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Abstract 

We consider a version of the double integral calculus of variations on time scales, which includes as 

special cases the classical two-variable calculus of variations and the discrete two-variable calculus of 

variations. Necessary and sufficient conditions for a local extremism are established, among them an 

analogue of the Euler–Lagrange equation. 

 

1. Introduction 

Variational problems are similar to the important problem in the usual differential calculus in which 

we determine maximum or minimum values of a function y   f (x) for values x in a certain interval of 

the reals R or in a region of Rn . The main difference is that in variational problems we deal with so-

called functionals instead of usual functions. Recall that any mapping J      X         R of an arbitrary set 

X (in particular, X may be a set of functions) into the real numbers R is called a functional. Various 

entities in geometry, physics, mechanics, technology, and nature have a tendency to minimize (or 

maximize) some quantities. Those quantities can mathematically be described as functionals. 

Variational calculus gives methods for finding the minimal or maximal values of functionals, and 

problems that consist in finding minima or maxima of a functional are called variational problems. 

Several important variational problems such as the brachistochrone problem, the problem of geodesics, 

and the isoperimetric problem were first posed at the end of the 17th century (beginning in 1696). 

General methods of solving variational problems were created by 

L. Euler and J. Lagrange in the 18th century. Later on, variational calculus became an independent 

mathematical discipline with its own research methods. Since the concept of functional (that is a 

special case of the concept of operator) is one of the main subjects investigated in functional analysis, 

calculus of variations is considered at present as a branch of functional analysis. 

Continuous single and multivariable calculus of variations possesses an extensive literature from 

which we indicate here only [1,2]. Discrete variable calculus of variations has started to be considered 

systematically only during the last two decades. An account on the single discrete variable case can be 

found in [3–6] whereas the two discrete variable case is concerned in [7]. In order to unify continuous 

and discrete analysis and to extend those areas to “in between” cases, Aulbach and Hilger [8,9] 

generalized the definition of a derivative and of an integral to functions whose domains of definition 

are time scales. A time scale is a nonempty closed subset of the reals. Time scales calculus allows to 

unify and extend many problems from the theories of differential and of difference equations (see 

[10,11]). Single time scale variable calculus of variations (that contains both continuous and discrete 

calculus of variations as special cases) was initiated in [12] and further developed in [13,14]. At present 

this topic is in progress. Recently, in [15] a two-variable calculus of variations on time scales was 

initiated by Ahlbrandt and Morian, where an Euler–Lagrange equation for double integral variational 

problems on time scales was obtained in case of rectangular regions of integration. In the present paper, 

we reformulate this problem for the case of so-called ω-type regions of integration, using the 

multivariable differential and integral calculus developed by the authors in [16–18]. 

This paper is organized as follows. In Section 2, following [16–18], we give a brief introduction into 

the two- variable time scales calculus and present a version of Green’s formula for ω-type regions in 

a time scale plane. Section 3 formulates the statement of the double integral variational problem. In 
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Section 4, the first and second variations of a functional are introduced and necessary and sufficient 

conditions for local minima of the functional are provided in terms of the first and second variations. 

Finally, in Section 5, we present a version of the Euler–Lagrange equation for two-dimensional 

variational calculus on time scales. 

 

2. The two-variable time scales calculus 

A time scale is an arbitrary nonempty closed subset of the real numbers. For a general introduction to 

the calculus of one time scale variable we refer the reader to the textbooks [10,11]. In this section, 

following [16–18], we give a brief introduction into the two-variable time scales calculus. 

 
Higher-order partial delta derivatives are defined similarly. By [16, Theorem 6.1] we have the 

following result that gives us a sufficient condition for the independence of mixed partial delta 

derivatives of the order of differentiation. 

 

Theorem 2.1. Let a function f : T × T → R have the mixed partial delta derivatives ∂ f (x,y) and ∂ f 

(x,y) in some 

neighborhood of the point (x0, y0) ∈ Tκ × Tκ . If these derivatives are continuous at (x0, y0), then 

  
We now introduce double Riemann delta integrals over regions in T1×T2. First we define double 

Riemann integrals over rectangles (for details see [17]). Suppose a < b are points in T1, c < d are points 

in T2, [a, b) is the half-closed bounded interval in T1, and [c, d) is the half-closed bounded interval in 

T2. Let us introduce a “rectangle” (or “delta rectangle”) in T1 × T2 by 

R = [a, b) × [c, d) = {(x, y) : x ∈ [a, b), y ∈ [c, d)} . (2.1) 

 Let 

{x0, x1, . . . , xn} ⊂ [a, b], where a = x0 < x1 < · · · < xn = b 

{y0, y1, . . . , yk} ⊂ [c, d], where c = y0 < y1 < · · · < yk = d. 
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 and 

We call S a Riemann ∆-sum of f corresponding to P ∈ P(R). We say that f is Riemann ∆-integrable 

over R if there exists a number I with the following property: For each ε > 0 there exists δ > 0 such 

that |S − I | < ε for every Riemann ∆-sum S of f corresponding to any P ∈ Pδ(R) independent of the 

way in which we choose (ξi j , ηi j ) ∈ Ri j for 1 ≤ i ≤ n, 1 ≤ j ≤ k. The number I is the double Riemann 

∆-integral of f over R, denoted by 

R  f (x, y)∆1x∆2 y. We write I = limδ→0 S. 

  

It is easy to see that the number I from Definition 2.3 is unique if it exists. Hence the double Riemann 

∆-integral is well defined. Note also that in Definition 2.3 we need not assume the boundedness of f in 

advance. However, it easily follows that the Riemann ∆-integrability of a function f over R implies its 

boundedness on R. 

In our definition of     R f (x, y)∆1x∆2 y with R = [a, b) × [c, d) we assumed that a < b and c < d. We 

extend the definition to the case a ≤ b and c ≤ d by setting 

∫∫R f (x, y)∆1x∆2 y = 0   if a = b or c = d. (2.5) 

Theorem 2.4. Assume a, b ∈ T1 with a ≤ b and c, d ∈ T2 with c ≤ d. Every constant function f (t, s) ≡ 

A for (x, y) ∈ R = [a, b) × [c, d) 

is ∆-integrable over R and 

∫∫R  f (x, y)∆1x∆2 y = A(b − a)(d − c). (2.6) 
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Proof. Clearly, the above given Definition 2.3 coincides in case T1 T2 R with the usual Riemann 

definition of the integral. Notice that the classical definition of Riemann’s integral does not depend on 

whether the rectangle R 

and the subrectangles of its partition are taken closed, half-closed, or o√pen. Moreover, if T1  = T2  = 

R, then Pδ(R) 

consists of all partitions of R with norm (mesh) less than or equal to δ   2. So part (i) is valid. To prove 

part (ii), let 

a < b and c < d. Then b = a + p and d = c + q for some p, q ∈ N. Obviously, for all δ ∈ (0, 1), the set 

Pδ(R) will contain the single partition P∗ of R given by (2.2) and (2.3) with n = p, k = q, and 

 
for all partitions in Pδ(R) with arbitrary δ ∈ (0, 1). Hence f is ∆-integrable over R = [a, b) × [c, d) and 

(2.8) holds for a < b and c < d. If a = b or c = d, then relation (2.5) shows the validity of (2.8). Q 

Note that in the two-variable case four types of integrals can be defined: 
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(i) ∆∆-integral over [a, b) × [c, d), which is introduced by using partitions consisting of subrectangles 

of the form 

[α, β) × [γ, δ); 

∇∇-integral over (a, b] × (c, d], which is defined by using partitions consisting of subrectangles of the 

form 

(α, β] × (γ, δ]; 

∆∇-integral over [a, b) × (c, d], which is defined by using partitions consisting of subrectangles of the 

form 

[α, β) × (γ, δ]; 

∇∆-integral over (a, b] × [c, d), which is defined by using partitions consisting of subrectangles of the 

form 

(α, β] × [γ, δ). 

For brevity the first integral is called simply as ∆-integral, and in this paper we are dealing solely with 

such double 

∆-integrals. 

Now we present some properties of double ∆-integrals over rectangles. A function f : T1 × T2 → R is 

said to be continuous at (x, y) ∈ T1 × T2 if for every ε > 0 there exists δ > 0 such that | f (x, y) − f (x 

r, yr)| < ε for all (x r, yr) ∈ T1 × T2 satisfying d((x, y), (x r, yr)) < δ. If (x, y) is an isolated point of T1 

× T2, then the definition implies that every function f : T1 × T2 → R is continuous at (x, y). In 

particular, every function f : Z × Z → R is continuous at each point of Z × Z. 
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Remark 2.18. If the function f is continuous on a, b c, d , then the existence of all the above 

mentioned integrals is guaranteed. In this case any of the formulas (2.10) and (2.12) may be used to 

calculate the double integral. 

Now we define double ∆-integrals over so-called ω-type subsets of T1 × T2 as follows (see [17] for 

double ∆- integrals over more general subsets like Jordan ∆-measurable subsets of T1 × T2). 

  

Definition 2.19. We say that E T1 T2 is a set of the type ω (or ω-type set) if it can be represented in at 

least one way as a union 

(2.13) 

of a finite number of rectangles R1, R2, . . . , Rm of the form (2.1) that are pairwise disjoint and 

adjoining to each other. Next, we say that a function f : T1 × T2 → R is ∆-integrable over the ω-type 

set E if f is ∆-integrable over each of the rectangles Rk for 1 ≤ k ≤ m. Then the number 

  (2.14) 

is called the double ∆-integral of f over E . 

It is easily seen, by using Theorem 2.11, that the sum (2.14) does not depend on how E is represented 

as a union of a finite number of rectangles of the form (2.1) which are disjoint and adjoining to each 

other. 

Finally, we present the concept of line integrals on time scales and, using it, a version of Green’s 

formula for time scales (for details see [18]). 

Definition 2.20. Together with the time scales T1 and T2, let T be a third time scale with the delta 

differentiation operator ∆. Further, let α ≤ β be points in T and [α, β] be the closed interval in T, and 

let ϕ : [α, β] → T1 and ψ : [α, β] → T2 be continuous (in the time scale topology) on [α, β]. Then the 

pair of functions 

x = ϕ(t),    y = ψ(t),  t ∈ [α, β] ⊂ T (2.15) 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 2, No. 1, February : 2024 
[ 

UGC CARE Group-1,                                                                                                                 26 

is said to define a (time scale continuous) curve Γ in T1     T2. If (ϕ(α), ψ(α))     (ϕ(β), ψ(β)), then the 

curve is said to be closed. We can think of Γ as an oriented curve, in the sense that a point (x r, yr) (ϕ(t 

r), ψ(t r)) Γ is regarded as distinct from a point (x rr, yrr) (ϕ(t rr), ψ(t rr)) Γ if t r   t rr and as preceding 

(x rr, yrr) if t r < t rr. The oriented curve Γ is then said to be “traversed in the direction of increasing t 

”. The curve differing from Γ only by the direction in which it is traversed will be denoted by −Γ . 

Definition 2.21. We say that the curve Γ given by (2.15) is ∆-smooth if ϕ and ψ are continuous on [α, 

β] and ∆- differentiable on [α, β) and their ∆-derivatives ϕ∆ and ψ∆ are ∆-integrable over [α, β). 

Let two functions M(x, y) and N(x, y) be defined and continuous on the curve Γ (for example, for the 

function M(x, y), this means that for each A0     Γ and each ε > 0 there exists δ > 0 such that M( A)    

M( A0) < ε whenever A    Γ and d( A, A0) < δ, where d( A, A0) denotes the Euclidean distance between 

the points A and A0). Next, let Γ be ∆-smooth. Then we define the line delta integral by 

 
Remark 2.22. We call the curve Γ given by (2.15) piecewise ∆-smooth if ϕ and ψ are continuous on α, 

β and there is a partition α      γ0 < γ1 <       < γm       β of   α, β   such that ϕ and ψ have ∆-integrable 

∆-derivatives on each of the intervals γi 1, γi ), i 1, 2, . . . , m . In case of a piecewise ∆-smooth curve 

Γ , it is natural to define line 

∆-integrals along this curve as sums of line ∆-integrals along all ∆-smooth parts constituting the curve 

Γ . 

Similarly to line delta integrals we can also define line nabla integrals. Suppose that the curve Γ is 

given by the parametric equation (2.15), where ϕ and ψ are continuous on [α, β] and ∇-differentiable 

on (α, β]. If ϕ∇ and ψ ∇ are 

∇-integrable over (α, β] and if the functions M and N are continuous on Γ , then we define 

 
Definition 2.23. Let R be a “rectangle” in T1 × T2 as given by (2.1). Let us set 

L1 = {(x, c) : x ∈ [a, b]} , L2 = {(b, y) : y ∈ [c, d]} , 

L3 = {(x, d) : x ∈ [a, b]} , L4 = {(a, y) : y ∈ [c, d]} . 

Each of L j for j      1, 2, 3, 4 is an oriented “line segment”; e.g., the positive orientation of L1 arises 

according to the increase of x from a to b and the positive orientation of L2 arises according to the 

increase of y from c to d. The set (closed curve) 

Γ := L1 ∪ L2 ∪ (−L3) ∪ (−L4) 

is called the positively oriented fence of R. Positivity of orientation of Γ means that the rectangle R 

remains on the “left” side as we describe the fence curve Γ . 

 

as a common part of fences of two adjoining rectangles belonging to   R1, R2, . . . , Rm . Then the set 

Γ   X   X0 forms a positively oriented closed “polygonal curve”, which we call the positively oriented 

fence of the set E (the set E remains on the “left” as we describe the fence curve Γ ). 

We are now able to formulate the following theorem . 

Theorem 2.25 (Green’s Formula). Let E T1 T2 be an ω-type set and let Γ be its positively oriented 

fence. If the functions M and N are continuous and have continuous partial delta derivatives ∂ M/∆2 y 

and ∂ N/∆1x on E   Γ, then 

 (2.16) 

    

where the “star line integrals” on the right side in (2.16) denote the sum of line delta integrals taken 

over the line segment constituents of Γ directed to the right or upwards and line nabla integrals of f 

taken over the line segment constituents of Γ directed to the left or downwards. 
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3. The double integral variational problem- Recall that a single variable function on a time scale 

is called rd-continuous provided it is continuous at right-dense points and its left-sided limit exists 

(finite) at left-dense points. Let Crd denote the set of functions f (x, y) on T1 T2 with the following 

properties: 

(i) f is rd-continuous in x for fixed y; 

(ii) f is rd-continuous in y for fixed x ; 

(iii) if (x0, y0) T1 T2 with x0 right-dense or maximal and y0 right-dense or maximal, then 

f is continuous at 

(x0, y0); 

(iv) if x0 and y0 are both left-dense, then the limit of f (x, y) exists (finite) as (x, y) approaches (x0, 

y0) along any path in {(x, y) ∈ T1 × T2 : x < x0, y < y0}. 

By C(1) we denote the set of all continuous functions for which both the ∆1-partial derivative and the 

∆2-partial derivative exist and are of class Crd. 

Let E ⊂ T1 × T2 be a set of type ω and let Γ be its positively oriented fence. Further, let a function 

L(x, y, u, p, q), where (x, y) ∈ E ∪ Γ and (u, p, q) ∈ R3 

be given. We require that, in the indicated domain of variation of the independent variables, the 

function should be continuous, together with its partial delta derivatives of the first and second order 

with respect to x , y and partial usual derivatives of the first and second order with respect to u, p, q. 

Consider the functional 

 (3.1) 

 whose domain of definition D(J) consists of functions u ∈ C(1)(E ∪ Γ) satisfying the 

“boundary condition” u = g(x, y)    on Γ, (3.2) 

where g is a fixed function defined and continuous on the fence Γ of E . We call functions u D(J) 

admissible. The problem of the variational calculus now consists of the following: Given a functional 

J of the form (3.1) with its domain of definition D(J), it is required to find an element uˆ ∈ D(J) which 

satisfies 

  

either   

The problem of maximizing the functional J is identical with the problem of minimizing the functional   

J . Therefore, in what follows, we will treat only the minimum problem. We will assume that there 

exists at least one admissible function u0. Note that this assumption is essential: In contrast to the case 

of one variable, it is possible here (even if T1 T2 R) to choose a function g(x, y), continuous on Γ , 

such that no function u0 is admissible. In this case the domain D(J) is empty, and the problem of 

minimizing the functional J loses its meaning. If the function u0 exists, then the domain D(J) contains 

a set of functions of the form u(x, y) = u0(x, y) + η(x, y), where η ∈ C(1)(E ∪ Γ) 

and η 0 on Γ . Any such η is called an admissible variation. 

The above problems (3.3) are problems of finding absolute extrema, but we can easily define a weak 

or strong neighborhood of a given function and state the problem of finding local (or relative) extrema. 

For f ∈ C(1)(E ∪ Γ) 

 we define the norm 

 
 

4. First and second variations 

For a fixed element u ∈ D(J) and a fixed admissible variation η we define a function Φ : R → R by 
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Φ(ε) = Φ(ε; u, η) = J(u + εη)    for ε ∈ R. 

From (3.1), by virtue of the conditions imposed on L, it follows that Φ(ε) is twice continuously 

differentiable, and the first and second derivatives of Φ can be obtained by differentiating under the 

integral sign. The first and second variations of the functional J at the point u are defined by 

J1(u, η) = Φr(0; u, η)    and J2(u, η) = Φrr(0; u, η), 

respectively. For fixed u, the variations J1(u, η) and J2(u, η) are functionals of η. Note that J1(u, η) 

and J2(u, η) are denoted also by δ J(u, η) and δ2 J(u, η), respectively. 

The following two theorems are standard and offer necessary and sufficient conditions for local 

minima of J in terms of the first and second variations of J . 

Theorem 4.1  (Necessary Conditions). If  uˆ ∈ D(J) is a local minimum of  J , then J1(uˆ, η) = 0    and

 J2(uˆ, η) ≥ 0    for all admissible variations η. 

Proof. Assume that the functional J has a local minimum at u   D(J). We take an arbitrary fixed 

admissible variation 

η and define the function 

 
If |ε| is sufficiently small, then we have that the norm of the difference 

ǁ(uˆ + εη) − uˆǁ = |ε|ǁηǁ 

will be as small as we please, and then, from the definition of a local minimum, 

J(uˆ + εη) ≥ J(uˆ), i.e., ϕ(ε) ≥ ϕ(0). 

This inequality implies that the function ϕ of the real variable ε has a local minimum for ε 0. But then, 

necessarily, ϕr(0)   0 (this easily follows also from (4.2)) or, equivalently, J1(u, η)   0. Now from (4.2) 

by the equality ϕr(0)   0, we have 

ϕ(ε) − ϕ(0) = 1 ϕrr(α)ε2 

and therefore ϕrr(α) ≥ 0 for all ε whose absolute value is sufficiently small. Letting here ε → 0 and 

noting that 

α → 0 as ε → 0 and that ϕrr is continuous, we get ϕrr(0) ≥ 0 or, equivalently, J2(uˆ, η) ≥ 0. Q 

 

Theorem 4.2  (Sufficient Condition).   Let uˆ ∈ D(J) be such that  J1(uˆ, η)  = 0 for all admissible 

variations η. If 

J2(u, η) ≥ 0 for all u  ∈ D(J) and all admissible variations η, then  J  has an absolute minimum at the 

point uˆ. If J2(u, η) ≥ 0 for all u in some neighborhood of the point uˆ and all admissible variations η, 

then the functional J has a local minimum at uˆ. 

Proof. Define the function ϕ as in (4.1). From (4.2) we have for ε = 1 

 
so that (4.3) gives 
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J(uˆ + η) = J(uˆ) + 1 J2(uˆ + αη, η)    for all admissible variations η, (4.4) 

where α (0, 1) depends on u and η. Now the proof of the theorem can be completed as follows. 

In the first case we have J2(uˆ + αη, η) ≥ 0    for all admissible variations η. 

If u  ∈ D(J), then putting η = u − uˆ provides from (4.4) that  J(u) ≥ J(uˆ). Consider now the second 

case. There exists r  > 0 such that for u ∈ D(J) and ǁu − uˆǁ < r we have J2(u, η) ≥ 0 for all admissible 

variations η. We take such an element u and again put η = u − uˆ. Then 

Hence it follows that J2(uˆ + αη, 

η) ≥ 0, and, consequently, J(u) ≥ J(uˆ). Q 

In view of the above two results it will be important to find another representation of the first and 

second variations. 

This is done in the following lemma. 

  

5. Euler’s condition 

Let E be an ω-type subset of T1 × T2 and Γ be the positively oriented fence of E . Let us set 

Eo = {(x, y) ∈ E : (σ1(x), σ2(y)) ∈ E } . 

The following lemma is an extension of the fundamental lemma of double integral variational analysis 

to time scales. 

Lemma 5.1 (Dubois–Reymond). If M(x, y) is continuous on E ∪ Γ with 

This contradiction proves the assertion of the lemma.   

Now, using Lemma 5.1, we can derive Euler’s necessary condition. 
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