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ABSTRACT

This study explores the application of interval-valued Neutrosophic fuzzy sets (IVNFS) to hyper
BCK-ideals (h-BCK-Is) within hyper BCK-algebras (h-BCK-A's). We introduce the concept of
interval-valued Neutrosophic fuzzification (IVN- fuzzification) of (strong, weak, s-weak) h-BCK-Is
and establish that every IVNF-s-weak-h-BCK-I of K is an IVNF-weak-h-BCK-1. Furthermore, we
define the notions of Neutrosophic fuzzy (weak) implicative hyper BCK-ideals of hyper BCK-
algebras and present theorems that characterize these notions according to the level subsets. We also
analyze the properties and provide characterizations of IVNF h-BCK-Is, and obtain the relationship
among these notions, Neutrosophic fuzzy (strong, weak, reflexive) hyper BCK-ideals, and
Neutrosophic fuzzy positive implicative hyper BCK-ideals of types-1, 2 ...8, yielding related results
that contribute to the development of Neutrosophic fuzzy set theory in hyper BCK-algebras.

Keywords:

Interval-Valued Neutrosophic Fuzzy-strong-hyper BCK-ideal, Interval-Valued Neutrosophic
Fuzzy-weak-hyper BCK-ideal, Interval-Valued Neutrosophic Fuzzy-s-weak-hyper-BCK-ideal,
Neutrosophic Fuzzy-(weak)-Implicative hyper BCK-ideal, Neutrosophic Fuzzy Sets, Hyper BCK-
algebras.

I. Introduction

Mathematics is built upon algebraic structures, which have far-reaching applications in various
fields, including theoretical physics, computer science, and information science. However, the
complexities of uncertainty necessitate the use of non-classical logic (a major development and
broadening of classical logic), a more comprehensive and powerful framework than classical logic.
Consequently, non-classical logic has emerged as a valuable tool in computer science. Furthermore,
non-classical logic is particularly well-suited to handle fuzzy information and uncertainty. Zadeh's
groundbreaking work in 1965 [12, 13] pioneered the concept of fuzzy subsets, facilitating the
representation of uncertainty in real-world physical systems. Building upon the notion of fuzzy sets
(FSs), numerous researchers have expanded the field by developing higher-order fuzzy sets,
including interval-valued fuzzy sets (IVFSs) and intuitionistic fuzzy sets (IFSs). The developed
frameworks facilitate the effective handling of imperfect and imprecise information. Furthermore,
Atanassov's [1, 2] IFSs and the IVIFSs, generalize ordinary fuzzy sets. In 1934, Marty [8] introduced
the hyper-structure theory, also known as multi-algebras, at the 8th Congress of Scandinavian
Mathematicians, laying the groundwork for subsequent applications. Hyper structures have a wide
range of applications in various disciplines of both pure science and applied science. The application
of hyper-structure to BCK-algebras by Jun [6] et al. has led to the development of hyper BCK-
algebras, which represents a significant generalization of BCK-algebras. Expanding on Atanassov's
work, [4] Borzooei and Jun introduced intuitionistic fuzzy (IF) versions of strong, weak, and s-weak
hyper BCK-ideals in hyper BCK-algebras, and studied their behaviour. In [7], Jun et al. introduced
the notion of implicative hyper BCK-ideals and obtain some related results. Recently, Satyanarayana
et.al., [9, 11] introduced the notion of IVIF-h-BCK-Is of hyper BCK-algebras, and also introduced
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IFI-h-BCK-Is. Now, in this work we generalized to interval-valued Neutrosophic fuzzy hyper BCK-
logic within the hyper BCK-algebras.

We introduce and develops interval-valued Neutrosophic fuzzy (IVNF) hyper BCK-ideals in K,

investigating their properties and characteristics. The notions of interval-valued Neutrosophic fuzzy

implicative hyper BCK-ideals are defined and examined, revealing relationships with related

concepts, including Neutrosophic fuzzy hyper BCK-ideals and this research defines. Additionally,

Neutrosophic fuzzy positive implicative hyper BCK-ideals of types 1-8., Furthermore, The

relationships among these notions, Neutrosophic fuzzy strong, weak, s-weak, and reflexive hyper

BCK-ideals, are also explored, providing related results.

The following abbreviations are utilized throughout this paper:

» h-BCK-A’s (or) K : hyper BCK-algebras.

» h-BCK-Is: hyper BCK-ideals.

» FS: fuzzy set.

» IVFS: interval-valued fuzzy set.

> IVIFS: interval-valued intuitionistic fuzzy-set.

» IVNFS: interval-valued Neutrosophic fuzzy set.

» IVIF-h-BCK-Is: interval-valued intuitionistic fuzzy-hyper-BCK-ideals.

» IVIF-(strong, weak, s-weak)-h-BCK-I: interval-valued intuitionistic fuzzy-(strong, weak, s-weak)-
hyper BCK-ideal.

» IVNF-h-BCK-Is: interval-valued Neutrosophic fuzzy hyper BCK-ideals.

» IVNF-(strong, weak, s-weak)-h-BCK-I: interval-valued Neutrosophic fuzzy (strong, weak, s-
weak) hyper BCK-ideal.

» IVIF(rep., I) PI-h-BCK-I: interval-valued intuitionistic fuzzy (rep., implicative) positive
implicative hyper BCK-ideal.

» IVN(rep., I)PI-h-BCK-Is: interval-valued Neutrosophic(rep., implicative) positive implicative
hyper BCK-ideal.

» FPII: Fuzzy positive implicative ideal.

> (rep., 1).PI-h-BCK-Is: (rep., implicative) positive implicative hyper BCK-ideals.

1. Preliminaries

This section provides, some basic information’s about in the present research work, which are crucial
for the subsequent development of this article.

Consider a nonempty set K endowed with a hyper operation, denoted by " = ", which maps K X K to
Q" (K), the set of all nonempty subsets of K. For any two subsets € & G of K, the hyper operation is
defined as: as € x G = Upegnegm * 1. For notational simplicity, we will use £ x g to represent f x
{g}, {f} » g or {f} * {g}.

A h-BCK-A (K, *, 0) is defined as a nonempty set K equipped with a hyper operation “*” and a
constant O, fulfilling the below conditions:

(hBCK1) (fxA) x (gx A) K ffxg,

(hBCK2) (f*g) x A = (fxA) % g,

(hBCK3) ff x K « {ff},

(hBCK4) ff « gand g < f implies f = g, forall f,g, 2 € K.

We can define a relation “«” on K by letting f <K g = 0 e f xgand forevery €, C K, €K G is
defined v m € € 3 n € G 3 m < 1. In such case, we call the relation “«” the hyper-order in K.

Observe that condition (hBCK?3) is equivalentto (P,) fx g « {f}, forall f,g € K
The following hold in any h-BCK-A K:
(P, x0 < {f},0xf={0}and 0 x 0 = {0},

UGC CARE Group-1 49



Industrial Engineering Journal
ISSN: 0970-2555

Volume : 54, Issue 2, No.1, February : 2025

(P3)) (ExGrxS=(CE*xS)*xG, CxG K Cand 0 xC = {0},

(Py) 0% 0 = {0},

(P5) 0 < f,

(Pe) f <,

(P;) C LG,

(Pg)CcG=>CKG,

(Pg) 0 * = {0}, (Pro) x0 = {f},

(P11) 0+ € = {0},

(P12) €< {0} = € = {0},

(P13) Cx G K G,

(P14) f %0,

(P15) 0 < {g} = [ K g,

(Prg) gL A=x A L fxg,

(P17) Exg={0} = (fxA)x(gxA) ={0}and [ x A4 K g * 4,

(P18) €x {0} = {0} = € = {0} for all f, g, 4 € K and for any non-empty sub-sets €, G and S of K.
Let 3 be a non-empty sub-set of h-BCK-A K and 0 € 3. Then 3J is said to be
(31) aweak-h-BCK-1of K,iffxgS Jandge I=Ff€ J,vf,g € K.
(J2) ah-BCK-lof K,iff xrg«< JandgeIJ=Ff€ J,vf,g € K.

(J3) astrong -h-BCK-1of K, iffxgNJI #Pandge J=Ffe J,vf,g€EK.
(34) Tissaid to be reflexive iff xf € J, v f € K.

(J5) S-reflexive,if xgNJI#P=>Fxg K J,vf,g€EK.

([e) closedif f K Jandg e J=fe J,vf,g€K.

Every S-reflexive subset of K is clearly reflexive.

Let K be a h-BCK-A then K is said to be a PI-h-BCK-A, if for all f,g, 2 €K, (fxg)xA =
(Fx £) x (g x #A) [5].

Let 3 be a nonempty subset of K and 0 € 3. Then I is called to be a (weak-1-h-BCK-I) weak
implicative hyper BCK-ideal of K if (fx £4) x (gx ) € S and A4 € J = f € J an implicative hyper
BCK-ideal of K, if (fx A) x (g *f) K Jand A €I =€ J, v g4 EK.

A fuzzy set(FS) in a set K is a function é: K — [0,1], and the complement of &, denoted by &€, is the
FSin K given by é¢(f) = 1 — &(fF), for all f € K. Let ¢ and @ be the FSs of K. For 8,1 € [0, 1] the
set U(¢&; 8) ={feA|&(F) =8} is called upper s-level cut of & and the set L(w; v) =
{f € A | w(f) < v}iscalled lower +-level cut of w.

Let ¢ be a fuzzy sub-set of K and é(0) = &(ff), V ff € K. Then € is said to be a
(F-weak-1-h-BCK-1) fuzzy weak implicative hyper BCK-ideal of K if
D zmin{ inf e, Em)
(F1-h-BCK-1) fuzzy implicative hyper BCK-ideal of K, if

E(E)Zmin{ sup f(m).f(ﬁ)},

me(ffxA)*(gxf)
vigAEK.
Although comparing two real numbers to determine the max and min is a simple task, extending
this comparison to intervals is more complex. Biswas [3] introduced a methodology to calculate
the max/sup and min/inf of two intervals and interval collections.
In the context of interval numbers £ on [0, 1], we mean (cf.[2]) an interval [p~, p*],
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where 0 < p~ < p* < 1. We denote by A[0, 1] the collection of all closed sub-intervals
of the interval [0, 1]. The interval [p, p] is identified with the number p € [0, 1].

For an interval numbers #; = [p;, /] € A[0,1],i € 3.

We define
. ~ . - . +
inf7; = [rl.rgsn #i,ming; |
5. — - +
sup #i = [rgleasx #i maxaq; ]
And put

() #1NPH,=min(F;, ;) = min([p1, 9] [p2, az]) = [min{p7, p3}, min{q7, a3 }]
(i) #1 VP, =max(Py, ) = max([p1, a1l [pz, a3]) = [max{p7, p3} max{q7, q3}]
(i) §1+ P2 =Ip1+pz —p1-p2, a1 +a3 —ai.a3]

(iv) p1 <P, e p1 <p;andqi <q;

V) $1 =P, © p1 =p; andq] = q3,

(vi) mA =m[p7, qf] = [mp7, mqi], where 0 <m < 1.

It is evident that, the structure (A[0, 1], <, V, A) constitutes a complete lattice with [0,0] and [1, 1]
serving as its least and greatest elements, respectively.

Assigning membership values has proven to be a challenging task for decision makers. To address
this issue, Zadeh [12] introduced s IVFSs, where membership values are represented as intervals
within [0, 1], rather than single numerical values. We denote the collection of all closed subintervals
of [0,1] as A[0, 1].

Let K be a given non-empty set. An IVES “ 9t ” over K is an object having the form Jt =
{(f, [ (), &5 (D)]): T € K}, where &5 () and & (f) are FSs of K such that &5 () < & () forall f €

K. Let &x(f) = [¢5:(6), £ (6)] then Tt = {(ff fm(ff)) f € K}, where & K = A[0,1].

Building on the foundations of IFS and IVFS, Atanassov and Gargav [2] introduced IVIFSs, a
generalized framework encompassing both IFS and IVFS concepts.

An IVIFS “ & ” over K is an object having the form & = {(If gg(ﬂ:),{ﬁg(ﬂ:)) fe K}, where &g: K —
A[0,1], and &@g: K — A[0,1], the intervals &g (F) and &« (f) represent the degree of membership and
non-membership, respectively, of element f to the set &, where &g(f) = [é5(F), &3 ()], and
@g(F) = [wg (), wd (F)] for all f € A with the condition [0,0] < Ex(F) + &g (F) < [1,1] for all
fek.

An IVNFS “ 9t ” over K is an object having the form 9 = {(If Eqn(D), Zgﬁ(If),z’frgn(If)):If € K},
where &gt K — A[0,1], {p: K — A[0,1] and &g: K — A[0,1], the intervals &g (), {gn (F) and &gy ()
represent the degree of membership, indeterminacy and non-membership, respectively, of the
element f to the set M, where &y (F) = [Eq(F), (D], In(F) = [{m(F), Gm(F)] and &g (f) =
[ (), war (F)] for all £ € A with the condition [0, 0] < &g (F) + g (F) + & (F) < [1,1] for all
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f € A. For the purpose of clarity, we introduce the notation It = (Eim,fm,zﬁim) IS represented
IVNFS, where A[0, 1] is the collection of all closed sub-intervals of the interval [0, 1].

Let € be an interval-valued fuzzy sub-set of K and £(0) > &(f), V f € K. Then £ is said to be a
(IVF-weak-1-h-BCK-1-1) interval-valued fuzzy weak implicative hyper BCK-ideal of K if

Ezmin{ inf g, i)
(IVFI-h-BCK-1-2) interval-valued fuzzy implicative hyper BCK-ideal of K, if

E(E)Zmin{ sup f(m),f(h)}, vif,g A EK.
me(fxA)*(gxf)

Definition 2.1[9]. An IVIFS & = (&g, &) in K is said to be an IVIF-h-BCK-1 of K if it fulfils
(IVIFRBCKI — 1) f < g = &&(f) = éx(g), and &g (F) < &a(g)

(IVIFRBCKI — 2) &(f) > min {mier}fgg Eq(m), ég(g)}

(IVIFhBCKI — 3) @wg(f) < max{sup ﬁg(n),z’ﬁg(g)}, forall f,g € K.

neffxg

Definition 2.2[9]. An IVIFS & = (£, &) in K is said to be an IVIF-strong-h-BCK-1 of K if it
fulfils

(IVIFShBCKI — 1) 1nf Eg(m) > &a(f) = mm{sup Ex(m), Eg(g)} and

nefxg

(IVIFShBCKI — 2) sup @wg(x) < wg(f) < max{ 1nf wg(l)) wg(g)}

x€Effxg

forall f,g € K.

Definition 2.3[9]. An IVIF & = (£, &) in K is said to be an IVIF-s- weak -h-BCK-I of K if it
fulfils

(IVIFsSWhBCKI — 1) £¢(0) = &4(g), and &(0) < &g(g), forall f, g € K.

(IVIFsWhBCKI — 2) for every f, g € K there exists m, n € f x g such that

éa() = min{gﬁ(m):gﬁ(g)} and @g(f) < max{@g(n), Bx(a)}.
Definition 2.4[9]. An IVIF & = (&g, &¢) in K is said to be an IVIF- weak-h-BCK-1 of K if it fulfils
(IVIFWhBCKI — 1) £¢(0) > éq(f) = min {migfﬁg é'g(m),éﬁ(g)} and

(IVIFWhBCKI — 2) @wg(0) < @wg(f) < max{sup ﬁg(n),ﬁg(g)},

nefxg

forall f,g € K.
Definition 2.5[9]. An IVIFS & = (&g, &) in K is said to fulfil the “inf-sup” property if for any sub-
setZof K3f,gy€Z=&(f) = %ng ¢ () and wg(gg) = sug we(g).

ge

An IVIFS & = (é'g, z’ﬁg) in K is said to fulfil the “sup-inf” property if for any sub-set Z of K there
exists ff,, go € Z such that
$a(fo) = sup g(f) and Gg(go) = inf @g(g).
fez 9€Z
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Definition 2.6. Let & = (&g, @) be an IVIFS on K and &g (0) > &x(f), &« (0) < &g(f), v [, g € K.

Then M is said to be an
(i) IVIF-weak-1-h-BCK-1 of K, if

() > min{

fam), Ea()]

wg(f) < max{ sup ﬁg(%),ﬁg(/ﬁ)}
x€(fxA)x(g*f)
(ii) IVIF-I-h-BCK-Il of K, if
() = min{ sup gﬁ(m):gﬁ(h)}:

me(fxa)x(gxf)
Fa(®), wg(h)}

e(ffx ﬁ)*(g f)

we(f) <
@a () < max {xe(ﬁ*h)*(gﬂr)

vif,g A €EK.

Definition 2.7[10]. Let M = (&, &) be an IVIF subset of K and &y (0) = &qu(F), &p(0) <
&Fm(F), v f,g € K. Then M is said to be an IVIFPI-h-BCK-I of:

(IVNFPIhBCKI,) Type 1, if forall v € f x 4,

fn@)zmin{ inf  En(m), inf ()]

Oy (v) < maX{ sup @y(x), sup ?’ffzm(t))}
xE(fxg)*A PEG*A

(IVNFPIhBCKI,) Type 2, if forall v € f x 4,
fm(v) 2 min{ sup E(m), inf, &(n)}

me(fxg)*A

Ixh nEgrh
(IVNFPIhBCKI;) Type 3, if forall v € f x 4,

g (1) < max {xeaif?gf* Wy (x), sup ﬁgm(l’))}
Ep(v) 2 min{ sup  Eg(m), sup &m(n)}

me(fxg)*xA negxA
g () < max{ e(Ilfnf W (x), 1nfﬁ (2 0))
g*
(IVNFPIhBCKI,) Type 4, if forall v € f x A,

&mw)zmn{me Em(m), sup fsm(n)}

( negxA

z%gﬁ(v)Smax{ sup @y(x), inf ﬁ'im(l))}
1€(Fxg)* A DEG*f

forall f,g, /4 € K.

Definition 2.8[10]. Let Mt = (&, &) be an IVIF subset of K. Then 9t is said to be an IVIFPI-h-
BCK-I of
0] Type 5, if there exists v € f x £ such that

Em(v) = min {me(iﬁrggf)% Em(m), inf, Em()

() < max{ sup @qp(x), sup z’frgm(t))}.
xE(f*xg)*xA pEGrA

(i)  Type 6, if there exists v € f x £ such that
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ép(v) = min{ sup ép(m), sup sfﬂn(n)}

me(fxg)*A negxf

~ < ~
() < max{ E(f}ngf " W (%), 1{]1*fh Do (0) (-

(i) Type 7, if there exists v+ € f * £ such that

(1) = min {me inf Eqn(m) , Sup, ém (n)}

wgp(vr) < max{ sup @yy(x), inf zﬁém(l))}.
xE(fxg)*xA DEG*A
(iv) Type 8, if there exists v € f x £ such that
ém(v) 2 min{ sup {y(m), inf fsm(n)}

me(fxg)*A

() < maxy inf @y (x), sup @) .
x€(fxg)* A nEgxA

forall f,g, /4 € K.

I11.  Interval-Valued Neutrosophic Fuzzy Hyper BCK-ldeals of Hyper BCK-algebras

In the subsequent discussion, the idea of interval-valued fuzzy sets to Neutrosophic fuzzy hyper
BCK-ideals in hyper BCK-algebras and related properties are explore; in this article the symbol K
will represent a h-BCK-A, unless alternative notation is stated. And also “*” becomes a binary hyper
operator Composition.

Definition 3.1 An IVNF 90t = (&, {qn, @) in K is said to be an IVNF-h-BCK-1 of K if it fulfils
(IVNFhBCKI — 1) f < g = éq(F) = Ep(9), dn(F) = dn(a) and @op (F) < & (a)
(IVNFhBCKI — 2) &g () > min{ inf ém(m),&m(g)}

meffxg

(IVNFhBCKI — 3) {5 (f) > min {fie?*fg (D, Z;m(g)}

(IVNFhBCKI — 4) &gy () < max{sup ﬁ'ﬁm(}:),ﬁm(g)}

xEffxg

forall f,g € K.

Example 3.2 Let K = {0, m, n} be a set equipped with the binary operation “*” defined by

* 0

m n
{0} | {0} {0}

0
m | {m} | {O,m} | {0,m}
n | {n} | {m,n} | {0,m,n}

Then (K, 0) is a h-BCK-A [4]. Define an IVNFS 0t = (&g, {an, &) in K by
{im(O) = [0.85,0.9], gim(m) = [0.55,0.6], @m(n) = [0.3,0.5],

Zm(0) = [0.75,0.8], {gn(m) = [0.45,0.5], o (n) = [0.2,0.3] and

& (0) = [0.08,0.09], &qp(m) = [0.5,0.65], &g (n) = [0.7,0.75].

Simple verification shows that 0t = (&, o, @ar ) is an IVNF-h-BCK-1 of K.

Definition 3.3 An IVNFS 3t = (&g, (o, @) in K is said to be an IVNF-strong-h-BCK-1 of K if it
fulfils
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(IVNFShBCKI — 1) inf p(m) = ém(D) = min{sup {m(), éﬁm(g)},

nefxg

(IVNFShBCKI — 2) fielf}lff {n(®) = {p(F) = min {Sup (D, &m(g)} and

[Effxg
(IVNFSRBCKI — 3) sup &g(x) < &qp(F) < max{ inf & (9), z”zi;m(g)},
pEl*g

x€Effxf

forall f,g € K.

Example 3.4 Let K = {0, m, n} be a set equipped with the binary operation “*” defined by:

0

m n
{0} | {0} | {0}

0
m |{m}| {0} | {m}
n|{n}| {n} {O,n}

Then (K, 0) is a h-BCK-A [4]. Define an IVNFS Dt = (&g, (o, @) in K by

€m(0) = [0.75,0.8], {y(m) = [0.4,0.5], ém(n) = [0.15,0.2],

{m(0) = [0.65,0.7], & (m) = [0.35,0.4], {z(n) = [0.14, 0.1] and

@ (0) = [0.07,0.08], Ty (m) = [0.14, 0.18], &g (n) = [0.21,0.26].

Simple verification shows that Dt = (&g, o, @an ) is an IVNF-strong-h-BCK-I of K.

Definition 3.5 An IVNF Dt = (&, {gn, @an) in K is said to be an IVNF-s-weak-h-BCK-I of K if it
fulfils

(IVNFsWhBCKI — 1) éi(0) = ém(a), {(0) = {m(a) and & (0) < @ (a),
(IVNFsWhBCKI — 2) for every f, g € K there exists m, f, x € ff x g such that

Em () = min{ép(m), én(a)},
{n() = min{{y (D), {n(g)} and

@ () < max{@n (), Tn(s)}-
forall f,g € K.

Definition 3.6 An IVNF It = (&, (o, @) in K is said to be an IVNF-weak-h-BCK-1 of K if it
fulfils

(IVNFWhBCKI — 1) £ (0) = &g () = min {mierflfgg Eqn(m), &m(g)},

(IVNFWhBCKI — 2) {453 (0) = {5 (f) = min {fie?*fg (D, ng(g)} and

(IVNFWhBCKI — 3) &g, (0) < @y () < max{sup ﬁm?(x),ﬁm;(g)},

x€Effxg

forall f,g € K.

Theorem 3.7 Every IVNF-s-weak-h-BCK-1 of K is an IVNF-weak-h-BCK-I.
Proof: Letan IVNFS 3 = (&, {on, @) in K be an IVNF-s-weak-h-BCK-I of K and
letf,g € K. Then 3 m,f,x € ff x g such that

Em(F) = min{ég(m), & ()}, Cn(D) = min{{n (D), é(g)} and &g (F) < max{&@p(2), @ (a)}
Since,
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Em(m) = inf &p(a),{m(m) = inf {u(b) and &p(m) < sup &p(c),
acfxg bef*g CEfixg

we can conclude that,
En( = min{ inf &n(@),én(@)}
(@ = min{ inf Zu(b), Gn(@)] and
Effxg

wp() < maX{sup fffm(C),ﬁam(g)}-
ceffxg

Definition 3.8 An IVNFS 9t = (&g, (o, @an) in K is said to fulfil the “inf-sup” property, if for any
sub-set Z of K 3 f,, gy, 4, € Z such that

Em(fo) = %ng Ep(D),
{m(go) = égg {m(g) and

W (#o) = sup @y (A).
hez

Constructing a counterexample of an IVNF-s-weak-h-BCK-1 of K that fails to be an IVNF-weak-h-
BCK-1 of K poses a significant challenge.

Proposition 3.9 Let 0t = (&, {o, @) be an IVNF-weak-h-BCK-1 of K. If D = (&, {gn, T ) i
fulfils the “inf-sup” property, then 3t = (fm $o ﬁim) is an IVNF-s-weak-h-BCK-I of K.

Proof: Suppose that M = (&g, {n, @) is an IVNF-weak-h-BCK-I of K and fulfils the “inf-sup”
property. Then there exists my, Ty, %, € ff x g such that

ém(mg) = inf &pu(m), (%) = inf {pu(D) and @y (xe) < sup Ty (x).
mefxg Teffxg xEffxg
This leads to the conclusion that

En(® = min{ inf En(m), (@)} = min{En(ng, fn (@),
G (®) = min{ inf Z(D), fm(@)} = min{Zn(to), fm(@)} and

() < max{s%p 5&1)2(35);5&1)?(9)} = max{@gy (%), @ ()}
xEff*g

The proof of the theorem is hereby established.
Interestingly, every IVNFS in a finite h-BCK-algebra fulfils the "inf-sup" condition.

This implies that, within the framework of h-BCK-A’s, IVNF-weak-h-BCK-Is and IVNF-s-weak-h-
BCK-Is are equivalent notions.

Proposition 3.10 Let M = (&g, {on, @) be an IVNF-strong-h-BCK-1 of K and let f, g € K.
Then

M) ém(0) = ép(g), &m(0) = {n(g) and &y (0) < @an(g)
(i) << g=én0 = En(e), im0 = {n(g) and &y (1) < Ty(g)

(iii) Em(F) = min{ép(m), En ()}, dm(F) = min{{p (D), fm(8)} and By (F) < max{@ep (x), @ (9)}
forallm,f,x € fxg.

Proof: Let M = (&, {yn, @an) be an IVNF-strong-h-BCK-1 of K and let f, g € K.
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(i) Since, 0 € £ f, for all f € K, we have

ém(0) > mier}rﬁﬁsgﬂrn(m) > (D),
{m(0) = fgfl*fg {(®) = {m(f) and

@y (0) < sup @y (x) < Gyp(lh),
x€Effxg

forall f € K.

Hence, £p(0) = ém(8), (m(0) = {i(g) and &y (0) < @yr(g), forall f,g € K.
(i) Let ff,g € K be such that f « g then 0 € ff x f and so

ém(0) < sup ép(a), Gn(0) < sup {p(b) and &y (0) = 1nf wap(c)

acffxg beffxg
By virtue of (i), we have that

%mzmﬁwwwu%@ﬁam@mmmm=%@,

acfxg

I (F) = mm{sup lm(b), fsm(g)} > min{{y(0), {m(8)} = dn(e) and

beffxg
@ (f) < max {c‘e‘%fg wm(C),wW(g)} < max{@g(0), @y (a)} = Ty (g).

Hence, if f « g = $p() = $m(9), m(F) = {m(g) and By (F) < T (g).
(iii) Let f, g € K, since

%@zmﬁwmmwgmﬁam@m@%@}

a€cffxg

¢ (f) = min {bsgfp (b)), Z}n(g)} > min{{p (1), {m(a)} and
Effxg

@ (f) < max s;fp @y (c) ,z%gm(g)} < max{@qy (%), Ty (8)},
CEfxg

forall m,t,x € fxg.

Theorem 3.11 Let M = (&g, {an, @an) is an IVNF-strong-h-BCK-1 of K and let f, g € K. Then
En( = min{ inf En(m), En@)], fn(® = min{ inf G, (@)} and

@ () < max{ sup @ep(x),@yw(a) ¢,V g€ K.
x€Effxg

Proof: For any f, g € K, we have
sup &gp(m) = sup Eqp(m),
mefxg meff*g

sup {g(f) = sup {p(F) and
tefrg tefrg

inf @op(x) < 1nf @y (%),
x€Effxg

forall f € K.
This yields the definition that we obtain as

MOE min{ sup g (m), &m(g)} > min{ inf &n(m), én0)}

meffxg

G (F) mm{sup (), Csm(g)} > min{ inf &0, éu(9)} and

Teffxg

g () < max{ mf D (%), wgm(g)} < max{sup W (%), wm(g)}

x€Effxg

forall f,g € K.
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Corollary 3.12 Every IVNF-strong-h-BCK-I is both an IVNF-s-weak-h-BCK-I (and hence an
IVNF-weak-h-BCK-1) and an IVNF-h-BCK-I.

IV. Interval-Valued Neutrosophic Fuzzy Implicative Hyper BCK-ldeals of Hyper BCK-
algebras

In the subsequent discussion, the idea of interval-valued fuzzy sets to Neutrosophic fuzzy implicative
hyper BCK-ideals in hyper BCK-algebras and related properties are explained.

Definition 4.1 Let M = (&g, {an, @) be an IVNFS on K and &g (0) = &g (D), {n(0) = Jn (D),
W (0) < @ (), v f,g € K. Then M is said to be an
()  IVNF-weak-I-h-BCK-I of K, if

Gz min{ _inf - Ey(m), En(A),
(@) = min{_inf - Zn (D, fm(#)} and
g () < max{ sup z’ﬁgm(x),z’ﬁgm(h)}
x€(Fxh)x(g*f)
(i)  IVNF-I-h-BCK-I of K, if
Em(F) = min{ sup sfwz(m)'sng(h)},

me(fxA)*(gxf)

f(ﬁ/b)( *f)

{m(£) = min{ sup zﬁm(f),ém(/b)} and

te(fxA)*(gxf)
S (F) < max{ zﬁgm(ae),z%gm(h)}

inf
x€(fxA)*(g+f)
vif,g A €EK.

Theorem 4.2 Every interval-valued Neutrosophic fuzzy implicative hyper BCK-ideal (NFI-h-BCK-
I) of K is an interval-valued Neutrosophic fuzzy weak implicative hyper BCK-ideal(NF-weak-I-h-
BCK-I).

Proof: It is assumed that I = (fﬁm, {m, wqy) is an IVNFI-h-BCK-1 of K and for f, g, # € K. Since

< su E (M),
me(ff*h)*(g*ff) fim( ) mE(ff*ﬁ)E(g*ff) fmtm)

n® <  sup () and

fE(ff*/L)*(g*ff) fE(f*/L)*(g*If)
su oo (x) = inf x
xe(ﬁ*h)g(g*lf) m(®) x€(fxA)*(g*f) T ()-
Accordingly,
MOE min{ sup  Em(m), émw} >min{ _inf - Ey(m), én(h)}
me(fxA)*(gxf) e(fx fn) (g*)

fe(fxA)*(gxf)

(0, G (R} and

te(fx h) (g )

g () < max{ (€I ,wgm(h)} < max{ sup ﬁm?(x),wmt(h)}.

inf
x€(fxA)*(g*f) 2E(Fxh) *(gf)

Hence, M = (&, {n, @an) is an IVNF-weak-1-h-BCK-1 of K.

Example 4.3 The set K = {0, m, n} is given and its operation is specified in the following table.
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0

m n
{0} | {0y | {0}

0
m | {m} | {0,m} | {0,m}
n|{n}| {m} |{0,m}

Then (K, *) is a h-BCK-A [3]. Define an IVNFS 3t = (&g, {on, @) On K by

$m(0) = 62 $m(m) = 0.5, {p(n) = Gﬁjsm(o) = 0.8, {m(m) = 0.4, {n(n) = 0.6 and
The set M = (&, G, @) forms an IVNF-weak-1-h-BCK-I of . However, it fails to be an
IVNF-1-h-BCK-1 of K, due to

—_~

ém(m) =05 <09 = ém(o)_mln{ sup ém(«r),émm)},

vr€(mx*0)*(m*m)
Gn(m) = 03 < 08 = Gu@) =min{ _ swp ). ()] and
v€E(m*0)*(m*m)
B(m) = 09> 05 = &y(0) = max{ in z’ﬁgm(/lr),z'ﬁgm(O)}.
vE(mx*0)*(m*m)

Theorem 4.4
1. Every IVNFI-h-BCK-I of K is an IVNF-strong-h-BCK-I.
2. Every IVNF-weak-1-h-BCK-I of K is an IVNF-weak-h-BCK-I.
Proof: 1. Let M = (&, Con, @) be an IVNFI-h-BCK-1 of K.
Inserting, g = 0 and 4 = g in Definition 4.1 (ii), we obtain
Sa(f) = min{ sup Emz(m),fgn(g)} = min{ sup s‘mz(m),fm(g)},

me(fxg)*(0xf) me(ffxg)

S () = min{ sup fma(f),fwe(g)} = min {f sup, (D), fsm(g)} and
€(fxg

te(ffxg)*(0+f)
0 < i 0 0 = ' o o v (2).
B () < max{_ inf &), Fu@)] = max{ il Fn,Fw@)} . ©

Initially, we prove that, for f,g € K, if f < g = &n(F) = En(a), ln(F) = Jn(g) and &g () <

@ (9)
For this, let f, g € K be such that f « g, then 0 € ff x g and thus, by (i), we obtain

En(D) > min{ sup E(rm), am@)} = min{En(®), En(@)} = En(o),

me(fxg)

{m(f) = min{ sup ¢m(D, fsm(g)} = min{{p(0), {m(8)} = &n(g) and
fe(fxg)
@y () < max {xel(rﬁl*fg) wmz(x),wmz(g)} = max{@y (0), Tx(8)} = @w(a), ... (iD).
Letf € Kand m € f = f. Since, ff x f « f then m « f for all m € f x ff and thus, by (ii), we have
&m(m) = ggm(ﬂ:) ém(m) = &m(ﬁ) and ﬁgm(m) < ﬁgm(ﬂ:) vV m € f = ff. Therefore,
1nf fim(m) > Eq (D), 1nf gsm(m) > {q(f) and sup @gp(m) < @ap(D), .... (iid).

mef*f
Taking (z) and (iii) into account, we obtain

inf Enm) = én() > min{ sup (), &m(g)}

ne(fxg)

mig}fig {m(m) = Cp(F) = min{ sup (D), (im(g)} and

1€(fxg)

sup () < B (F) < max{_inf Fu (), Fn(@),
mefxf yE(f*g)

forall f,g € K.
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Hence Mt = (&, Can, @an ) satisfies the conditions of an IVNF-strong-h-BCK-I of K.

2. Let Mt = (&, {an, @) is an IVNF-weak-1-h-BCK-1 of K.,
Inserting, ¢ = 0 and 4 = g in Definition 4.1 (i), we obtain

Ea(® = min{ _inf - En(m), En(@) = min{_inf En(m), En(@)

(@ = min{_ inf @, {n@} = min{ inf Zn(®,fm(@)] and

g () < max{ sup z’frg_n(x),z'frm(g)} = max{ sup z’ﬁgn(x),z'ﬁgﬁ(g)}.

£€(Fxg)*(0f) 2€(f*g)
Hence,

En(0) = En(® = min{_inf En(m), En(@),
e(©) = Gu(® = min{ inf (D, (@)} and
om(0) < () < max{ sup ﬁﬂ)t(x):ﬁmt(g)},

forall f,g € K. e

Thus M = (&m, Gan, &) is an IVNF-weak-1-h-BCK-1 of K.

Example 4.5 Let K = {0, m, n, T} be the set. The Cayley table for K is given by:

0 m n i

{0} | {0y | {0} | {0}

{m}| {0} | {0} | {0}

{n} | {n} | {0} | {0}

-3 (3 |o+

B 8 [ | {0nf

Then (K, *) is a h-BCK-A [3]. An IVNFS M = (&g, {gn, &) in K is defined as

{m(0) = Ep(m) = défﬂﬁ(”) = ép(D =03, f:ipj(o) = {m(m) = 0.6, {(n) = {n(®) = 0.2, and
As aresult M = (&g, o, Ban) forms an IVNF-strong-h-BCK-1 (and therefore an IVNF-weak-h-
BCK-1) However, it does not qualify as an IVNFI (or an IVNF-weak-1) hyper BCK-I of K, because

fn(m) = 03 < 08 = f(0) = min{ __inf  &n(w), Em(0),

dm(n) = 0.2 < 0.6 = {p(0) = mm{ (1), (gm(O)} and

e(n*o)*(f*n)

(n*O)*(f*n)

@Fgp(n) = 0.4 > 0.1 = &gy (0) = max{ sup 5933(0),5933(0)}.

v E(nx0)*(txn)
Therefore, Theorem 4.4 is not reversible in general.

Theorem 4.6 Assuming I = (&, {an, @) is an IVNF subset of K, we obtain the following

(1) M isan IVNF-weak-1-h-BCK-1 of K = v §,7, % € A[0,1], U(Ep; 3) # 0, U(Can; £) # O
and L(@gy; 7) # 0 are weak-1-h-BCK-Is of K.

(2)  If Misan IVNF-I1-h-BCK-1 of K, then v 5,7, % € A[0, 1], U(Em; 3) # 0, U(y; £) # @
and L(@qy; ¥) #= @ are 1-h-BCK-Is of K.

(3) If v & £ 7 € A[0,1], U(gsm; 5) # 0, ’U(Zsm. ’E) # @ and L(@qy; ¥) #+ O are S-reflexive-
I-h-BCK-Is of K, and 9 satisfies the “sup-inf” property, then 9 is an IVNF-1-h-BCK-1 of K.
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Proof: (1) Suppose that M = (&, {an, &) is an IVNF-weak-1-h-BCK-I of K.

Let §,£,% € A[0,1] and f, g, &4 € K be such that (f x £) * (g x £) € U(Ey; &) and £ € U(Ey; 3).
Then m € U(&y; &) for all m € (F* A) x (g * F) = &g(m) = &, for all m € (f A) * (g ) and
ém(h) = 3,

me(ﬁ*h)*(g*ﬁ) ¢m(m) = &and $m(A) = 3.

As assumed,
Gz min{ _inf Ey(m) = En(A)] = min(3, 5} = 5

=fe u(gﬂﬁ' 5)

e(ffx /L) (g*f)

Let f, g,/ € K be such that (f x &) x (g * £) € U(ly; £) and £ € U(lo; £).
Then € U(ly; £) for all me (FxA)* (g* ) = {u(E) = £, for all € (FxA)*(g+f) and

{m(h) = £,
fE(If*/L)*(g*{f) (Em (f) = t and (ﬂ)t(h) = t
As assumed,

(D) = min{ (D) = (gm(h)} > min{£, £} = 7.

= e U(Cys £).

fe(fx /L)*(g f)

Let f,g,# € K be such that (f x A) x (g x ) € L(&gy; ¥) and A € L(Tgy; 7).
Then x € L(@gy; v) for all me (fxA) x (g ) = @y(x) < 7, for all x € (fxA) x (g *f) and
Fn(h) < 7,

sup @y (x) < ¥ and @y (L) < 7.
x€(FxA)*(g*f)
As assumed,

() < max{ sup ogp(x) = zﬁm(h)} < max{v, v} = 7.
x€(fxA)*(g*f)
= € L(By; 7).

Hence, U(&m; &), U({s ) and L(&y; F) are weak-1-h-BCK-Is of K, ¥ 3, £, % € A[0, 1].
In the converse direction, assume that, let v 3, £, % € A[0, 1], U(éy; 8) = 0, U(; £) # @ and
L(&gy; 7) + @ are weak-1-h-BCK-Is of K and f, g, 4 € K and put

En(m), En (M)}

g = min{
mE(ff*h)*(g*If)
Then

mE(]f*lL)*(g*ﬁ) gm(m) = & and () = &.

So we have &g (m) = & forall m € (f x A) * (g * f) and &g (A) = 8.

Therefore, m € U(&y; &) forall m € (F x A) » (g + ) and A € U(éqy; 3).

e, (FxA)x (g* ) € U(Ey; 8), £ € U(&y; 8) and so by hypothesis,
FeU(m §) =min{ _inf En(m), En(A)}

E(ff*h)*(g )
Thus

En(m), En (M)}

En(m) > & = min{
$m(m) e(ﬁ*h)*(g*f)

Letff, g,/ € K and put
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SONSON

£ = min {
fE(ff*h)*(g*If)
Then

fE(If*lL)*(g*If) ¢(®) = £ and {n(4) = 7.

So we have (g (F) > £ for all £ € (f x £) » (g * ) and {g(A) = £. Therefore, £ € U({y; £) for all
fe(fxha)*(gxf) and £ € U(ly; 7). ie., (F*A) x(g*F) € Uy £), £ € U(Gp; £) and so
by hypothesis,

f€U(Gms £) =min{__inf Cu®, (A}

fe(fx h) (g 1))
Thus

Gn(® = £ =min{__inf (A}

fe(f n)*( «f)
Let ff,g,4 € K and put

v = max{ sup @ (x) ,z’ﬁim(h)}.
x€(FxA)*(g*f)

Then
sup @y (x) < ¥ and @y (L) < 7.
x€(FxA)*(g*f)
So we have @y (x) < 7 forall x € (f x 2) x (g x ) and @y (A) < 7.
Therefore, x € L(@gy; ¥) forall x € (f x 4) x (g x ) and A4 € L(&@qgy; 7).
i.e., (fxA)x (g ) S L(@y; 7)), A € L(@qy; ) and so by hypothesis,

ff € L(&gy; 7) = max{ sup ﬁgﬁ(%),ﬁgﬁ(ﬁ)}.
x€(FxA)*(g*f)

Thus
() < T = max{ sup z%sm(ae),z%gm(h)}.

. _ x€(FxA)*(gxf)
Hence, M = (&, {m, @) is an IVNF-weak-1-h-BCK-1 of K.

(2) Given that M = (&g, {an, @) is an IVNF-1-h-BCK-1 of K.

By Theorem 4.4(1), M = (&, {an, @) is an IVNF-strong-h-BCK-I of K and so it is an IVNF-h-
BCK-I of M = (&, o, @m) is an IVNF-h-BCK-1 of K by Theorem 3.17[4], for all &,%,& €
A[0,1],

U(&y; 8) = 0, U(Ls £) # 0 and L(Fqy; ) # @ are h-BCK-Is of K. By Theorem 4.6(ii) [3], it is
enough to show that, let f,g, 4 € K and if £ x (g * ) < U(éqy; 8), £ % (g* 1) < U(fqy; £) and £ %
(g* ) K L(Gqy; ), then

f € U(Ems 8) N U(C; £) N L(Bqp; ). For this, let £+ (g * F) < U(Ey; ) for £,g € K. Then for
all

m € f x (g » ) there exists n € U(&y; §) such that m « n, we have &y (m) > Ep(n) = 8=

Ep(m) > sforallme fx(gxf) =

sup &p(m) = 3.
mefx(gxf)

Hence, as assumed,

ém(£) = min{ sup sgsm(m),sgsm(o)} = sup ép(m) =3

_ me(fx0)x(g*f) meffx(gxf)
ie., fe U 3).
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Let f x (g * ) < U({on; £) for £,g € K. Then for all £ € £ % (g » ) there exists [ € U({y; £) such
that £ « 1, we have (g (f) = {n(D) = £ = {u(®) = £ forall € fx (g + ) =

sup () = 7.
fefx(gxf)

Hence, as assumed,
en(6) > min{ sup @(fw(m} = sup n® i
te(fx0)x(g*f) tefx(g*f)
e, feU(ly £)

Let fx (g*f) < L(&gy; ¥) for f,g € K. Then for all x € f x (g x f) there exists y € L(@y; 7)
such that x < 1y, we have @y (x) < Typ(y) < T = Tp(x) < v forallxefx (g ) =
: ~ <
xeﬁl*rg*ﬁ) Bp() < 7.
Hence, as assumed,
S (f) < max{

ie. f € L(By; 7).
Therefore, U(&m; &), U({m; £) and L(&y; #) qualify as I-h-BCK-Is of K, holding
v & £, 7 € A0, 1].

P TP
nt w&m(%):wsm(o)} R ORS:

(3) Assume that, ¥ &, £, 7 € A[0, 1], 'u(fmz; 3), ’U(fgn; £) and L(&y; ) possess the property of
S-reflexive-1-h-BCK-Is of K.
Letf, g,/ € K. Set

&= min{ sup  Ep(m) ,fm(h)} = sup &p(m) = Sand Ep(h) = 8,

me(fxf)*(g+f) me (fxA)*(gxf)
The “sup” property of &g implies the existence of m, € (f x 4) * (g * f) such that
Sm(mg) = sup  ép(m) = 3
me(fxA)*(gf)

Therefore, m, € U(&p; &), which by (hBCK2), implies
((f * (g M) * h) NU(Ep; 8) = ((E*A) * (g* ) NU(Ew; &) # @, then there exists m €
(f * (g * £)) such that (m * £) N U(&y; &) # @. According to Theorem 4.6(i)[3], U(ém; )

qualifies as a h-BCK-1 of K.
The S-reflexivity of u(&m; 5) allows us to invoke Theorem 2.3(i)[3] , which establishes that

U(éqy; 8) is a reflexive-h-BCK-1 of K. Hence, U(&y; 8) is a strong-h-BCK-1 of K.
Since, & () > 3 implies A € U(&y; ), (m*A) NU(Ey; &) # @ and A € U(Ey; 3), then f €
U(Ep; ) and so (Fx (g*M) NU(Em; &) # @. The reflexivity of U(&y; &) and Theorem
3.5(ii)[3], together imply £ x (g * ) < U(&y; 8). Since U(&y; 8) is an 1-h-BCK-1 of K we deduce
f € U(&y; 3), and hence,

Ep(m) = 8 = min{ sup sgmt(m),écim(ﬁ)}-

mE(fFx4)x(g+f)
With, U({y; £) being an S-reflexive-1-h-BCK-Is of K. Let f, g, 4 € K. Put

£ = min{ sup (D), fgm(h)} = sup {p(® =7 and {p(A) > £,

te(fxA)x(gxf) te(fxA)x(gxf)
The “sup” property of (s, implies the existence of ¥, € (f x 4) * (g » f) such that
¢m(Eo) = sup (=7
te(fxA)*(gx1)
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Therefore £, € U({y; £), which by (hRBCK2), implies

((Fx G@x D) *£) UG £) = (ExA) % (% ©) N U(Gw; £) = B, then there exists Te
(fx (g* 1)) such that (f*A)NU(Cy; £) #@. According to Theorem 4.6()[3], U({w; %)
qualifies as a h-BCK-1 of K.

The S-reflexivity of U({y; £) allows us to invoke Theorem 2.3(i)[3] , which establishes that
U(L; %) is a reflexive-h-BCK-1 of K. Hence, U({y; £) is a strong-h-BCK-1 of K.

Since, {m(#) = 7 implies & € U(Cq; 7), (E*A) N U(Cm; £) # @ and 4 € U({y; £), then f €
U(Gn; £) and so (f*(g*B) N U(Gy; £) = @. The reflexivity of U(ly; £) and Theorem
3.5(ii)[3], together imply f* (g * ) < U(ly; £). Since U({qy; £) is an I-h-BCK-1 of K we deduce
f € U(lm; £), and hence

m® =% = min{ sup zﬂn(f),fwz(h)}-

te(fxA)*(gxf)

With, L(@qy; ) being an S-reflexive-1-h-BCK-Is of K. Let ff, g, € K. Put

xe(ﬁ*bfgg(g*ﬁ) ZD'gm(f) ’ wim(h)} = xe(ﬁ*bgg(g*ff) ZD'gm(X) <% and ZD'gm(/Z«) =7
The “inf” property of @ implies the existence of x, € (f x 4) * (g » f) such that
W (x0) = xe(ﬁ*},g{ ) wp(x) < T
Therefore x, € L(@qy; ), which by (hBCK2), implies
((ff x(g* ) * h) N L(@g; ) = (E*A) * (g% D) N L(By; F) # 0, then there exists x e

(fFx(g* 1)) such that (x* A) N L(&y; #) = @. According to Theorem 4.6(i)[3], L(&y; F)
qualifies as a h-BCK-I of K. The S-reflexivity of L(dqgy; ) allows us to invoke Theorem 2.3(i)[3] ,
which establishes that L(@qy; 7) is a reflexive-h-BCK-I of K. Hence, L(@gy; 7) is

a strong-h-BCK-I1 of K.

Since, wy(A) < v implies A € L(Gay; 7), (x*A) N L(Dgy; ¥F) # O and A € L(@gy; 77), then
f € L(&y; #) and so (f* (g ) N L(&y; F) # @. The reflexivity of L(&y; #) and Theorem
3.5(ii)[3], together imply ffx (g* ) < L(&@qy; 7). Since L(@gy; #) is an I-h-BCK-I of K we
deduce ff € L(d@q9y; ), and hence

v = max{

T (x) < F = inf &), Fn(A)}.
W (%) < ¥ = max {xe(ﬁ*%*(g*ﬂ w;m(ae),w;m(h)}

Therefore, M = (&g, {an, @) qualifies as an IVNF-1-h-BCK-1 of K.

Theorem 4.7 Let M = (&, {an, &) be an IVNFS on K.

(1) If M satisfies the “sup-inf” property and for all v &, £, # € A[0,1], U(Em; 8), U(ds £) and
L(Ggy; ¥) are reflexive and I is a NF-1-h-BCK-1 of K, then 3t is a NFPI-h-BCK-I of type 3.

(2) Let K be a PI-h-BCK-algebra. If D = (&, Con, @an) is an IVNF-weak-1-h-BCK-I of K, then 9t is
an IVNFPI-h-BCK-I of type 1.

Theorem 4.8 Let 0t = (&g, {yn, @) be an IVNFS on K. Then 3 is an IVNF-weak-1-h-BCK- <
the IVFSs &g, {ay, and &5, are F-weak-1-h-BCK-Is of K.

Theorem 4.9 Let Mt = (&, {an, @an) be an IVNFS on K. Then 3 is an IVNF-weak-1-h-BCK-l =
the IVFSs o MM = (&, €5), 0 I = (G, Cs) and A M = (&, @) are IVNF-weak-1-h-
BCK-Isof K.

Proof: The proof of this theorem is analogous to that of Theorem 4.8.
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Theorem 4.10 Let M = (&, {an, @an) be an IVNFS on K. Then 9 is an IVNF-I-h-BCK-1 = the
IVFSs &, {an, and &$; are IVF-1-h-BCK-s.

Theorem 4.11 Let M = (&g, {an, &) be an IVNFS on K. Then 3 is an IVNF-I1-h-BCK-I < the o
M= (&, &5), o M = (G, {G) and A M = (&, , oy are IVF-1-h-BCK-Is.

V. Conclusion

This research has successfully explored the application of IVNFS to h-BCK-Is within K, providing a
significant contribution to the development of NFS-theory in K. The introduction of the concept of
IVN-fuzzification of (strong, weak, s-weak) h-BCK-Is has permitted to establish that every IVNF-s-
weak-h-BCK-1 of K is an IVNF-weak-h-BCK-I, clarifying new light on the properties and
characterizations of IVNF h-BCK-Is. In addition, the definition and characterization of NF-(weak)-1-
h-BCK-Is of K, as well as the analysis of their relationships with other notions such as NF-(strong,
weak, reflexive)-h-BCK-Is and NFPII-h-BCK-ideals of types-1, 2 ...8, have provided valuable
insights and related results. The findings of this study have far-reaching implications for the
development of NFS-theory and its applications in K, and are expected to inspire further research in
this area. Overall, this study has demonstrated the potential of IVNFS to provide a powerful tool for
dealing with uncertainty and imprecision in K, and has paved the way for future studies to explore
the applications of NFS-theory in a wide range of fields.
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