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Abstract:  

Air pollution poses a significant challenge to public health, environmental sustainability, and urban 

resilience. Traditional air quality monitoring systems, while accurate, are constrained by high costs, 

limited spatial resolution, and delayed response times. This study proposes a decentralized Internet 

of Things (IoT) framework designed to overcome these limitations by integrating edge computing, 

lightweight predictive analytics, and energy-efficient communication protocols. The architecture 

includes a hybrid sensor deployment combining stationary and mobile nodes, enhancing spatial and 

temporal resolution. A Gated Recurrent Unit (GRU)-based predictive model, optimized for edge 

deployment, achieves high forecasting accuracy with minimal computational overhead. Experimental 

validation demonstrates the framework's ability to significantly reduce latency, improve energy 

efficiency, and maintain scalability in dense urban environments. The integration of LoRa for 

communication and blockchain for secure data management further enhances system reliability. This 

novel approach enables real-time, actionable insights for policymakers and urban planners, 

promoting sustainable urban development and effective pollution mitigation. Future work will 

explore adaptive AI models and multi-parameter environmental monitoring for extended applications 

in smart city ecosystems. 
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1. Introduction 

Urban air pollution is a pervasive and escalating issue that poses significant challenges to public 

health, environmental sustainability, and urban planning. The rapid pace of urbanization, coupled 

with industrial growth and vehicular emissions, has led to a marked deterioration in air quality across 

the globe. According to the World Health Organization (WHO), exposure to air pollution contributes 

to over 4 million premature deaths annually, primarily caused by respiratory and cardiovascular 

diseases. Urban centres are disproportionately affected due to the concentration of anthropogenic 

activities, highlighting the need for robust monitoring systems to mitigate the impact of this 

environmental crisis [1][2]. 

Traditional air quality monitoring systems rely heavily on fixed monitoring stations equipped with 

sophisticated devices such as Beta Attenuation Monitors (BAM) and Tapered Element Oscillating 

Microbalances (TEOM). These systems, while providing precise data, are often expensive, require 

extensive maintenance, and lack the spatial resolution necessary to capture localized pollution 

dynamics in urban settings. Moreover, these stationary networks are limited in their capacity to 

provide real-time data, a critical component for timely interventions in rapidly changing pollution 

scenarios [3]. 

The advent of the Internet of Things (IoT) has introduced new possibilities for real-time 

environmental monitoring. IoT-based air quality monitoring frameworks leverage interconnected 

networks of low-cost sensors capable of capturing high-resolution data on pollutants such as PM2.5, 

NOx, and volatile organic compounds (VOCs). These systems integrate advanced communication 

protocols, such as LoRa and ZigBee, with cloud-based platforms for data aggregation and analytics 
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[4][5]. While IoT has successfully addressed some limitations of traditional systems, challenges such 

as data security, scalability, and predictive accuracy persist. These limitations necessitate further 

innovation to enhance the efficiency and adaptability of IoT frameworks in diverse urban 

environments [6]. 

Predictive analytics, particularly through machine learning (ML) models, has emerged as a 

transformative approach to air quality management. Models such as Long Short-Term Memory 

(LSTM) networks and Nonlinear Autoregressive models with Exogenous Input (NARX) have shown 

promise in forecasting air pollution trends by integrating historical pollutant levels with 

meteorological variables [7]. However, these models are often resource-intensive, requiring 

substantial computational power and high-quality datasets, which limits their applicability in real-

world urban scenarios. Furthermore, the centralized nature of most IoT frameworks leads to latency 

issues and heightened vulnerability to cyberattacks, underscoring the need for decentralized and 

efficient solutions [8][9]. 

This paper proposes a novel decentralized IoT-based framework for air quality monitoring that 

addresses the limitations of existing systems. By integrating edge computing for localized data 

processing, blockchain for secure and transparent data transactions, and lightweight machine 

learning models for resource-efficient predictive analytics, the framework aims to enhance the 

scalability, accuracy, and security of urban air quality monitoring systems. The proposed approach 

emphasizes real-time, high-resolution monitoring and dynamic adaptation to localized environmental 

conditions, providing actionable insights for urban planners and policymakers. 

The remainder of this paper is structured as follows: Section 2 reviews the limitations of traditional 

and contemporary air quality monitoring frameworks. Section 3 introduces the proposed 

decentralized IoT architecture, detailing its design and implementation. Section 4 presents the 

validation of the framework through experimental results and real-world case studies. Finally, 

Section 5 concludes the paper by summarizing the contributions and outlining future research 

directions. 

 

2. Literature Review 

The integration of advanced technologies in air quality monitoring has significantly evolved over the 

last decade, with researchers exploring diverse frameworks to overcome the limitations of traditional 

systems. This section reviews the contributions of previous studies to the domain of air quality 

monitoring, highlights their limitations, and identifies research gaps that inform the need for a novel 

approach. 

2.1 Traditional Monitoring Systems 

Traditional air quality monitoring systems rely heavily on fixed monitoring stations equipped with 

high-precision instruments, such as Beta Attenuation Monitors (BAM) and Tapered Element 

Oscillating Microbalances (TEOM). These systems have been praised for their accuracy in detecting 

pollutants like particulate matter (PM2.5 and PM10) and nitrogen oxides (NOx). However, their 

sparse spatial distribution and high operational costs restrict their ability to capture fine-grained 

spatial and temporal variations in urban areas [3]. Chelani (2018) demonstrated that while these 

systems provide reliable data, their limited scalability and inability to respond dynamically to 

changes in pollution levels make them insufficient for modern urban environments [3]. 

2.2 IoT-Enabled Air Quality Monitoring 

IoT-based air quality monitoring frameworks have emerged as a transformative alternative, enabling 

real-time data acquisition and enhanced spatial resolution. Gubbi et al. (2013) proposed a generic IoT 

architecture integrating sensor networks with cloud computing platforms for environmental 

monitoring [4]. Similarly, Kumar and Hancke (2014) explored wireless sensor networks (WSNs) for 

air quality monitoring, demonstrating their potential to provide localized and high-resolution data 

[5]. However, both studies emphasized the challenges of data security, scalability, and the energy 
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efficiency of sensor nodes, which limit the practical deployment of such systems in dense urban 

settings. 

Mishra and Singh (2020) extended the application of IoT to air quality monitoring by incorporating 

predictive analytics to anticipate pollution trends [6]. While their framework demonstrated the utility 

of machine learning models in short-term forecasts, it relied heavily on centralized cloud-based 

processing, resulting in latency and bandwidth issues. The study also highlighted the need for 

decentralized architectures to overcome these bottlenecks. 

2.3 Predictive Analytics in Air Quality Monitoring 

Machine learning models, particularly those focusing on time-series forecasting, have been widely 

adopted to predict air pollution levels. Hochreiter and Schmidhuber (1997) introduced Long Short-

Term Memory (LSTM) networks, which have since been employed in various air quality forecasting 

applications due to their ability to capture long-term dependencies in sequential data [7]. For 

instance, Twahirwa and Biswas (2021) demonstrated the use of LSTM networks in an edge-

computing-enabled IoT framework, achieving high predictive accuracy [9]. Despite their advantages, 

these models are computationally expensive, limiting their feasibility in resource-constrained 

environments. 

Other approaches, such as hybrid models combining statistical and machine learning techniques, 

have also been explored. For example, Jaiswal et al. (2021) integrated regression models with neural 

networks to enhance the accuracy of pollutant forecasting. However, the reliance on high-quality 

training datasets and computational resources was identified as a significant barrier to the widespread 

adoption of these models in real-world scenarios [10]. 

2.4 Decentralized and Edge-Based Frameworks 

Recent research has begun to explore decentralized and edge-based IoT frameworks to address the 

limitations of centralized systems. Edge computing enables localized data processing at sensor nodes 

or gateways, reducing latency and bandwidth usage. Khan and Tahir (2021) highlighted the 

advantages of edge computing in decentralized IoT architectures, particularly in enhancing system 

scalability and reducing reliance on centralized servers [8]. However, their study also noted 

challenges in synchronizing data across distributed nodes and maintaining accuracy in heterogeneous 

sensor networks. 

Similarly, Santos et al. (2021) proposed a blockchain-enabled IoT framework for air quality 

monitoring, emphasizing data security and transparency [11]. While blockchain enhances the 

reliability and trustworthiness of the data, its integration with IoT systems increases computational 

overhead, making it unsuitable for energy-constrained sensor nodes. 

2.5 Challenges and Research Gaps 

Despite these advancements, several critical research gaps persist. First, while IoT-based frameworks 

have improved real-time monitoring capabilities, their reliance on centralized architectures limits 

scalability, increases latency, and heightens vulnerability to cyberattacks [6][9]. Decentralized and 

edge-computing-based solutions, although promising, require further refinement to ensure seamless 

integration, data synchronization, and energy efficiency [8][11]. 

Second, predictive analytics models, such as LSTMs, have demonstrated high accuracy in 

forecasting pollution trends, but their computational demands make them impractical for edge-based 

deployments. There is a need for lightweight, resource-efficient models capable of operating in 

decentralized environments without compromising predictive accuracy [7][10]. 

Third, while blockchain and other security-enhancing technologies address data integrity concerns, 

their high computational and energy requirements pose significant challenges for large-scale IoT 

implementations. More efficient security mechanisms tailored to the constraints of IoT architectures 

are required to ensure data protection without compromising system performance [11]. 

Lastly, existing frameworks often lack user accessibility and engagement. Most IoT systems are 

designed for technical users, with limited focus on creating intuitive interfaces for policymakers, 
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urban planners, and the general public. Addressing this gap could enhance public participation in 

pollution mitigation efforts and drive data-driven decision-making. 

By identifying these gaps, this paper aims to propose a novel decentralized IoT framework that 

leverages edge computing, lightweight predictive analytics, and energy-efficient designs to overcome 

the limitations of existing systems. This approach addresses scalability, real-time decision-making, 

and user engagement while ensuring robust data security and privacy. 

 

3. Proposed Decentralized IoT Framework 

The proposed framework leverages a decentralized IoT architecture to address the limitations of 

traditional air quality monitoring systems. By integrating multi-layer sensor networks, edge 

computing, and predictive analytics, this framework ensures high-resolution, real-time monitoring 

while enhancing system scalability, energy efficiency, and data security. The system is composed of 

three primary layers: the Perception Layer, the Network Layer, and the Application Layer, as 

illustrated in Figure 1. 

 
Figure 1: Framework Architecture 

The figure 1 depicts the layered structure of the proposed framework, highlighting the data flow from 

sensors to cloud applications. Each layer integrates specialized functionalities to ensure seamless 

operation and real-time insights. 

 

3.1 System Architecture 

The architecture comprises the following components: 

1. Perception Layer: 

o This layer includes sensors and microcontrollers for real-time pollutant detection. It 

measures key environmental parameters such as PM2.5, CO2, temperature, and 

humidity. 

o Sensor nodes send preprocessed data to the network gateway for transmission. The 

data flow process in this layer is designed to minimize redundancy and optimize 

power consumption. 

2. Network Layer: 

o The network layer facilitates communication between the perception and application 

layers. It uses protocols like LoRa, WiFi, and LTE for efficient data transfer. 

o LoRa ensures low-power, long-range communication, making it suitable for large-

scale urban deployments. WiFi and LTE are employed for high-bandwidth, low-

latency applications. 

3. Application Layer: 
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o This layer processes data and provides actionable insights to users. It leverages 

machine learning (ML) and artificial intelligence (AI) algorithms for predictive 

modeling and anomaly detection. 

o Users interact with the system via mobile devices or web platforms, ensuring 

accessibility for policymakers and urban planners. 

3.2 Data Flow and Processing 

The data flow across the layers is as follows: 

1. Sensor nodes collect data from their surrounding environment. Key pollutants, including 

PM2.5 and CO2, are measured. 

2. Preprocessing at the microcontroller level reduces noise and flags anomalies using statistical 

methods such as z-score normalization. 

3. The gateway aggregates sensor data and transmits it using LoRa or LTE, depending on 

bandwidth requirements. 

4. Data is analyzed and visualized on the cloud application, providing real-time pollution trends 

and forecasts. 

3.3 Features and Innovations 

1. Dynamic Data Collection: 

o The framework supports both static sensors for continuous monitoring and mobile 

sensors for dynamic spatial coverage. 

o Mobile sensors, deployed on vehicles or drones, enhance the spatial resolution of 

pollution data in high-density urban zones. 

2. Edge Computing Integration: 

o Localized data processing at gateways reduces latency and minimizes bandwidth 

usage. Critical operations, such as noise reduction and anomaly detection, are handled 

at the edge. 

3. Lightweight Predictive Analytics: 

o The system employs resource-efficient ML models to predict air quality trends. 

Algorithms such as Gated Recurrent Units (GRUs) are optimized for deployment on 

edge devices. 

4. Energy Efficiency: 

o LoRa communication reduces the energy consumption of sensors. Additionally, solar-

powered nodes and event-triggered sensing extend the lifespan of sensor networks. 

5. Blockchain-Based Data Security: 

o The inclusion of blockchain ensures secure, tamper-proof data logging. This enhances 

trust and transparency in air quality monitoring. 

3.4 Algorithm for Framework Operation 

Algorithm 1: Decentralized IoT-Based Air Quality Monitoring 

Input: Sensor nodes S={S1,S2,…,Sn}S={S1,S2,…,Sn}, Communication protocols PP, Edge 

node EE. 

Output: Real-time pollution data, alerts, and predictions. 

1. Initialization: 

o Deploy sensors SiSi and calibrate them for pollutants and environmental variables. 

o Configure gateways and edge nodes with LoRa and LTE modules. 

2. Data Collection: 

o Eachsensornodecollectsdata:Di,t={PPM2.5,PCO2,T,H},∀i,t.Di,t={PPM2.5,PCO2

,T,H},∀i,t. 

3. Local Processing at Edge Nodes: 

o Preprocess data to remove noise using filters. 

o Detect anomalies based on predefined thresholds. 

4. Data Transmission: 
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o Transmit aggregated data to the cloud using:PLoRa for low-power, long-

range communication.PLoRa for low-power, long-range communication. 

5. Predictive Modeling: 

o Train lightweight models at the edge for short-term forecasts. 

o Update predictive insights on the application layer. 

6. Decision Support: 

o Trigger alerts if pollutant levels exceed safety thresholds. 

o Provide visualizations and recommendations to users. 

3.5 Performance Metrics 

Metric Proposed Framework Traditional Systems 

Latency <100 ms High (>500 ms) 

Energy Consumption Low (adaptive protocols) High 

Data Security Blockchain-enabled Vulnerable to tampering 

Predictive Accuracy >90% 75%−85% 

 

4. Experimental Validation and Results 

This section presents the results from the experimental validation of the proposed decentralized IoT 

framework. Multiple performance metrics, including latency, predictive accuracy, energy efficiency, 

and scalability, are analyzed to highlight the system's advantages. 

4.1 Experimental Setup 

The experimental setup included a hybrid deployment of sensor nodes across an urban testbed. Key 

pollutants, including PM2.5 and CO2, were monitored along with environmental variables like 

temperature and humidity. The setup consisted of: 

• Sensors: Low-cost IoT sensors. 

• Edge Nodes: Raspberry Pi for local processing. 

• Communication Protocols: LoRaWAN, WiFi, and LTE. 

• Cloud Integration: AWS IoT Core for visualization and storage. 

 

4.2 Results and Analysis 

4.2.1 Latency Comparison 

The proposed decentralized framework exhibited significantly lower latency than centralized 

systems, as shown in the table below. 

System Average Latency (ms) Maximum Latency (ms) 

Proposed Decentralized Framework 75 120 

Centralized System 310 520 

4.2.2 Energy Efficiency 

The energy consumption of sensor nodes using LoRa and WiFi protocols is compared in Figure 1. 

LoRa demonstrated significantly lower energy usage. 
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Figure 2: Energy Consumption Of Sensor Nodes (24 Hours) 

4.2.3 Predictive Accuracy 

The accuracy of the lightweight GRU model is compared with LSTM and ARIMA models in Figure 

5. GRU achieved the highest accuracy with minimal computational overhead. 

 
Figure 5: Accuracy of Predictive Models 

4.2.4 Latency vs Data Size 

As data size increased, latency grew linearly, as shown in Figure 4. This result underscores the 

importance of localized data preprocessing in reducing transmission delays. 

 
Figure 4: Latency vs Data Size 

4.2.5 Battery Life Comparison 

The battery life of sensor nodes varied significantly across communication protocols, as illustrated 

in Figure 6. LoRa-enabled nodes demonstrated the longest operational life. 

 
Figure 6: Battery Life of Sensor Nodes 

4.2.6 Spatial Coverage and Resolution 

The hybrid deployment enhanced spatial coverage by integrating stationary and mobile sensors. The 

pollution heatmap in Figure 2 illustrates fine-grained spatial variations in PM2.5 levels. 
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Figure 3: Urban Pollution Heatmap (PM2.5) 

4.2.7 System Scalability 

Latency and throughput were evaluated as the number of nodes increased. The results, shown 

in Figure 3, indicate that the proposed framework maintains acceptable performance under high 

node density. 

 
Figure 3: Scalability Evaluation 

4.3 Discussion 

The experimental results validate the proposed framework's effectiveness in addressing critical 

limitations of existing systems. Key findings include: 

• Enhanced energy efficiency with LoRa. 

• Superior predictive accuracy with GRU models. 

• Robust scalability and reduced latency under increased node density. 

These results establish the decentralized IoT framework as a viable solution for real-time, large-scale 

air quality monitoring. 

 

5. Conclusion 

The decentralized IoT framework proposed in this study addresses the critical limitations of 

traditional and centralized air quality monitoring systems. By leveraging edge computing, 

lightweight predictive analytics, and energy-efficient communication protocols, the framework 

provides an innovative solution for real-time, high-resolution monitoring of urban air quality. 

Experimental validation demonstrated the system's ability to significantly reduce latency, improve 

predictive accuracy, and enhance energy efficiency, making it well-suited for large-scale deployment 

in resource-constrained environments. 

Key contributions of this research include the integration of GRU-based predictive models optimized 

for edge devices, which achieved over 90% accuracy in forecasting pollutant levels while 

maintaining minimal computational overhead. Additionally, the hybrid deployment of stationary and 
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mobile sensors improved spatial resolution, enabling the identification of localized pollution 

hotspots. The use of LoRa for communication ensured prolonged sensor node operation, while 

blockchain integration provided secure and tamper-proof data logging. 

Despite its advantages, the framework has certain limitations that warrant further investigation. 

Synchronization across distributed edge nodes in highly dense networks remains a challenge, as does 

maintaining consistent accuracy in heterogeneous environmental conditions. Future research can 

explore the integration of adaptive AI models capable of dynamically adjusting to changing pollutant 

patterns and environmental factors. Additionally, expanding the framework to include multi-

parameter environmental monitoring, such as noise pollution and urban heat islands, would further 

enhance its utility for smart city applications. 

In conclusion, this research presents a novel and scalable approach to air quality monitoring, 

contributing to the advancement of IoT-based environmental monitoring systems. The proposed 

framework holds significant potential to support policymakers, urban planners, and citizens in 

mitigating the adverse impacts of air pollution and fostering sustainable urban development. 
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