $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ in K is said to be an IVNF-weak-h-BCK-I of K if it fulfils

$$\begin{split} &(\textit{IVNFWhBCKI} - \mathbf{1}) \ \tilde{\xi}_{\mathfrak{M}}(0) \geq \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{m} \in \mathbb{f} \star \mathfrak{g}} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \,, \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\}, \\ &(\textit{IVNFWhBCKI} - \mathbf{2}) \ \tilde{\zeta}_{\mathfrak{M}}(0) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{f} \in \mathbb{f} \star \mathfrak{g}} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \,, \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\} \text{ and } \\ &(\textit{IVNFWhBCKI} - \mathbf{3}) \ \widetilde{\omega}_{\mathfrak{M}}(0) \leq \widetilde{\omega}_{\mathfrak{M}}(\mathbb{f}) \leq \max \left\{ \sup_{\mathfrak{x} \in \mathbb{f} \star \mathfrak{g}} \widetilde{\omega}_{\mathfrak{M}}(\mathfrak{x}) \,, \widetilde{\omega}_{\mathfrak{M}}(\mathfrak{g}) \right\}, \end{split}$$

for all $f, g \in K$.

Theorem 3.7 Every IVNF-s-weak-h-BCK-I of *K* is an IVNF-weak-h-BCK-I.

Proof: Let an IVNFS $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ in K be an IVNF-s-weak-h-BCK-I of K and let $f, g \in K$. Then $\exists m, \tilde{t}, x \in f \star g$ such that

 $\tilde{\xi}_{\mathfrak{M}}(f) \geq \min\{\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g})\}, \tilde{\zeta}_{\mathfrak{M}}(f) \geq \min\{\tilde{\zeta}_{\mathfrak{M}}(f), \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g})\} \text{ and } \widetilde{\varpi}_{\mathfrak{M}}(f) \leq \max\{\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{g})\}$ Since,

ISSN: 0970-2555

Volume: 54, Issue 2, No.1, February: 2025

$$\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \inf_{a \in \mathbb{I}^{\star_{\mathfrak{g}}}} \tilde{\xi}_{\mathfrak{M}}(a) \, , \, \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{m}) \geq \inf_{b \in \mathbb{I}^{\star_{\mathfrak{g}}}} \tilde{\zeta}_{\mathfrak{M}}(b) \, \, \text{and} \, \, \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{m}) \leq \sup_{c \in \mathbb{I}^{\star_{\mathfrak{g}}}} \widetilde{\varpi}_{\mathfrak{M}}(c),$$

we can conclude that,

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(\mathbf{f}) \geq \min \left\{ \inf_{a \in \mathbb{f} \star \mathbf{g}} \tilde{\xi}_{\mathfrak{M}}(a), \tilde{\xi}_{\mathfrak{M}}(\mathbf{g}) \right\}, \\ &\tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}) \geq \min \left\{ \inf_{b \in \mathbb{f} \star \mathbf{g}} \tilde{\zeta}_{\mathfrak{M}}(b), \tilde{\zeta}_{\mathfrak{M}}(\mathbf{g}) \right\} \text{ and } \\ &\tilde{\varpi}_{\mathfrak{M}}(\mathbf{f}) \leq \max \left\{ \sup_{c \in \mathbb{f} \star \mathbf{g}} \tilde{\varpi}_{\mathfrak{M}}(c), \tilde{\varpi}_{\mathfrak{M}}(\mathbf{g}) \right\}. \end{split}$$

Definition 3.8 An IVNFS $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ in K is said to fulfil the "inf-sup" property, if for any sub-set Z of $K \ni f_0, g_0, h_0 \in Z$ such that

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(\mathbb{f}_{0}) = \inf_{\mathbb{f} \in \mathcal{Z}} \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}), \\ &\tilde{\zeta}_{\mathfrak{M}}(\mathbb{g}_{0}) = \inf_{\mathbb{g} \in \mathcal{Z}} \tilde{\zeta}_{\mathfrak{M}}(\mathbb{g}) \text{ and } \\ &\widetilde{\varpi}_{\mathfrak{M}}(\mathbb{A}_{0}) = \sup_{\mathbb{A} \in \mathcal{Z}} \widetilde{\varpi}_{\mathfrak{M}}(\mathbb{A}). \end{split}$$

Constructing a counterexample of an IVNF-s-weak-h-BCK-I of *K* that fails to be an IVNF-weak-h-BCK-I of *K* poses a significant challenge.

Proposition 3.9 Let $\widetilde{\mathbb{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVNF-weak-h-BCK-I of K. If $\widetilde{\mathbb{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is fulfils the "inf-sup" property, then $\widetilde{\mathbb{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-s-weak-h-BCK-I of K.

Proof: Suppose that $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-weak-h-BCK-I of K and fulfils the "inf-sup" property. Then there exists $\mathfrak{m}_0, \mathfrak{k}_0, \mathfrak{x}_0 \in \mathbb{f} \star \mathfrak{g}$ such that

$$\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}_{0}) \geq \inf_{\mathfrak{m} \in \mathbb{F} \star \mathfrak{g}} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\zeta}_{\mathfrak{M}}(\tilde{\mathfrak{t}}_{0}) \geq \inf_{\tilde{\mathfrak{t}} \in \mathbb{F} \star \mathfrak{g}} \tilde{\zeta}_{\mathfrak{M}}(\tilde{\mathfrak{t}}) \text{ and } \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}_{0}) \leq \sup_{\mathfrak{x} \in \mathbb{F} \star \mathfrak{g}} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}).$$

This leads to the conclusion that

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(f) \geq \min \left\{ \inf_{\mathfrak{m} \in f \star g} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \,, \tilde{\xi}_{\mathfrak{M}}(g) \right\} = \min \left\{ \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}_{0}), \tilde{\xi}_{\mathfrak{M}}(g) \right\}, \\ &\tilde{\zeta}_{\mathfrak{M}}(f) \geq \min \left\{ \inf_{f \in f \star g} \tilde{\zeta}_{\mathfrak{M}}(f) \,, \tilde{\zeta}_{\mathfrak{M}}(g) \right\} = \min \left\{ \tilde{\zeta}_{\mathfrak{M}}(f_{0}), \tilde{\zeta}_{\mathfrak{M}}(g) \right\} \text{ and } \\ &\tilde{\varpi}_{\mathfrak{M}}(f) \leq \max \left\{ \sup_{\mathfrak{x} \in f \star g} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \,, \tilde{\varpi}_{\mathfrak{M}}(g) \right\} = \max \{ \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}_{0}), \tilde{\varpi}_{\mathfrak{M}}(g) \}. \end{split}$$

The proof of the theorem is hereby established.

Interestingly, every IVNFS in a finite h-BCK-algebra fulfils the "inf-sup" condition.

This implies that, within the framework of h-BCK-A's, IVNF-weak-h-BCK-Is and IVNF-s-weak-h-BCK-Is are equivalent notions.

Proposition 3.10 Let $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVNF-strong-h-BCK-I of K and let $f, g \in K$. Then

(i)
$$\tilde{\xi}_{\mathfrak{M}}(0) \geq \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}), \tilde{\zeta}_{\mathfrak{M}}(0) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \text{ and } \tilde{\varpi}_{\mathfrak{M}}(0) \leq \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{g})$$

$$\text{(ii)}\quad \mathbb{f}\ll g\Rightarrow \tilde{\xi}_{\mathfrak{M}}(\mathbb{f})\geq \tilde{\xi}_{\mathfrak{M}}(g), \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f})\geq \tilde{\zeta}_{\mathfrak{M}}(g) \text{ and } \widetilde{\varpi}_{\mathfrak{M}}(\mathbb{f})\leq \widetilde{\varpi}_{\mathfrak{M}}(g)$$

 $\begin{array}{ll} \text{(iii)} & \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\}, \ \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\} \ \text{and} \ \ \widetilde{\varpi}_{\mathfrak{M}}(\mathbb{f}) \leq \max \left\{ \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{g}) \right\} \ \text{for all } \mathfrak{m}, \mathfrak{f}, \mathfrak{x} \in \mathbb{f} \star \mathfrak{g}. \end{array}$

Proof: Let $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVNF-*strong*-h-BCK-I of K and let $f, g \in K$. UGC CARE Group-1

OF INDUSTRICE ENGLY

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

(i) Since, $0 \in \mathbb{f} \star \mathbb{f}$, for all $\mathbb{f} \in K$, we have

$$\begin{split} &\widetilde{\xi}_{\mathfrak{M}}(0) \geq \inf_{\mathfrak{m} \in \mathbb{f} \star \mathbb{f}} \widetilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \widetilde{\xi}_{\mathfrak{M}}(\mathbb{f}), \\ &\widetilde{\zeta}_{\mathfrak{M}}(0) \geq \inf_{\mathfrak{t} \in \mathbb{f} \star \mathfrak{g}} \widetilde{\zeta}_{\mathfrak{M}}(\mathfrak{t}) \geq \widetilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \text{ and } \\ &\widetilde{\varpi}_{\mathfrak{M}}(0) \leq \sup_{\mathfrak{x} \in \mathbb{f} \star \mathfrak{g}} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \leq \widetilde{\varpi}_{\mathfrak{M}}(\mathbb{f}), \end{split}$$

for all $f \in K$.

Hence, $\tilde{\xi}_{\mathfrak{M}}(0) \geq \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g})$, $\tilde{\zeta}_{\mathfrak{M}}(0) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g})$ and $\widetilde{\varpi}_{\mathfrak{M}}(0) \leq \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{g})$, for all $f, g \in K$.

(ii) Let $f, g \in K$ be such that $f \ll g$ then $0 \in f \star f$ and so

$$\tilde{\xi}_{\mathfrak{M}}(0) \leq \sup_{a \in \mathbb{f} \star \mathfrak{g}} \tilde{\xi}_{\mathfrak{M}}(a), \tilde{\zeta}_{\mathfrak{M}}(0) \leq \sup_{b \in \mathbb{f} \star \mathfrak{g}} \tilde{\zeta}_{\mathfrak{M}}(b) \text{ and } \widetilde{\varpi}_{\mathfrak{M}}(0) \geq \inf_{c \in \mathbb{f} \star \mathfrak{g}} \widetilde{\varpi}_{\mathfrak{M}}(c)$$

By virtue of (i), we have that

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(\mathbf{f}) \geq \min \left\{ \sup_{a \in \mathbb{f} \star_{\mathbf{g}}} \tilde{\xi}_{\mathfrak{M}}(a) \,, \tilde{\xi}_{\mathfrak{M}}(\mathbf{g}) \right\} \geq \min \left\{ \tilde{\xi}_{\mathfrak{M}}(0), \tilde{\xi}_{\mathfrak{M}}(\mathbf{g}) \right\} = \tilde{\xi}_{\mathfrak{M}}(\mathbf{g}), \\ &\tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}) \geq \min \left\{ \sup_{b \in \mathbb{f} \star_{\mathbf{g}}} \tilde{\zeta}_{\mathfrak{M}}(b) \,, \tilde{\zeta}_{\mathfrak{M}}(\mathbf{g}) \right\} \geq \min \left\{ \tilde{\zeta}_{\mathfrak{M}}(0), \tilde{\zeta}_{\mathfrak{M}}(\mathbf{g}) \right\} = \tilde{\zeta}_{\mathfrak{M}}(\mathbf{g}) \text{ and } \\ &\tilde{\varpi}_{\mathfrak{M}}(\mathbf{f}) \leq \max \left\{ \inf_{c \in \mathbb{f} \star_{\mathbf{g}}} \tilde{\varpi}_{\mathfrak{M}}(c) \,, \tilde{\varpi}_{\mathfrak{M}}(\mathbf{g}) \right\} \leq \max \left\{ \tilde{\varpi}_{\mathfrak{M}}(0), \tilde{\varpi}_{\mathfrak{M}}(\mathbf{g}) \right\} = \tilde{\varpi}_{\mathfrak{M}}(\mathbf{g}). \end{split}$$

Hence, if $\mathbb{f} \ll g \Rightarrow \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \tilde{\xi}_{\mathfrak{M}}(g)$, $\tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \geq \tilde{\zeta}_{\mathfrak{M}}(g)$ and $\tilde{\omega}_{\mathfrak{M}}(\mathbb{f}) \leq \tilde{\omega}_{\mathfrak{M}}(g)$.

(iii) Let $f, g \in K$, since

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \sup_{a \in \mathbb{f} \star_{\mathfrak{g}}} \tilde{\xi}_{\mathfrak{M}}(a) \,, \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\} \geq \min \left\{ \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\}, \\ &\tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \sup_{b \in \mathbb{f} \star_{\mathfrak{g}}} \tilde{\zeta}_{\mathfrak{M}}(b) \,, \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\} \geq \min \left\{ \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\} \text{ and } \\ &\tilde{\varpi}_{\mathfrak{M}}(\mathbb{f}) \leq \max \left\{ \sup_{c \in \mathbb{f} \star_{\mathfrak{g}}} \tilde{\varpi}_{\mathfrak{M}}(c) \,, \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{g}) \right\} \leq \max \{ \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{g}) \}, \end{split}$$

for all $m, \mathfrak{t}, \mathfrak{x} \in \mathfrak{f} \star \mathfrak{g}$.

Theorem 3.11 Let $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-strong-h-BCK-I of K and let $f, g \in K$. Then $\tilde{\xi}_{\mathfrak{M}}(f) \geq \min \left\{ \inf_{\mathfrak{m} \in f^* g} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(g) \right\}, \tilde{\zeta}_{\mathfrak{M}}(f) \geq \min \left\{ \inf_{\mathfrak{f} \in f^* g} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(g) \right\}$ and $\widetilde{\varpi}_{\mathfrak{M}}(f) \leq \max \left\{ \sup_{\mathfrak{x} \in f^* g} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \widetilde{\varpi}_{\mathfrak{M}}(g) \right\}, \forall f, g \in K.$

Proof: For any $f, g \in K$, we have

$$\begin{split} \sup_{\mathbf{m} \in \mathbb{F}^{\star_g}} \tilde{\xi}_{\mathfrak{M}}(\mathbf{m}) &\geq \sup_{\mathbf{m} \in \mathbb{F}^{\star_g}} \tilde{\xi}_{\mathfrak{M}}(\mathbf{m}), \\ \sup_{\mathbf{f} \in \mathbb{F}^{\star_g}} \tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}) &\geq \sup_{\mathbf{f} \in \mathbb{F}^{\star_g}} \tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}) \text{ and} \\ \inf_{\mathbf{x} \in \mathbb{F}^{\star_g}} \widetilde{\varpi}_{\mathfrak{M}}(\mathbf{x}) &\leq \inf_{\mathbf{x} \in \mathbb{F}^{\star_g}} \widetilde{\varpi}_{\mathfrak{M}}(\mathbf{x}), \end{split}$$

for all $f \in K$.

This yields the definition that we obtain as

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(\mathbf{f}) \geq \min \left\{ \sup_{\mathbf{m} \in \mathbf{f} \star \mathbf{g}} \tilde{\xi}_{\mathfrak{M}}(\mathbf{m}), \tilde{\xi}_{\mathfrak{M}}(\mathbf{g}) \right\} \geq \min \left\{ \inf_{\mathbf{m} \in \mathbf{f} \star \mathbf{g}} \tilde{\xi}_{\mathfrak{M}}(\mathbf{m}), \tilde{\xi}_{\mathfrak{M}}(\mathbf{g}) \right\}, \\ &\tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}) \geq \min \left\{ \sup_{\mathbf{f} \in \mathbf{f} \star \mathbf{g}} \tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathbf{g}) \right\} \geq \min \left\{ \inf_{\mathbf{f} \in \mathbf{f} \star \mathbf{g}} \tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathbf{g}) \right\} \text{ and } \\ &\tilde{\omega}_{\mathfrak{M}}(\mathbf{f}) \leq \max \left\{ \inf_{\mathbf{x} \in \mathbf{f} \star \mathbf{g}} \tilde{\omega}_{\mathfrak{M}}(\mathbf{x}), \tilde{\omega}_{\mathfrak{M}}(\mathbf{g}) \right\} \leq \max \left\{ \sup_{\mathbf{x} \in \mathbf{f} \star \mathbf{g}} \tilde{\omega}_{\mathfrak{M}}(\mathbf{x}), \tilde{\omega}_{\mathfrak{M}}(\mathbf{g}) \right\}, \end{split}$$

for all $f, g \in K$.

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

Corollary 3.12 Every IVNF-*strong*-h-BCK-I is both an IVNF-*s-weak*-h-BCK-I (and hence an IVNF-*weak*-h-BCK-I) and an IVNF-h-BCK-I.

IV. Interval-Valued Neutrosophic Fuzzy Implicative Hyper BCK-Ideals of Hyper BCK-algebras

In the subsequent discussion, the idea of interval-valued fuzzy sets to Neutrosophic fuzzy implicative hyper BCK-ideals in hyper BCK-algebras and related properties are explained.

Definition 4.1 Let $\mathfrak{M} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVNFS on K and $\tilde{\xi}_{\mathfrak{M}}(0) \geq \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}), \tilde{\zeta}_{\mathfrak{M}}(0) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}),$ $\widetilde{\varpi}_{\mathfrak{M}}(0) \leq \widetilde{\varpi}_{\mathfrak{M}}(\mathbb{f}), \forall \mathbb{f}, \mathfrak{g} \in K$. Then \mathfrak{M} is said to be an

(i) IVNF-weak-I-h-BCK-I of *K*, if

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\hbar) \right\}, \\ &\tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{f} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(\hbar) \right\} \text{ and } \\ &\tilde{\varpi}_{\mathfrak{M}}(\mathbb{f}) \leq \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \tilde{\varpi}_{\mathfrak{M}}(\hbar) \right\} \end{split}$$

(**ii**) IVNF-I-h-BCK-I of *K*, if

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(\mathbf{f}) \geq \min \left\{ \sup_{\mathbf{m} \in (\mathbf{f} \star \mathbf{h}) \star (\mathbf{g} \star \mathbf{f})} \tilde{\xi}_{\mathfrak{M}}(\mathbf{m}), \tilde{\xi}_{\mathfrak{M}}(\mathbf{h}) \right\}, \\ &\tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}) \geq \min \left\{ \sup_{\mathbf{f} \in (\mathbf{f} \star \mathbf{h}) \star (\mathbf{g} \star \mathbf{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathbf{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathbf{h}) \right\} \text{ and } \\ &\tilde{\varpi}_{\mathfrak{M}}(\mathbf{f}) \leq \max \left\{ \inf_{\mathbf{x} \in (\mathbf{f} \star \mathbf{h}) \star (\mathbf{g} \star \mathbf{f})} \tilde{\varpi}_{\mathfrak{M}}(\mathbf{x}), \tilde{\varpi}_{\mathfrak{M}}(\mathbf{h}) \right\} \end{split}$$

 \forall f, g, $h \in K$.

Theorem 4.2 Every interval-valued Neutrosophic fuzzy implicative hyper BCK-ideal (NFI-h-BCK-I) of *K* is an interval-valued Neutrosophic fuzzy *weak* implicative hyper BCK-ideal(NF-*weak*-I-h-BCK-I).

Proof: It is assumed that $\mathfrak{M} = (\xi_{\mathfrak{M}}, \zeta_{\mathfrak{M}}, \varpi_{\mathfrak{M}})$ is an IVNFI-h-BCK-I of K and for $f, g, h \in K$. Since $\inf_{\mathfrak{m} \in (f \star h) \star (g \star f)} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \leq \sup_{\mathfrak{m} \in (f \star h) \star (g \star f)} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}),$

$$\inf_{\mathfrak{k}\in (\mathbb{f}\star \hbar)\star (\mathfrak{g}\star \mathbb{f})}\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k})\leq \sup_{\mathfrak{k}\in (\mathbb{f}\star \hbar)\star (\mathfrak{g}\star \mathbb{f})}\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}) \text{ and }$$

$$\sup_{\mathfrak{x}\in (\mathbb{f}\star \hbar)\star (g\star \mathbb{f})}\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x})\geq \inf_{\mathfrak{x}\in (\mathbb{f}\star \hbar)\star (g\star \mathbb{f})}\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}).$$

Accordingly,

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\hbar) \right\} \geq \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\hbar) \right\}, \\ &\tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \sup_{\mathfrak{f} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(\hbar) \right\} \geq \min \left\{ \inf_{\mathfrak{f} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(\hbar) \right\} \text{ and } \\ &\tilde{\varpi}_{\mathfrak{M}}(\mathbb{f}) \leq \max \left\{ \inf_{\mathfrak{x} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \tilde{\varpi}_{\mathfrak{M}}(\hbar) \right\} \leq \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \tilde{\varpi}_{\mathfrak{M}}(\hbar) \right\}. \end{split}$$

Hence, $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-weak-I-h-BCK-I of K.

Example 4.3 The set $K = \{0, m, n\}$ is given and its operation is specified in the following table. UGC CARE Group-1

58

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

*	0	m	n
0	{0}	{0}	{0}
m	{m}	$\{0, m\}$	$\{0, m\}$
n	{n}	{m}	$\{0, m\}$

Then (K, \star) is a h-BCK-A [3]. Define an IVNFS $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ on K by $\tilde{\xi}_{\mathfrak{M}}(0) = \widetilde{0.9}, \, \tilde{\xi}_{\mathfrak{M}}(m) = \widetilde{0.5}, \, \tilde{\xi}_{\mathfrak{M}}(n) = \widetilde{0.7}, \, \tilde{\zeta}_{\mathfrak{M}}(0) = \widetilde{0.8}, \, \tilde{\zeta}_{\mathfrak{M}}(m) = \widetilde{0.4}, \, \tilde{\zeta}_{\mathfrak{M}}(n) = \widetilde{0.6} \, \, \text{and}$

 $\widetilde{\omega}_{\mathfrak{M}}(0) = \widetilde{0.5}, \, \widetilde{\omega}_{\mathfrak{M}}(m) = \widetilde{0.9}, \, \widetilde{\omega}_{\mathfrak{M}}(n) = \widetilde{0.3}.$

The set $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ forms an IVNF-weak-I-h-BCK-I of \mathfrak{S} . However, it fails to be an IVNF-I-h-BCK-I of K, due to

$$\tilde{\xi}_{\mathfrak{M}}(m) = \widetilde{0.5} < \widetilde{0.9} = \tilde{\xi}_{\mathfrak{M}}(0) = \min \left\{ \sup_{v \in (m \star 0) \star (m \star m)} \tilde{\xi}_{\mathfrak{M}}(v), \tilde{\xi}_{\mathfrak{M}}(0) \right\},$$

$$\tilde{\zeta}_{\mathfrak{M}}(m) = \widetilde{0.4} < \widetilde{0.8} = \tilde{\zeta}_{\mathfrak{M}}(0) = \min \left\{ \sup_{v \in (m \star 0) \star (m \star m)} \tilde{\zeta}_{\mathfrak{M}}(v), \tilde{\zeta}_{\mathfrak{M}}(0) \right\} \text{ and }$$

$$\tilde{\varpi}_{\mathfrak{M}}(m) = \widetilde{0.9} > \widetilde{0.5} = \tilde{\varpi}_{\mathfrak{M}}(0) = \max \left\{ \inf_{v \in (m \star 0) \star (m \star m)} \tilde{\varpi}_{\mathfrak{M}}(v), \tilde{\varpi}_{\mathfrak{M}}(0) \right\}.$$

Theorem 4.4

Every IVNFI-h-BCK-I of *K* is an IVNF-*strong*-h-BCK-I.

Every IVNF-weak-I-h-BCK-I of *K* is an IVNF-weak-h-BCK-I.

Proof: 1. Let $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVNFI-h-BCK-I of K.

Inserting, g = 0 and h = g in Definition 4.1 (ii), we obtain

$$\begin{split} \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) &\geq \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{f} \star \mathfrak{g}) \star (0 \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \,, \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\} = \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{f} \star \mathfrak{g})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \,, \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\}, \\ \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) &\geq \min \left\{ \sup_{\mathfrak{f} \in (\mathbb{f} \star \mathfrak{g}) \star (0 \star \mathbb{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \,, \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\} = \min \left\{ \sup_{\mathfrak{f} \in (\mathbb{f} \star \mathfrak{g})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \,, \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\} \text{ and } \\ \tilde{\varpi}_{\mathfrak{M}}(\mathbb{f}) &\leq \max \left\{ \inf_{\mathfrak{x} \in (\mathbb{f} \star \mathfrak{g}) \star (0 \star \mathbb{f})} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \,, \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{g}) \right\} = \max \left\{ \inf_{\mathfrak{x} \in (\mathbb{f} \star \mathfrak{g})} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \,, \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{g}) \right\}, \dots, (i). \end{split}$$
 Initially, we prove that, for $\mathbb{f}, \mathfrak{g} \in K$, if $\mathbb{f} \ll \mathfrak{g} \Rightarrow \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}), \tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \text{ and } \tilde{\varpi}_{\mathfrak{M}}(\mathbb{f}) \leq \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \end{split}$

 $\widetilde{\omega}_{\mathfrak{M}}(\mathfrak{g})$

For this, let $f, g \in K$ be such that $f \ll g$, then $0 \in f \star g$ and thus, by (i), we obtain

$$\tilde{\xi}_{\mathfrak{M}}(\mathfrak{f}) \geq \min \left\{ \sup_{\mathfrak{m} \in (\mathfrak{f} \star \mathfrak{g})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\} = \min \left\{ \tilde{\xi}_{\mathfrak{M}}(0), \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\} = \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}),$$

$$\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \geq \min \left\{ \sup_{\mathfrak{t} \in (\mathfrak{f} \star \mathfrak{g})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\} = \min \left\{ \tilde{\zeta}_{\mathfrak{M}}(0), \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\} = \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \text{ and }$$

$$\tilde{\omega}_{\mathfrak{M}}(\mathfrak{f}) \leq \max \left\{ \inf_{\mathfrak{x} \in (\mathfrak{f} \star \mathfrak{g})} \tilde{\omega}_{\mathfrak{M}}(\mathfrak{x}), \tilde{\omega}_{\mathfrak{M}}(\mathfrak{g}) \right\} = \max \{ \tilde{\omega}_{\mathfrak{M}}(0), \tilde{\omega}_{\mathfrak{M}}(\mathfrak{g}) \} = \tilde{\omega}_{\mathfrak{M}}(\mathfrak{g}), \dots (ii).$$
Let $\mathfrak{f} \in K$ and $\mathfrak{m} \in \mathfrak{f} \star \mathfrak{f}$. Since, $\mathfrak{f} \star \mathfrak{f} \ll \mathfrak{f}$ then $\mathfrak{m} \ll \mathfrak{f}$ for all $\mathfrak{m} \in \mathfrak{f} \star \mathfrak{f}$ and thus, by (ii) , we have

 $\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{\xi}_{\mathfrak{M}}(\mathfrak{f}), \, \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \text{ and } \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{m}) \leq \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{f}), \, \forall \, \mathfrak{m} \in \mathfrak{f} \star \mathfrak{f}. \text{ Therefore,} \\ \inf_{\mathfrak{m} \in \mathfrak{f} \star \mathfrak{f}} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{\xi}_{\mathfrak{M}}(\mathfrak{f}), \inf_{\mathfrak{m} \in \mathfrak{f} \star \mathfrak{f}} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \text{ and } \sup_{\mathfrak{m} \in \mathfrak{f} \star \mathfrak{f}} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{m}) \leq \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{f}), \dots (iii).$

$$\inf_{\mathfrak{m}\in\mathbb{F}\star\mathbb{F}}\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m})\geq\tilde{\xi}_{\mathfrak{M}}(\mathfrak{f}),\inf_{\mathfrak{m}\in\mathbb{F}\star\mathbb{F}}\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{m})\geq\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f})\text{ and }\sup_{\mathfrak{m}\in\mathbb{F}\star\mathbb{F}}\tilde{\varpi}_{\mathfrak{M}}(\mathfrak{m})\leq\tilde{\varpi}_{\mathfrak{M}}(\mathfrak{f}),\dots(iii).$$

Taking (i) and (iii) into account, we obtain

$$\begin{split} &\inf_{\mathfrak{m}\in\mathbb{F}\star\mathbb{F}}\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m})\geq\tilde{\xi}_{\mathfrak{M}}(\mathfrak{f})\geq\min\left\{\sup_{\mathfrak{n}\in(\mathbb{F}\star\mathfrak{g})}\tilde{\xi}_{\mathfrak{M}}(\mathfrak{n})\,,\tilde{\xi}_{\mathfrak{M}}(\mathfrak{g})\right\},\\ &\inf_{\mathfrak{m}\in\mathbb{F}\star\mathbb{F}}\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{m})\geq\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f})\geq\min\left\{\sup_{\mathfrak{l}\in(\mathbb{F}\star\mathfrak{g})}\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{l})\,,\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g})\right\}\,\text{and}\\ &\sup_{\mathfrak{m}\in\mathbb{F}\star\mathbb{F}}\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{m})\leq\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{f})\leq\max\left\{\inf_{\mathfrak{g}\in(\mathbb{F}\star\mathfrak{g})}\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{g})\,,\tilde{\varpi}_{\mathfrak{M}}(\mathfrak{g})\right\},\end{split}$$

for all $f, g \in K$.

ISSN: 0970-2555

Volume: 54, Issue 2, No.1, February: 2025

Hence $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ satisfies the conditions of an IVNF-strong-h-BCK-I of K.

2. Let $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-weak-I-h-BCK-I of K.

Inserting, g = 0 and h = g in Definition 4.1 (i), we obtain

$$\begin{split} &\tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star g) \star (0 \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(g) \right\} = \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star g)} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(g) \right\}, \\ &\tilde{\zeta}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{f} \in (\mathbb{f} \star g) \star (0 \star \mathbb{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(g) \right\} = \min \left\{ \inf_{\mathfrak{f} \in (\mathbb{f} \star g)} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(g) \right\} \text{ and } \\ &\tilde{\varpi}_{\mathfrak{M}}(\mathbb{f}) \leq \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{f} \star g) \star (0 \star \mathbb{f})} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \tilde{\varpi}_{\mathfrak{M}}(g) \right\} = \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{f} \star g)} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \tilde{\varpi}_{\mathfrak{M}}(g) \right\}. \end{split}$$

Hence,

$$\begin{split} & \tilde{\xi}_{\mathfrak{M}}(0) \geq \tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star_{\mathfrak{g}})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\mathfrak{g}) \right\}, \\ & \tilde{\zeta}_{\mathfrak{M}}(0) \geq \zeta_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \inf_{\mathfrak{f} \in (\mathbb{f} \star_{\mathfrak{g}})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{g}) \right\} \text{ and } \\ & \tilde{\varpi}_{\mathfrak{M}}(0) \leq \tilde{\varpi}_{\mathfrak{M}}(\mathbb{f}) \leq \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{f} \star_{\mathfrak{g}})} \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{g}) \right\}, \end{split}$$

for all $f, g \in K$.

Thus $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-weak-I-h-BCK-I of K.

Example 4.5 Let $K = \{0, m, n, f\}$ be the set. The Cayley table for K is given by:

*	0	m	n	ŧ
0	{0}	{0}	{0}	{0}
m	{m}	{0}	{0}	{0}
n	{n}	{n}	{0}	{0}
ŧ	{ ₹ }	{ f }	{n, ₹}	$\{0, n, t\}$

Then (K, \star) is a h-BCK-A [3]. An IVNFS $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ in K is defined as

$$\widetilde{\xi}_{\mathfrak{M}}(0) = \widetilde{\xi}_{\mathfrak{M}}(m) = \widetilde{0.8}, \ \widetilde{\xi}_{\mathfrak{M}}(n) = \widetilde{\xi}_{\mathfrak{M}}(\mathfrak{f}) = \widetilde{0.3}, \ \widetilde{\zeta}_{\mathfrak{M}}(0) = \widetilde{\zeta}_{\mathfrak{M}}(m) = \widetilde{0.6}, \ \widetilde{\zeta}_{\mathfrak{M}}(n) = \widetilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) = \widetilde{0.2}, \ \text{and} \\ \widetilde{\varpi}_{\mathfrak{M}}(0) = \widetilde{\varpi}_{\mathfrak{M}}(m) = \widetilde{0.1}, \ \widetilde{\varpi}_{\mathfrak{M}}(n) = \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{f}) = \widetilde{0.4}.$$

As a result $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ forms an IVNF-*strong*-h-BCK-I (and therefore an IVNF-*weak*-h-BCK-I) However, it does not qualify as an IVNFI (or an IVNF-*weak*-I) hyper BCK-I of K, because

$$\xi_{\mathfrak{M}}(n) = \widetilde{0.3} < \widetilde{0.8} = \xi_{\mathfrak{M}}(0) = \min \left\{ \inf_{v \in (n \star 0) \star (\mathfrak{f} \star n)} \xi_{\mathfrak{M}}(v), \xi_{\mathfrak{M}}(0) \right\},$$

$$\xi_{\mathfrak{M}}(n) = \widetilde{0.2} < \widetilde{0.6} = \xi_{\mathfrak{M}}(0) = \min \left\{ \inf_{v \in (n \star 0) \star (\mathfrak{f} \star n)} \xi_{\mathfrak{M}}(v), \xi_{\mathfrak{M}}(0) \right\} \text{ and }$$

$$\widetilde{\varpi}_{\mathfrak{M}}(n) = \widetilde{0.4} > \widetilde{0.1} = \widetilde{\varpi}_{\mathfrak{M}}(0) = \max \left\{ \sup_{v \in (n \star 0) \star (\mathfrak{f} \star n)} \widetilde{\varpi}_{\mathfrak{M}}(v), \widetilde{\varpi}_{\mathfrak{M}}(0) \right\}.$$

Therefore, Theorem 4.4 is not reversible in general.

Theorem 4.6 Assuming $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF subset of K, we obtain the following

- (1) $\widetilde{\mathfrak{M}}$ is an IVNF-weak-I-h-BCK-I of $K \Leftrightarrow \forall \ \tilde{s}, \tilde{t}, \tilde{v} \in \mathbb{A}[0,1], \ \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \ \tilde{s}) \neq \emptyset, \ \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \ \tilde{t}) \neq \emptyset$ and $\mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \ \tilde{v}) \neq \emptyset$ are weak-I-h-BCK-Is of K.
- (2) If $\widetilde{\mathfrak{M}}$ is an IVNF-I-h-BCK-I of K, then $\forall \ \tilde{s}, \tilde{t}, \tilde{v} \in \mathbb{A}[0,1], \ \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \ \tilde{s}) \neq \emptyset$, $\ \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \ \tilde{t}) \neq \emptyset$ and $\ \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \ \tilde{v}) \neq \emptyset$ are I-h-BCK-Is of K.
- (3) If $\forall \tilde{s}, \tilde{t}, \widetilde{v} \in A[0, 1], \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s}) \neq \emptyset$, $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t}) \neq \emptyset$ and $\mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v}) \neq \emptyset$ are S-reflexive-I-h-BCK-Is of K, and $\widetilde{\mathfrak{M}}$ satisfies the "sup-inf" property, then $\widetilde{\mathfrak{M}}$ is an IVNF-I-h-BCK-I of K.

Inc

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 54, Issue 2, No.1, February: 2025

Proof: (1) Suppose that $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-weak-I-h-BCK-I of K.

Let $\tilde{s}, \tilde{t}, \tilde{w} \in \mathbb{A}[0,1]$ and $f, g, h \in K$ be such that $(f \star h) \star (g \star f) \subseteq \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ and $h \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$. Then $\mathfrak{m} \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ for all $\mathfrak{m} \in (f \star h) \star (g \star f) \Rightarrow \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{s}$, for all $\mathfrak{m} \in (f \star h) \star (g \star f)$ and $\tilde{\xi}_{\mathfrak{M}}(h) \geq \tilde{s}$,

$$\inf_{\mathfrak{m}\in(\mathfrak{f}\star\hbar)\star(\mathfrak{q}\star\mathfrak{f})}\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m})\geq\tilde{s}\text{ and }\tilde{\xi}_{\mathfrak{M}}(\hbar)\geq\tilde{s}.$$

As assumed,

$$\tilde{\xi}_{\mathfrak{M}}(\mathfrak{f}) \geq \min \left\{ \inf_{\mathfrak{m} \in (\mathfrak{f} \star \hbar) \star (\mathfrak{q} \star \mathfrak{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \Rightarrow \tilde{\xi}_{\mathfrak{M}}(\hbar) \right\} \geq \min \{ \tilde{s}, \tilde{s} \} = \tilde{s}.$$

 $\Rightarrow \mathbb{f} \in \mathcal{U}\big(\tilde{\xi}_{\mathfrak{M}}; \ \tilde{s}\big).$

Let $f, g, h \in K$ be such that $(f \star h) \star (g \star f) \subseteq \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ and $h \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$.

Then $f \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ for all $m \in (f \star h) \star (g \star f) \Rightarrow \tilde{\zeta}_{\mathfrak{M}}(f) \geq \tilde{t}$, for all $f \in (f \star h) \star (g \star f)$ and $\tilde{\zeta}_{\mathfrak{M}}(h) \geq \tilde{t}$,

$$\inf_{\mathfrak{f}\in (\mathfrak{f}\star\hbar)\star (\mathfrak{a}\star\mathfrak{f})}\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f})\geq \tilde{t} \text{ and } \tilde{\zeta}_{\mathfrak{M}}(\hbar)\geq \tilde{t}.$$

As assumed.

$$\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \geq \min \left\{ \inf_{\mathfrak{f} \in (\mathfrak{f} \star \hbar) \star (\mathfrak{g} \star \mathfrak{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \Rightarrow \tilde{\zeta}_{\mathfrak{M}}(\hbar) \right\} \geq \min \{\tilde{t}, \tilde{t}\} = \tilde{t}.$$

 \Rightarrow f $\in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t}).$

Let $f, g, h \in K$ be such that $(f \star h) \star (g \star f) \subseteq \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$ and $h \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$. Then $\mathfrak{x} \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$ for all $\mathfrak{m} \in (f \star h) \star (g \star f) \Rightarrow \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \leq \widetilde{v}$, for all $\mathfrak{x} \in (f \star h) \star (g \star f)$ and

Then $\mathfrak{x} \in \mathcal{L}(\varpi_{\mathfrak{M}}; \tilde{v})$ for all $\mathfrak{m} \in (\mathbb{I} \star h) \star (\mathfrak{g} \star \mathbb{I}) \Rightarrow \tilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \leq \tilde{v}$, for all $\mathfrak{x} \in (\mathbb{I} \star h) \star (\mathfrak{g} \star \mathbb{I})$ and $\tilde{\varpi}_{\mathfrak{M}}(h) \leq \tilde{v}$,

$$\sup_{\mathfrak{x}\in (\mathbb{f}\star\hbar)\star (\mathfrak{g}\star\mathbb{f})}\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x})\leq \widetilde{v} \ \ \text{and} \ \widetilde{\varpi}_{\mathfrak{M}}(\hbar)\leq \widetilde{v}.$$

As assumed,

$$\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{f}) \leq \max \left\{ \sup_{\mathfrak{x} \in (\mathfrak{f} \star \hbar) \star (\mathfrak{g} \star \mathfrak{f})} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \Rightarrow \widetilde{\varpi}_{\mathfrak{M}}(\hbar) \right\} \leq \max \{ \widetilde{v}, \widetilde{v} \} = \widetilde{v}.$$

 \Rightarrow $\mathbb{f} \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \ \widetilde{v}).$

Hence, $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$, $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ and $\mathcal{L}(\tilde{\omega}_{\mathfrak{M}}; \tilde{v})$ are weak-I-h-BCK-Is of $K, \forall \tilde{s}, \tilde{t}, \tilde{v} \in \mathbb{A}[0,1]$. In the converse direction, assume that, let $\forall \tilde{s}, \tilde{t}, \tilde{v} \in \mathbb{A}[0,1]$, $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s}) \neq \emptyset$, $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t}) \neq \emptyset$ and $\mathcal{L}(\tilde{\omega}_{\mathfrak{M}}; \tilde{v}) \neq \emptyset$ are weak-I-h-BCK-Is of K and $f, g, f \in K$ and put

$$\tilde{s} = \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{I} \star \hbar) \star (\mathfrak{g} \star \mathbb{I})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\hbar) \right\}.$$

Then

$$\inf_{\mathfrak{m}\in (\mathbb{f}\star \hbar)\star (\mathfrak{g}\star \mathbb{f})}\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m})\geq \tilde{s} \text{ and } \tilde{\xi}_{\mathfrak{M}}(\hbar)\geq \tilde{s}.$$

So we have $\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{s}$ for all $\mathfrak{m} \in (\mathfrak{f} \star h) \star (\mathfrak{g} \star \mathfrak{f})$ and $\xi_{\mathfrak{M}}(h) \geq \tilde{s}$.

Therefore, $m \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ for all $m \in (\mathbb{f} \star h) \star (\mathfrak{g} \star \mathbb{f})$ and $h \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$.

i.e., $(\mathbb{f} \star h) \star (\mathfrak{g} \star \mathbb{f}) \subseteq \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s}), h \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ and so by hypothesis,

$$\mathbb{f} \in \mathcal{U}\big(\tilde{\xi}_{\mathfrak{M}}; \ \tilde{s}\big) = \min \bigg\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\hbar) \bigg\}.$$

Thus

$$\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{s} = \min \left\{ \inf_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\hbar) \right\}.$$

Let $f, g, h \in K$ and put

OF INDUSTRIAL SECTION OF THE SECTION

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

$$\tilde{t} = \min \left\{ \inf_{\tilde{t} \in (\tilde{t} \star \hat{t}) \star (\mathfrak{a} \star \tilde{t})} \tilde{\zeta}_{\mathfrak{M}}(\tilde{t}), \tilde{\zeta}_{\mathfrak{M}}(\hat{t}) \right\}.$$

Then

$$\inf_{\check{t}\in (f\star \hbar)\star (g\star f)} \tilde{\zeta}_{\mathfrak{M}}(\check{t}) \geq \tilde{t} \ \text{ and } \tilde{\zeta}_{\mathfrak{M}}(\hbar) \geq \tilde{t}.$$

So we have $\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}) \geq \tilde{t}$ for all $\mathfrak{k} \in (\mathfrak{k} \star h) \star (\mathfrak{g} \star \mathfrak{k})$ and $\tilde{\zeta}_{\mathfrak{M}}(h) \geq \tilde{t}$. Therefore, $\mathfrak{k} \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ for all $\mathfrak{k} \in (\mathfrak{k} \star h) \star (\mathfrak{g} \star \mathfrak{k})$ and $h \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$. i.e., $(\mathfrak{k} \star h) \star (\mathfrak{g} \star \mathfrak{k}) \subseteq \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$, $h \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ and so by hypothesis,

$$\mathbb{f} \in \mathcal{U}\big(\tilde{\zeta}_{\mathfrak{M}}; \ \tilde{t}\big) = \min \bigg\{ \inf_{\tilde{t} \in (\mathbb{f} \star \hbar) \star (g \star \mathbb{f})} \tilde{\zeta}_{\mathfrak{M}}(\tilde{t}) \,, \tilde{\zeta}_{\mathfrak{M}}(\hbar) \bigg\}.$$

Thus

$$\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}) \geq \tilde{t} = \min \left\{ \inf_{\mathfrak{k} \in (\mathfrak{f} \star \hbar) \star (\mathfrak{g} \star \mathfrak{k})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}), \tilde{\zeta}_{\mathfrak{M}}(\hbar) \right\}.$$

Let $f, g, h \in K$ and put

$$\widetilde{v} = \max \left\{ \sup_{\mathfrak{x} \in (\mathfrak{f} \star \hbar) \star (\mathfrak{g} \star \mathfrak{f})} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \widetilde{\varpi}_{\mathfrak{M}}(\hbar) \right\}.$$

Then

$$\sup_{\mathfrak{x}\in (\mathbb{f}\star \hbar)\star (\mathfrak{g}\star \mathbb{f})}\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x})\leq \widetilde{v} \ \text{ and } \widetilde{\varpi}_{\mathfrak{M}}(\hbar)\leq \widetilde{v}.$$

So we have $\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \leq \widetilde{v}$ for all $\mathfrak{x} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})$ and $\widetilde{\varpi}_{\mathfrak{M}}(\hbar) \leq \widetilde{v}$. Therefore, $\mathfrak{x} \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$ for all $\mathfrak{x} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})$ and $\hbar \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$. i.e., $(\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f}) \subseteq \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$, $\hbar \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$ and so by hypothesis,

$$f \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \ \widetilde{v}) = \max \left\{ \sup_{\mathfrak{x} \in (f \star h) \star (g \star f)} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \widetilde{\varpi}_{\mathfrak{M}}(h) \right\}.$$

Thus

$$\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \leq \widetilde{v} = \max \left\{ \sup_{\mathfrak{x} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}), \widetilde{\varpi}_{\mathfrak{M}}(\hbar) \right\}.$$

Hence, $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-weak-I-h-BCK-I of K.

(2) Given that $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-I-h-BCK-I of K.

By Theorem 4.4(1), $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-strong-h-BCK-I of K and so it is an IVNF-h-BCK-I of $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-h-BCK-I of K by Theorem 3.17[4], for all $\widetilde{s}, \widetilde{t}, \widetilde{v} \in \mathbb{A}[0,1]$,

 $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s}) \neq \emptyset$, $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t}) \neq \emptyset$ and $\mathcal{L}(\tilde{\omega}_{\mathfrak{M}}; \tilde{v}) \neq \emptyset$ are h-BCK-Is of K. By Theorem 4.6(ii) [3], it is enough to show that, let $f, g, h \in K$ and if $f \star (g \star f) \ll \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$, $f \star (g \star f) \ll \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ and $f \star (g \star f) \ll \mathcal{L}(\tilde{\omega}_{\mathfrak{M}}; \tilde{v})$, then

 $f \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s}) \cap \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t}) \cap \mathcal{L}(\tilde{\omega}_{\mathfrak{M}}; \tilde{v})$. For this, let $f \star (g \star f) \ll \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ for $f, g \in K$. Then for all

 $\mathfrak{m} \in \mathbb{f} \star (\mathfrak{g} \star \mathbb{f})$ there exists $\mathfrak{n} \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ such that $\mathfrak{m} \ll \mathfrak{n}$, we have $\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{s} \Rightarrow \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{s}$ for all $\mathfrak{m} \in \mathbb{f} \star (\mathfrak{g} \star \mathbb{f}) \Rightarrow \tilde{s} = \tilde{s}$

$$\sup_{\mathfrak{m}\in \mathfrak{f}\star(\mathfrak{g}\star \mathfrak{f})}\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m})\geq \tilde{s}.$$

Hence, as assumed,

$$\tilde{\xi}_{\mathfrak{M}}(\mathbb{f}) \geq \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{f} \star 0) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(0) \right\} = \sup_{\mathfrak{m} \in \mathbb{f} \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{s}$$

i.e., $f \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$.

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

Let $f \star (g \star f) \ll \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ for $f, g \in K$. Then for all $f \in f \star (g \star f)$ there exists $f \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ such that $\mathfrak{f} \ll \mathfrak{I}$, we have $\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \geq \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{I}) \geq \tilde{t} = \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \geq \tilde{t}$ for all $\mathfrak{f} \in \mathfrak{f} \star (\mathfrak{g} \star \mathfrak{f}) = \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f})$

$$\sup_{\mathfrak{t}\in\mathfrak{f}\star(\mathfrak{g}\star\mathfrak{f})}\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{t})\geq\tilde{t}.$$

Hence, as assumed,

$$\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \geq \min \left\{ \sup_{\mathfrak{f} \in (\mathfrak{f} \star 0) \star (\mathfrak{g} \star \mathfrak{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}), \tilde{\zeta}_{\mathfrak{M}}(0) \right\} = \sup_{\mathfrak{f} \in \mathfrak{f} \star (\mathfrak{g} \star \mathfrak{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{f}) \geq \tilde{t}$$

i.e., $f \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$.

Let $f \star (g \star f) \ll \mathcal{L}(\widetilde{\omega}_{\mathfrak{M}}; \widetilde{v})$ for $f, g \in K$. Then for all $\mathfrak{x} \in f \star (g \star f)$ there exists $\mathfrak{y} \in \mathcal{L}(\widetilde{\omega}_{\mathfrak{M}}; \widetilde{v})$ such that $\mathfrak{x} \ll \mathfrak{y}$, we have $\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \leq \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{y}) \leq \widetilde{v} \Rightarrow \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \leq \widetilde{v}$ for all $\mathfrak{x} \in \mathbb{f} \star (\mathfrak{g} \star \mathbb{f}) \Rightarrow$

$$\inf_{\mathfrak{x}\in\mathbb{f}\star(\mathfrak{g}\star\mathbb{f})}\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x})\leq\widetilde{v}.$$

Hence, as assumed,

$$\widetilde{\varpi}_{\mathfrak{M}}(\mathbb{f}) \leq \max \left\{ \inf_{\mathfrak{x} \in (\mathbb{f} \star 0) \star (\mathfrak{q} \star \mathbb{f})} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \text{ , } \widetilde{\varpi}_{\mathfrak{M}}(0) \right\} = \inf_{\mathfrak{x} \in \mathbb{f} \star (\mathfrak{q} \star \mathbb{f})} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \leq \widetilde{v}$$

i.e., $f \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$.

Therefore, $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s}), \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ and $\mathcal{L}(\tilde{\omega}_{\mathfrak{M}}; \tilde{v})$ qualify as I-h-BCK-Is of K, holding $\forall \ \tilde{s}, \tilde{t}, \tilde{v} \in \mathbb{A}[0, 1].$

(3) Assume that, $\forall \tilde{s}, \tilde{t}, \tilde{v} \in \mathbb{A}[0, 1], \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s}), \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ and $\mathcal{L}(\tilde{\omega}_{\mathfrak{M}}; \tilde{v})$ possess the property of S-reflexive-I-h-BCK-Is of *K*.

Let $f, g, h \in K$. Set

$$\tilde{s} = \min \left\{ \sup_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\hbar) \right\} \Rightarrow \sup_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{s} \text{ and } \tilde{\xi}_{\mathfrak{M}}(\hbar) \geq \tilde{s},$$

The "sup" property of $\tilde{\xi}_{\mathfrak{M}}$ implies the existence of $\mathfrak{m}_0 \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})$ such that $\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}_0) = \sup_{\mathfrak{m} \in (\mathbb{f} \star \hbar) \star (\mathfrak{g} \star \mathbb{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{s}$

$$\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}_{0}) = \sup_{\mathfrak{m} \in (\mathbb{I} \star \hbar) \star (\mathfrak{g} \star \mathbb{I})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{s}$$

Therefore, $\mathfrak{m}_0 \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$, which by (hBCK2), implies

 $\left(\left(\mathbb{f}\star(\mathfrak{g}\star\mathbb{f})\right)\star\boldsymbol{h}\right)\cap\mathcal{U}\big(\tilde{\xi}_{\mathfrak{M}};\;\tilde{s}\big)=\left(\left(\mathbb{f}\star\boldsymbol{h}\right)\star(\mathfrak{g}\star\mathbb{f})\right)\cap\mathcal{U}\big(\tilde{\xi}_{\mathfrak{M}};\;\tilde{s}\big)\neq\emptyset,\;\text{then there exists }\mathfrak{m}\in\mathcal{S}$ $(f \star (g \star f))$ such that $(m \star h) \cap \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s}) \neq \emptyset$. According to Theorem 4.6(i)[3], $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ qualifies as a h-BCK-I of K.

The S-reflexivity of $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ allows us to invoke Theorem 2.3(i)[3], which establishes that $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ is a reflexive-h-BCK-I of K. Hence, $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ is a strong-h-BCK-I of K.

Since, $\tilde{\xi}_{\mathfrak{M}}(\hbar) \geq \tilde{s}$ implies $\hbar \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$, $(\mathfrak{m} \star \hbar) \cap \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s}) \neq \emptyset$ and $\hbar \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$, then $f \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ and so $(f \star (g \star f)) \cap \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s}) \neq \emptyset$. The reflexivity of $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ and Theorem 3.5(ii)[3], together imply $f \star (g \star f) \ll \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$. Since $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$ is an I-h-BCK-I of K we deduce $f \in \mathcal{U}(\tilde{\xi}_{\mathfrak{M}}; \tilde{s})$, and hence,

$$\tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}) \geq \tilde{s} = \min \left\{ \sup_{\mathfrak{m} \in (\mathfrak{f} \star \hbar) \star (\mathfrak{a} \star \mathfrak{f})} \tilde{\xi}_{\mathfrak{M}}(\mathfrak{m}), \tilde{\xi}_{\mathfrak{M}}(\hbar) \right\}.$$

With, $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ being an S-reflexive-I-h-BCK-Is of K. Let $f, g, h \in K$. Put

$$\tilde{t} = \min \left\{ \sup_{\mathfrak{k} \in (\mathbb{f} \star \hbar) \star (g \star \mathbb{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}), \tilde{\zeta}_{\mathfrak{M}}(\hbar) \right\} \Rightarrow \sup_{\mathfrak{k} \in (\mathbb{f} \star \hbar) \star (g \star \mathbb{f})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}) \geq \tilde{t} \text{ and } \tilde{\zeta}_{\mathfrak{M}}(\hbar) \geq \tilde{t},$$
The "sup" property of $\tilde{\zeta}_{\mathfrak{M}}$ implies the existence of $\mathfrak{k}_0 \in (\mathbb{f} \star \hbar) \star (g \star \mathbb{f})$ such that

$$\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}_0) = \sup_{\mathfrak{k} \in (\mathfrak{f} \star \hbar) \star (\mathfrak{g} \star \mathfrak{k})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}) \geq \tilde{t}$$

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

Therefore $\mathfrak{t}_0 \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$, which by (hBCK2), implies

 $\left(\left(\mathbb{f}\star(\mathfrak{g}\star\mathbb{f})\right)\star\boldsymbol{h}\right)\cap\mathcal{U}\left(\tilde{\zeta}_{\mathfrak{M}};\;\tilde{t}\right)=\left(\left(\mathbb{f}\star\boldsymbol{h}\right)\star(\mathfrak{g}\star\mathbb{f})\right)\cap\mathcal{U}\left(\tilde{\zeta}_{\mathfrak{M}};\;\tilde{t}\right)\neq\emptyset,\quad\text{then}\quad\text{there}\quad\text{exists}\quad\mathfrak{f}\in\mathcal{F}$ $(f \star (g \star f))$ such that $(f \star h) \cap \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t}) \neq \emptyset$. According to Theorem 4.6(i)[3], $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ qualifies as a h-BCK-I of K.

The S-reflexivity of $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ allows us to invoke Theorem 2.3(i)[3], which establishes that $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \, \tilde{t})$ is a reflexive-h-BCK-I of K. Hence, $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \, \tilde{t})$ is a strong-h-BCK-I of K.

Since, $\tilde{\zeta}_{\mathfrak{M}}(h) \geq \tilde{t}$ implies $h \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$, $(\mathfrak{k} \star h) \cap \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t}) \neq \emptyset$ and $h \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$, then $f \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ and so $(f \star (g \star f)) \cap \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t}) \neq \emptyset$. The reflexivity of $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ and Theorem 3.5(ii)[3], together imply $f \star (g \star f) \ll \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$. Since $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$ is an I-h-BCK-I of K we deduce $f \in \mathcal{U}(\tilde{\zeta}_{\mathfrak{M}}; \tilde{t})$, and hence

$$\tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}) \geq \tilde{t} = \min \left\{ \sup_{\mathfrak{k} \in (\mathfrak{k} \star \hbar) \star (\mathfrak{q} \star \mathfrak{k})} \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}), \tilde{\zeta}_{\mathfrak{M}}(\mathfrak{k}) \right\}.$$

With, $\mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$ being an S-reflexive-I-h-BCK-Is of K. Let $f, g, h \in K$. Put

$$\widetilde{\boldsymbol{v}} = \max \left\{ \inf_{\boldsymbol{x} \in (\mathbb{f} \star \hbar) \star (\boldsymbol{g} \star \mathbb{f})} \widetilde{\boldsymbol{\omega}}_{\mathfrak{M}}(\boldsymbol{x}), \widetilde{\boldsymbol{\omega}}_{\mathfrak{M}}(\hbar) \right\} \Rightarrow \inf_{\boldsymbol{x} \in (\mathbb{f} \star \hbar) \star (\boldsymbol{g} \star \mathbb{f})} \widetilde{\boldsymbol{\omega}}_{\mathfrak{M}}(\boldsymbol{x}) \leq \widetilde{\boldsymbol{v}} \text{ and } \widetilde{\boldsymbol{\omega}}_{\mathfrak{M}}(\hbar) \leq \widetilde{\boldsymbol{v}},$$
 The "inf" property of $\widetilde{\boldsymbol{\omega}}_{\mathfrak{M}}$ implies the existence of $\boldsymbol{x}_0 \in (\mathbb{f} \star \hbar) \star (\boldsymbol{g} \star \mathbb{f})$ such that

$$\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}_{0}) = \inf_{\mathfrak{x} \in (\mathfrak{f} \star \hat{\mathfrak{N}}) \star (\mathfrak{g} \star \mathfrak{f})} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \leq \widetilde{\mathscr{V}}$$

Therefore $\mathfrak{x}_0 \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$, which by (hBCK2), implies

 $\left(\left(\mathbb{f}\star(\mathfrak{g}\star\mathbb{f})\right)\star\hbar\right)\cap\mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}};\;\widetilde{v})=\left(\left(\mathbb{f}\star\hbar\right)\star(\mathfrak{g}\star\mathbb{f})\right)\cap\mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}};\;\widetilde{v})\neq\emptyset,\;\;\text{then}\;\;\text{there}\;\;\text{exists}\;\;\mathfrak{x}\in\mathbb{F}$ $(f \star (g \star f))$ such that $(\mathfrak{x} \star h) \cap \mathcal{L}(\widetilde{\omega}_{\mathfrak{M}}; \widetilde{v}) \neq \emptyset$. According to Theorem 4.6(i)[3], $\mathcal{L}(\widetilde{\omega}_{\mathfrak{M}}; \widetilde{v})$ qualifies as a h-BCK-I of K. The S-reflexivity of $\mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$ allows us to invoke Theorem 2.3(i)[3], which establishes that $\mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$ is a reflexive-h-BCK-I of K. Hence, $\mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$ is a *strong*-h-BCK-I of *K*.

Since, $\varpi_{\mathfrak{M}}(h) \leq v$ implies $h \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v}), (\mathfrak{x} \star h) \cap \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v}) \neq \emptyset$ and $h \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$, then $f \in \mathcal{L}(\widetilde{\omega}_{\mathfrak{M}}; \widetilde{v})$ and so $(f \star (g \star f)) \cap \mathcal{L}(\widetilde{\omega}_{\mathfrak{M}}; \widetilde{v}) \neq \emptyset$. The reflexivity of $\mathcal{L}(\widetilde{\omega}_{\mathfrak{M}}; \widetilde{v})$ and Theorem 3.5(ii)[3], together imply $f \star (g \star f) \ll \mathcal{L}(\widetilde{\omega}_{\mathfrak{M}}; \widetilde{v})$. Since $\mathcal{L}(\widetilde{\omega}_{\mathfrak{M}}; \widetilde{v})$ is an I-h-BCK-I of K we deduce $f \in \mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$, and hence

$$\widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \leq \widetilde{v} = \max \Bigl\{ \inf_{\mathfrak{x} \in (\mathbb{I} \star \hbar) \star (\mathfrak{q} \star \mathbb{I})} \widetilde{\varpi}_{\mathfrak{M}}(\mathfrak{x}) \, , \, \widetilde{\varpi}_{\mathfrak{M}}(\hbar) \Bigr\}.$$

Therefore, $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ qualifies as an IVNF-I-h-BCK-I of K.

Theorem 4.7 Let $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVNFS on K.

- (1) If $\widetilde{\mathfrak{M}}$ satisfies the "sup-inf" property and for all \forall $\tilde{s},\tilde{t},\widetilde{v}\in\mathbb{A}[0,1],$ $\mathcal{U}(\tilde{\xi}_{\mathfrak{M}};\ \tilde{s}),$ $\mathcal{U}(\tilde{\zeta}_{\mathfrak{M}};\ \tilde{t})$ and $\mathcal{L}(\widetilde{\varpi}_{\mathfrak{M}}; \widetilde{v})$ are reflexive and $\widetilde{\mathfrak{M}}$ is a NF-I-h-BCK-I of K, then $\widetilde{\mathfrak{M}}$ is a NFPI-h-BCK-I of type 3.
- (2) Let K be a PI-h-BCK-algebra. If $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ is an IVNF-weak-I-h-BCK-I of K, then $\widetilde{\mathfrak{M}}$ is an IVNFPI-h-BCK-I of type 1.

Theorem 4.8 Let $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVNFS on K. Then $\widetilde{\mathfrak{M}}$ is an IVNF-weak-I-h-BCK-I \Leftrightarrow the IVFSs $\tilde{\xi}_{\mathfrak{M}}$, $\tilde{\zeta}_{\mathfrak{M}}$, and $\widetilde{\varpi}_{\mathfrak{M}}^{c}$ are F-weak-I-h-BCK-Is of K.

Theorem 4.9 Let $\widetilde{\mathfrak{M}} = (\widetilde{\xi}_{\mathfrak{M}}, \widetilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVNFS on K. Then $\widetilde{\mathfrak{M}}$ is an IVNF-weak-I-h-BCK-I \Leftrightarrow the IVFSs $\wedge \mathfrak{M} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\xi}_{\mathfrak{M}}^{c}), \circ \mathfrak{M} = (\tilde{\zeta}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}^{c})$ and $\triangle \mathfrak{M} = (\tilde{\varpi}_{\mathfrak{M}}^{c}, \tilde{\varpi}_{\mathfrak{M}})$ are IVNF-weak-I-h-BCK-Is of *K*.

Proof: The proof of this theorem is analogous to that of Theorem 4.8.

ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

Theorem 4.10 Let $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVNFS on K. Then $\widetilde{\mathfrak{M}}$ is an IVNF-I-h-BCK-I \Leftrightarrow the IVFSs $\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}$, and $\widetilde{\varpi}_{\mathfrak{M}}^c$ are IVF-I-h-BCK-Is.

Theorem 4.11 Let $\widetilde{\mathfrak{M}} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}, \widetilde{\varpi}_{\mathfrak{M}})$ be an IVNFS on K. Then $\widetilde{\mathfrak{M}}$ is an IVNF-I-h-BCK-I \Leftrightarrow the \diamond $\mathfrak{M} = (\tilde{\xi}_{\mathfrak{M}}, \tilde{\xi}_{\mathfrak{M}}^c)$, \diamond $\mathfrak{M} = (\tilde{\zeta}_{\mathfrak{M}}, \tilde{\zeta}_{\mathfrak{M}}^c)$ and \triangle $\mathfrak{M} = (\widetilde{\varpi}_{\mathfrak{M}}^c, \widetilde{\varpi}_{\mathfrak{M}})$ are IVF-I-h-BCK-Is.

V. Conclusion

This research has successfully explored the application of IVNFS to h-BCK-Is within K, providing a significant contribution to the development of NFS-theory in K. The introduction of the concept of IVN-fuzzification of (strong, weak, s-weak) h-BCK-Is has permitted to establish that every IVNF-s-weak-h-BCK-I of K is an IVNF-weak-h-BCK-I, clarifying new light on the properties and characterizations of IVNF h-BCK-Is. In addition, the definition and characterization of NF-(weak)-I-h-BCK-Is of K, as well as the analysis of their relationships with other notions such as NF-(strong, weak, reflexive)-h-BCK-Is and NFPII-h-BCK-ideals of types-1, 2 ...8, have provided valuable insights and related results. The findings of this study have far-reaching implications for the development of NFS-theory and its applications in K, and are expected to inspire further research in this area. Overall, this study has demonstrated the potential of IVNFS to provide a powerful tool for dealing with uncertainty and imprecision in K, and has paved the way for future studies to explore the applications of NFS-theory in a wide range of fields.

Acknowledgments

The research of Anjaneyulu Naik Kalavath was supported by the National Fellowship and Scholarship for Higher Education of ST Students with the Agreement no.11019/07/2018-Sch(Award No-202223-NFST-AND-00689) Government of India Ministry of Tribal Affairs.

References

- [1] Atanassov, K.T. More on intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1989, 33, 37-46.
- [2] Atanassov, K.T.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986, 31, 343-349.
- [3] Biswas, R.; Rosenfeld, S. Fuzzy subgroup with interval valued membership function. Fuzzy Sets and Systems, 1994, 63, 87-90.
- [4] Borzooei, B.; Jun, Y. B. Intuitionistic fuzzy hyper BCK-ideals in hyper BCK-algebras. Iranian Journal of fuzzy Systems. 2004, 1, 65-78.
- [5] Durga Prasad, R.; Satyanarayana, B.; Ramesh, D.; Gnaneswara Reddy, M. On intuitionistic fuzzy positive implicative hyper BCK- ideals of BCK-algebras. Appls J of Pure and Appl Math. 2012, 6, 175- 196.
- [6] Jun, Y. B.; Zahedi, M.M.; Xin, X.L.; Borzooei, R.A. On hyper BCK-algebras. Italian J. of Pure and Appl. Math. 2000, 8, 127-136.
- [7] Jun, Y.B.; Xin, X.L. Implicative hyper BCK-ideals in hyper BCK-algebras. Mathematicae Japanicae. 2000, 52, 3, 435-443.
- [8] Marty, F. Surune generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm.

pp45-49.

- [9] Satyanarayana, B.; Krishna, L.; Durga Prasad, R. On Interval-Valued Intuitionistic Fuzzy Hyper BCK-Ideals of Hyper BCK-Algebras. Journal of Advances in Mathematics. 2014, 7, 2, 1219-1226.
- [10] Satyanarayana, B.; Vineela, K.V.P.; Durga Prasad, R.; Bindu Madhavi, U. Interval Valued Intuitionistic Fuzzy Positive Implicative Hyper BCK-Ideals of Hyper BCK-Algebras. Advances in Applied Science Research. 2016, 7, 6, 32-40.

OF INDUSTRICE ENGLA

Industrial Engineering Journal

ISSN: 0970-2555

Volume: 54, Issue 2, No.1, February: 2025

[11] Satyanarayana, B.; Krishna, L.; Durga Prasad, R. On intuitionistic fuzzy implicative hyper BCK-ideals of hyper BCK-algebras. Inter. J. Math. And Stat. invension. 2014, 2, 55-63.

[12] Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning. Information Sci and Control. 1975, 8, 199-249

[13] Zadeh, L. A. Fuzzy sets. Information control. 1965, 8, 338-353.

UGC CARE Group-1