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Abstract— Video rain/snow removal from 

surveillance videos is an important task in the 

computer vision community since rain/snow 

existed in videos can severely degenerate the 

per- formance of many surveillance system. 

Various methods have been investigated 

extensively, but most only consider consistent 

rain/snow under stable background scenes. 

Rain/snow captured from practical surveillance 

camera, however, is always highly dynamic in 

time, and those videos also include 

occasionally transformed background scenes 

and background motions caused by waving 

leaves or water surfaces. To this issue, this 

paper proposes a novel rain/snow removal 

approach, which fully considers dynamic 

statistics of both rain/snow and background 

scenes taken from a video sequence. 

Specifically, the rain/snow is encoded as an 

online multi-scale convolutional sparse coding 

(OMS-CSC) model, which not only finely 

delivers the sparse scattering and multi-scale 

shapes of real rain/snow, but also well 

distinguish the components of background 

motion from rain/snow layer. The real-time 

ameliorated parameters in the model well 

encodes their temporally dynamic 

configurations. Furthermore, a transformation 

operator imposed on the back- ground scenes is 

further embedded into the proposed model, 

which finely conveys the background 

transformations, such as rotations, scalings and 

distortions, inevitably existed in a real video 

sequence. The approach so constructed can 

naturally better adapt to the dynamic rain/snow 

as well as background changes, and also 

suitable to deal with the streaming video 

attributed its online learning mode. The 

proposed model is formulated in a concise 

maximum a posterior (MAP) framework and is 

readily solved by the alternating direction 

method of multipliers (ADMM). Compared  

with the state-of-the-art online and offline 

video rain/snow removal methods, the 

proposed method achieves best performance on 

synthetic and real videos datasets both visually 

and quantitatively. Specifically, our method 

can be implemented in relatively high 

efficiency, showing its potential to real-time 

video rain/snow removal. The code page is at: 

https://github.com/MinghanLi/OTMSCSC_ma

tlab_2020. 

Index Terms— Multi-scale, convolutional 

sparse coding, rain/snow removal, dynamic 

background, online learning, align- ment 

method. 

 

I. INTRODUCTION 

IDEOS captured from outdoor surveillance 

system are often contaminated by rain or snow, 

which has a negative effect on the perceptual 

quality and tends to degrade the performance of 

subsequent video processing tasks, such as 

human detection [1], person re-identification 

[2], object track- ing [3] and scene analysis [4]. 

Thus, removing rain and snow from 

surveillance videos is an important video pre-

processing step and has attracted much 

attention in the computer vision 

community. 

In recent decades, various methods have been 

proposed for removing rain from a video. The 

earliest video rain removal approach was 

proposed based on the photometry property of 

rain [5]. After that, more methods taking 

advantage of the essential physical 

characteristics of rain, such as photo- metric 

appearance [6], chromatic consistency [7], 

shape and brightness [8], and spatial-temporal 

configurations [9], were introduced to better 

separate rain streaks from the background of 

videos. However, these methods do not utilize 

the prior knowledge of video structure, such as 

spatial smoothness of foreground objects and 
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temporal similarity of background scenes, and 

thus cannot always obtain satisfactory 

performance especially in complex scenes. In 

recent years, low-rank mod- els [10] show a 

great potential for this task and always achieve 

state-of-the-art performance due to their better 

consideration of video structure prior 

knowledge both in foreground and background. 

Specifically, these methods not only use the 

low- rank structure for the background, but also 

fully facilitate the prior knowledge of the rain, 

such as sparsity and spatial smoothness [11], 

[12]. Very recently, deep learning based 

methods have also been proposed for this task. 

These methods address the problem of video 

rain removal by constructing deep recurrent 

convolutional networks [13], [14] or deep con- 

volutional network [15] and implement the task 

in a popular end-to-end learning manner. 

Albeit achieving good progress, most of current 

methods are implemented on a pre-fixed length 

of videos and assume con- sistent rain/snow 

shapes under static background scenes. This, 

however, is evidently deviated from the real 

scenarios. On one 

Fig. 1. The diagram of the proposed OTMS-CSC model implemented on a video with dynamic 

background. As shown in the left figure, the background alignment based on its adjacent frames 

produces an initial stationary background. The online MS-CSC model shown on the right decomposes 

(a) the input video frame into four parts: (b) stationary background, (c) rain layer, (d) moving objects 

and the background noise. The rain layer (b) can be further decomposed as four sub-layers with various 

filters, which encode the repetitive local patterns of both rain/snow and background motions, displayed 

in the top-left corner of the second row. For the video with dynamic background, the final dynamic 

background (e) is the combination of the stationary background and the sub-layers with background 

motions, and the rectified rain layer only combines those sub-layers with relatively vertical filters 

representing rains. 

hand, the rain/snow contained in a video sequence 

is generally with configurations changed 

constantly along time. On the other hand, the 

background scene in the video is also always 

dynamic, inevitably containing background 

motion, such as swing leaves and water waves as 

typically shown in Fig. 1, and timely 

transformations such as translation, rotation, 

scaling and distortion, due to camera jitters. 

Lacking considerations to such dynamic 

characteristics inclines to degenerate the 

performance of current methods in such real 

cases. Besides, as the dramatically increasing 

surveillance cameras installed all over the world, 

the real video is always coming online as a 

streaming format. Most current methods, 

however, are implemented/trained on a pre-fixed 

video sequence, and thus cannot finely and 

efficiently adapt to such kinds of streaming 

videos continually and endlessly coming in time. 

These issues have hampered the availability of 

existing methods in real applications and thus is 

worthy to be specifically investigated. 
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Against the aforementioned issues, this   paper 

proposes a new online rain/snow removal method 

from surveillance videos by fully encoding the 

dynamic statistics of both rain/snow and 

background scenes in a video along time into the 

model, and realizing it with an online mode to 

make it potentially available to handle constantly 

coming streaming video sequence. Specifically, 

inspired by the multi-scale con- volutional sparse 

coding (MS-CSC) model designed for video rain 

removal (still for static rain) previously proposed 

in [16], 

  

which finely delivers the sparse scattering and 

multi-scale shapes of real rain, this work encodes 

the dynamic temporal changing tendency of 

rain/snow and background motions as a dynamic 

MS-CSC framework by timely parameter ame- 

lioration for the model in an online 

implementation manner. Besides, a 

transformation operator capable of being 

adaptively updated along time is imposed on the 

background scenes to finely fit the background 

transformations existed in a video sequence. All 

these knowledge are formulated into a concise 

maximum a posterior (MAP) framework, which 

can be easily solved by alternative optimization 

technique. 

In all, the contributions of this work can be mainly 

summa- rized as follows: 

1) An online multi-scale convolutional 

sparse coding model is specifically designed for 

encoding dynamic rain/snow and background 

motions with temporal variations. The model is 

formulated as a concise probabilistic framework, 

where the feature maps are gradually ameliorated 

under regularization of a penalty for enforcing 

them close to those calculated from the previous 

frames, and the filters encode the repetitive local 

patterns of dynamic rain/snow and background 

motions in each frame of a video. In this manner, 

the insightful dynamic rain/snow properties and 

the background motions can be finely delivered. 

2) An affine transformation operator is 

further embedded into the proposed model, and 

can be automatically adjusted 

  

to fit a wide range of video background 

transformations. This makes the method more 

robust to general camera movements, like 

rotation, translation, scaling or distortion. 

3) To handle the challenging task of rain 

removal from videos with dynamic background, 

based on the sequences in the dynamic 

background category of the changedetection.net 

[17] (CDNet) dataset, we build the first new 

synthetic dynamic dataset whose video contains 

both rain streaks and background motions such as 

waving leaves and water waves, called CDNet-

Rain dataset. The superiority of the proposed 

method in robustness and efficiency are 

comprehensively substantiated by experiments 

implemented on the proposed dynamic dataset 

both visually and quantitatively, as compared 

with other state- of-the-art methods. 

4) We take the video instance segmentation 

(VIS) task as the example to further verify 

whether removing rain and snow from a video can 

bring a positive impact on the sub-sequence video 

processing task. Specifically, based on the large-

scale video instance segmentation valid dataset 

YouTube-VIS [18], we construct a video rain 

removal benchmark for the video instance 

segmentation task called YouTube-VIS-Rain 

dataset. The visual and quantitative experimental 

results on the bench- mark also demonstrate that, 

compared with directly employing the video 

instance segmentation algorithm on the 

contaminated videos, the video rain removal pre-

processing via our proposed model is evidently 

benefical to the final performance of the handled 

video processing task. 

The rest of paper is organized as follows. Section 

2 introduces the related works. Section 3 reviews 

the offline multi-scale convolutional sparse 

coding (offline MS-CSC) model [16] suitable for 

removing static rain and proposes the online 

transformed multi-scale convolutional sparse 

cod- ing (OTMS-CSC) model as well as its 

solving algorithm. Section 4 demonstrates 

experimental results on synthetic and real 

rainy/snowy videos with/without dynamic 

background to substantiate the superiority of the 

proposed method and further verifies that the pre-

processing of video rain removal can bring a 

positive impact on the video instance 

segmentation task. Finally, conclusions are drawn 

in Section 5. 
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II. RELATED WORKS 

In this section, we give a brief review on the 

methods of video rain and snow removal. The 

related developments on single image rain and 

snow removal, multi-scale modeling and video 

alignment are also introduced for literature 

comprehen- siveness. It should be indicated that 

albeit different in physical generation 

mechanisms, in visual imaging perspectives, both 

rainfall and snowfall on a digital image or a video 

frame have very similar geometric characteristics, 

which makes multiple methods, as well as ours, 

proposed to treat both scenarios simultaneously. 

 

A. Video Rain and Snow Removal Methods 

Garg and Nayar [5] made the earliest study on the 

photo- metric appearance of rain drops and 

developed a rain detection method by utilizing a 

linear space-time correlation model. To better 

reduce the effects of rain before camera shots in 

  

images/videos, Garg and Nayar [6], [19] further 

proposed a method by adjusting the camera 

parameters such as field depth and exposure time. 

In the past years, more physical intrinsic 

properties of rain streaks have been explored and 

formulated in algorithm designing. For example, 

Zhang et al. [7] incorporated both chromatic and 

temporal properties and utilized K-means clus- 

tering for distinguishing background and rain 

streaks from videos. Later, Barnum et al. [8] first 

considered the impact of snow on videos. They 

derived a physical model for repre- senting 

raindrops and snowflakes and used them to 

determine the general shape and brightness of a 

single streak. The streak model combined with 

the statistical properties of rain and snow can then 

conduct how they affect the spatial-temporal 

frequencies of an image sequence. To enhance the 

robustness of rain removal, Barnum et al. [20] 

employed the regular visual effects of rain and 

snow in global frequency information to 

approximate rain streaks as a motion-blurred 

Gaussian. Afterwards, to integrate more prior 

knowledge of the task, Jiang et al. [21] proposed 

a tensor-based video rain streak removal 

approach by considering the sparsity of rain 

streaks, smoothness along the raindrops and the 

rain-perpendicular direction, and global and local 

correlation along time direction. 

In recent years, low-rank based models have 

drawn more research attention for the task of 

video rain/snow removal. Chen et al. [10] first 

investigated spatial-temporal correlation among 

local patches with rain streaks and used low-rank 

term to extract rain streaks from a video. Later, 

Kim et al. [22] proposed a rain and snow removal 

method based on tem- poral correlation and low-

rank matrix completion. To further exclude false 

candidates, Santhaseelan et al. [23] used local 

phase congruency to detect rain and applied 

chromatic con- strain. To deal with heavy rain and 

snow in dynamic scenes, Ren et al. [11] divided 

rain into sparse and dense ones based on the low-

rank hypothesis of the background. Based on the 

low-rank background assumption, Wei et al. [12] 

further encoded rain streaks as a patch-based 

mixture of Gaussians. Such stochastic manner for 

encoding rain streaks could make the method 

deliver a wider range of rain information. 

Very recently, motivated by the booming of deep 

learning (DL) techniques, several DL methods 

also appeared for the task. Liu et al. [13], [24] 

addressed the problem by construct- ing deep 

recurrent convolutional networks, which builds a 

joint recurrent rain removal and reconstruction 

network that seam- lessly integrates rain 

degradation classification, spatial texture 

appearances based rain removal, and temporal 

coherence based background detail 

reconstruction. Meanwhile, Chen et al. [15] 

proposed a deep derain framework which applies 

superpixel segmentation to decompose the scene 

into depth consistent units. Alignment of scene 

contents are done at the super- pixel level to 

handle the videos with highly complex and 

dynamic scenes. Yang et al. [14] not only 

proposed a two- stage recurrent network with 

dual-level flow regularizations to perform the 

inverse recovery process of the rain synthesis 

model for video deraining, but also developed a 

novel rain synthesis model to produce more 

visually authentic paired training and evaluation 

videos. 

  

B. Single Image Rain and Snow Removal 

Methods 

For literature comprehensiveness, we also briefly 

review the rain/snow removal methods for a 

single image. Kang et al. [25] firstly formulated 
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the problem as an image decomposition problem 

based on morphological component analysis, 

which achieves rain component from the high fre- 

quency part of an image by using dictionary 

learning and sparse coding. Later, Luo et al. [26] 

built a nonlinear screen blend model based on 

discriminative sparse codes. Besides, Ding et al. 

[27] designed a guided L0 smoothing filter to 

obtain a coarse rain-free or snow-free image, and 

Li et al. [28] utilized patch-based Gaussian 

mixture model (GMM) priors to distinguish and 

remove rain from background in a sin- gle image. 

Wang et al. [29] designed a 3-layer hierarchical 

scheme to classify the high-frequency part into 

rain/snow and non-rain/snow components. Gu et 

al. [30] jointly ana- lyzed sparse representation 

and synthesis sparse representation to encode 

background scene and rain streaks. Meanwhile, 

Zhang et al. [31] learned a set of generic sparsity-

based and low-rank representation-based 

convolutional filters for effi- ciently representing 

background and rain streaks in an image. 

Recently, DL-based methods represent the new 

trend for this task. Fu et al. [32] firstly developed 

a deep convolutional neural network (CNN) 

model to extract discriminative features of rain in 

high frequency layer of an image. The training 

pairs are constructed based on the whole image. 

Later, Fu et al. [33] constructed the training pairs 

by using image patches and utilized the res-net as 

the classifier. Zhang et al. [34] first proposed a 

derain network based on generative adversarial 

network for single image derain. Yang et al. [35] 

designed a multi-task DL architecture that learns 

the binary rain streak map, the appearance of rain 

streaks and the clean background. Liu et al. [36] 

proposed a multistage and multi-scale network to 

deal with the removal of translucent and opaque 

snow particles. Very recently, Yang et al. [37] 

constructed a con- textualized deep network, 

which incorporates a binary rain map indicating 

rain-streak regions, and accommodates various 

shapes, directions, and sizes of overlapping rain 

streaks as well as rain accumulation to model 

heavy rain. For dealing with heavy rain, Li et al. 

[38] proposed a two-stage network: a physics-

based backbone followed by a depth-guided 

gener- ative adversarial networks (GAN) 

refinement, which aims to estimate the rain 

streaks, the transmission, and the atmospheric 

light, and to recover the background details failed 

to be retrieved by the first stage. Wang et al. [39] 

proposed a model-driven deep neural network for 

the task, with fully 

interpretable network structures. 

Although these image-based methods can also 

deal with rain/snow removal in a video via a 

rough frame-by-frame manner, the missing use of 

the important temporal information for such a 

specific task inclines to make the video-based 

methods perform significantly better than image-

based ones. 

 

C. Online Learning Approaches 

Online learning is a method of machine learning 

in which data becomes available in a sequential 

order and is used to update the best predictor for 

future data at each step, 

  

as opposed to batch learning techniques which 

generate the best predictor by learning on the 

entire training data set at once. Online learning is 

a common technique used in areas of machine 

learning where it is computationally infeasible to 

train over the entire dataset, requiring the need of 

out- of-core algorithms. Online learning 

algorithms may be prone to catastrophic 

interference, a problem that can be addressed by 

incremental learning approaches. Recently, 

online learning methods have attracted increasing 

attention in many computer science tasks, such as 

background subtraction [40]–[42]. In video 

rain/snow removal task, online learning is used to 

calculate only one frame at a time, and gradually 

ameliorate rain/snow based on the real-time video 

variations. 

 

D. Alignment Approaches for Videos 

Since camera jitter tends to damage the low-rank 

background structure of a video, we always need 

to align the transformed videos to accurately 

extract the low-rank background. Many 

alignment methods have been attempted to this 

issue. For example, Zhang et al. [43] proposed an 

approach to directly extract certain 3D invariant 

structures through their 2D images by undoing the 

(affine or projective) domain transformations. 

Zhang et al. [44] further proposed a general 

method for recovering low-rank 3-order tensors, 

which introduced auxiliary variables and relaxed 
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the hard equality constraints by the alternating 

direction method of multipliers (ADMM) [45]. 

Yong et al. [40] proposed an alignment method 

for aligning the video background based on 

optimizing a supplemental affine transformation 

operator, and applied it to the task of dynamic 

background subtraction. 

 

III. ONLINE TRANSFORMED MS-CSC 

MODEL FOR 

DYNAMIC VIDEO RAIN/SNOW REMOVAL 

This work is inspired by our previous conference 

work [16], proposing an offline multi-scale 

convolutional sparse coding (MS-CSC) model, 

specifically designed for rain removal issue (with 

consistent rain temporarily) in a fixed length of 

video sequence. We thus first introduce the 

formulation of this offline model. 

 

A. Offline MS-CSC Model 

Let Rh×w×n denotes the input video, where h, 

w, and n represent its height, width and the 

number of frames, respectively. We assume that 

the video   can be decomposed as: 

X = B + F + R + E, (1) 

where   , ,   ,   Rh×w×n represent background 

scene, moving objects, rain layer, and background 

noise of the video, respectively. These parts can 

then be modeled separately as follows [16]. 

Background Modeling: For a fixed length of 

video sequence captured from a surveillance 

camera, its back- ground tends to keep steady 

over the frames, and thus can be rationally 

assumed to be resided on a low-dimensional 

  

subspace [46]–[50], leading to its low-rank matrix 

factoriza- tion representation as: 

B = Fold(UV T ), (2) 

  

s.t. Fold(UV T ) 

K sk 

2 

F 

k=1 s=1 

  

where U Rd×r , V Rn×r , d  hw, r < min(d, n). The 

operation ‘Fold’ refers to fold up each matrix 

column into the corresponding frame matrix, and 

thus the background is a tensor with the same size 

as input . 

Rain Layer Modeling: Since rain in a video 

contain repet- itive local patterns sparsely 

scattering over different areas, and also exhibits 

multi-scale property due to its occurrence 

positions with different distances to the cameras, 

multi-scale convolutional sparse coding (MS-

CSC) [51] is thus utilized to model rain as 

follows: 

K sk 

R = Dks ⊗ Mks, (3) 

k=1 s=1 

where ⊗ denotes convolutional operation, and  M 

= 

  

where Θ D, , , , U, V, are 

the variables involved in the problem to be 

optimized. 

 

B. Online Transformed MS-CSC Model 

The previous MS-CSC model is specifically 

designed for rain removal in a pre-fixed length of 

video under the assump- tion that the rain is of 

consistent configuration along time. Specifically, 

the rain feature maps      (as defined in Eq. (3)) of 

all video frames attained under fixed filters are 

assumed to follow a unique independent and 

identically distributed Laplacian. The real rain 

shapes, however, are always both correlated and 

distinctive along time, and varying from frame to 

frame across the entire video. The simple 

encoding manner 

  

{Mks }K,sk 

  

⊂ Rh×w×n is a set of feature maps that approxi- 

  

of MS-CSC is thus inappropriate to real 

scenarios. We thus 

  

k,s=1 

K,sk 

p × p 

  

present the online MS-CSC model, which not 

only provides  

mate the rain streak positions, and D    Dks k,s   1    

R k    k denotes the filters representing the 

repetitive local patterns of rain streaks. K and sk 

denote the numbers of entire filters and 
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filters at the k-th scale, respectively. Considering 

the sparsity of feature maps, the L1-penalty [52] 

is utilized to regularize them. 

Moving objects Modeling: Motivated by the work 

[12], 

Markov random field (MRF) is used to explicitly 

detect the moving objects. Let H ∈ Rh×w×n be a 

binary tensor denoting 

  

a more proper way to describe temporally 

dynamic rain/snow and background motions, but 

also makes the method more efficient and 

potentially applicable to streaming videos with 

continuously increasing frames in real time. 

For symbol unification, we denote the newly 

coming single frame as Xt      Rh×w , where h and 

w represent the height and width of this frame, 

respectively, and d    h    w denotes the total 

number of pixels in this single frame. Similar to 

(1), 

t  

the moving object support: 

 we then decompose newly coming single frame 

X   as the 

following three parts: 

  

 

Hijn =1, location (i, j, n) is moving objects, (4) 

0,location (i, j, n) is background, 

  

Xt = Bt + Ft + Rt + Et , (6) 

where Bt , Ft , Rt , Et ∈ Rh×w represent the 

background scene, 

  

and    ⊥ is the complementary of      (i.e., ⊥ 1, 

1 is a tensor with all elements as 1). Eq.(1) can be 

then reformulated as: 

X = H⊥ ◦ B + H ◦ F + R + E, (5) 

where operation denotes the element-wise 

multiplication. Since moving objects always 

exhibit smooth property, total variation (TV) 

penalty [53] is adopted to regularize them. 

Additionally, considering the sparse feature and 

continuous shapes along both space and time of 

moving object, L1-penalty and weighted 3-

dimensional total variation (3DTV) penalty are 

both employed to regularize the moving objects 

support H simultaneously. 

  

moving objects, rain layer and background noise 

of the current frame, respectively. We then put 

forward the schemes to model these parts based 

on the dynamic characteristics of rain/snow. 

1) Modeling Dynamic Rain/Snow Layer: 

Albeit different in physical generation 

mechanisms, in visual imaging per- spectives, 

both rainfall and snowfall on a digital image or a 

video frame have very similar geometric 

characteristics, i.e., with repetitive local patterns 

sparsely scattered over different positions of the 

image, and of multi-scale configurations due to 

their occurrence on positions with different 

distances to the cameras. Such two intrinsic 

characteristics are thus encoded into a concise 

probabilistic framework by the multi-scale 

convolutional sparse coding (MS-CSC) model 

[16], namely: 

  

By assuming that the background noise

 follows an i.i.d. Gaussian, we can then 

integrate the aforementioned three mod- 

 
 (7) 

  

els imposed on background, rain streak and 

moving objects to get the MS-CSC model for 

offline video rain removal as 

  

k=1 s=1 

where Mt = {Mt }K,sk     ⊂ Rh×w is a set of 

feature maps that 

  

follows [16]: 

  

ks   k,s=1 

  

 

t     K,s 

  

min L(Θ) =ǁ X − H⊥ ◦ B − H ◦ F − R ǁ2   +λ ǁ F 

ǁTV  

K     nk 

+α ǁ H ǁ3DT V +β ǁ H ǁ1 +b ǁ Mks  ǁ1 

k=1 s=1 

  



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 2, February : 2024 
 

UGC CARE Group-1,                                                                                                        27 

approximate the rain streak positions, and Dt       

Dks k,s k 1 

Rpk × pk  denotes the filters representing the 

repetitive local 

patterns of rain streaks. K and sk denote the total 

scale number of filters and the total number of 

filters with k-th scale, respectively. 

  

Similar to the MS-CSC model, the sparsity of 

feature map 

  

aforementioned, i.e., imposing conjugate prior to 

(σ t )2 as: 

  

t is also regularized by the Laplacian distribution: 

  

 

t 2 t 2 

  

Nt −1 

 

  

  

Nt −1 (σ t −1)2 

 

  

  

Mt  ∼ Laplacian(Mt |0, bt ), (8) 

  

(σ ) ∼ Inv-Gam((σ ) | 2 − 1, 2 ), 

(13) 

  

where the scale parameter bt > 0 is specified for 

the current 

  

where Nt−1 = (t − 1)d, and (σ t−1)2 denotes the 

variance 

  

frame reflecting the specific rain degreen in this 

frame. Fur- thermore, the correlation of rain 

between current and previous frames is 

represented by the following prior term imposed 

on bt : 

t    ∼ Inv-Gam(bt  |Nt−1 − 1, Nt−1bt−1), (9) 

where Nt−1    (t     1)d and bt−1 are both the scale 

para- meter learned from the previous frames. 

Here Inv-Gam( ) denotes the Inverse-Gamma 

distribution, a conjugate prior to t , whose mode 

is exactly the one of previously learned (i.e., 

bt−1). It is then naturally delivered that the 

correlation of rain degreen between current frame 

and the learned knowledge from previous ones. 

In the way as aforementioned, the dynamic 

characteristic of rain/snow across a video can then 

be rationally represented. In specific, the scale 

parameter in each frame is specifically learned 

and different from one another, finely 

representing the distinctiveness (i.e. ‘non-

identical’) of rain/snow among 

different frames. Furthermore, the scale 

parameter of feature 

  

of Gaussian noise learned from the previous 

frames. The mode of this prior is also the 

knowledge previously learned (i.e., (σ t−1)2). 

This encoding manner is thus also able to 

deliver the dynamic property of noises along the 

video. 

3) Modeling Background Transformations: To 

tackle trans- formations of background scenes in 

a video due to camera jitter, like translation, 

rotation and scaling, a flexible affine 

transformation operation is imposed on the 

background. In the decomposition form (6) for 

the current frame Xt , the background component 

Bt is expressed to be transformed from the 

previous one Bt as 

Bt = Bt−1 Ⓢ τ, (14) 

where τ denotes the transformed operator 

implemented on the initial background Bt−1, and 

can be formulated as an affine or projective 

transformation [40]. Then, Eq.(11) and (12) can 

be reformulated as: 

Xt = Ht ⊥ ◦ (Bt−1 Ⓢ τ) + Ht ◦ Ft + Rt + Et ., (15) 

xt  ∼ N(xt  |((H t )⊥◦(Bt−1 Ⓢ τ )+ Ht ◦ Ft + Rt

 t  2 

  

map distribution for the current frame is 

regularized by that ij  

of previously learned ones, well encoding the 

correlation 

 
(i.e., ‘non-independent’) across especially 

adjacent frames. The model is thus expected to 

better adapt to the variations of the dynamic 

rain/snow. 

Following 
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2) Modeling Moving Objects and Background 

Noise: the MS-CSC model, we also adopt 

Markov random field [54], 

[55] to detect the moving objects. Let H

 Rh×w is a binary 

matrix denoting the moving object support, which 

is defined as 

  

4) Online Transformed MS-CSC Model: For 

conve- nience, we denote all involved parameters 

as Θ 

H, τ, D, M, F,σ 2, b and the parameters in the 

current and last frames as Θt and Θt−1, 

respectively. Based on the models provided in the 

last sections, given the previous parameters Θt−1 

and newly coming frame Xt , we can then obtain 

the posterior distribution of Θ as follows: 

p(Ht, τ, Dt , Mt , Ft , (σ t )2, bt |Xt , Θt−1) 

  

  1, location (i, j ) is moving objects, 

  

∝ p(Xt |Ht, τ, Ft , Dt , Mt , (σ )2) p((σ t )2|Θt−1) 

  

Hij = 

  

(10) 

0, location (i, j ) is background. 

  
Let H ⊥ be complementary of H satisfying H H ⊥ 

1, 1 is a matrix with all elements as 1. Eq.(6) can 

then be equivalently expressed as: 

  

Through maximizing this posterior, the updated 

parameters Θt for the current frame can then be 

attained. This MAP problem can then be 

equivalently expressed as the following 

minimization problem: 

  

Xt = Ht ⊥ ◦ Bt + Ht ◦ Ft + Rt + Et . (11) L 

  

t t t −1 

  

t t t t 2 t 2 

  

Like the offline MS-CSC optimization problem, 

by assuming all elements of the background noise 

Et follow a Gaussian 

  

 
  

  

forms, and also both distinctive and correlated 

among video 

frames. We can then also represent this dynamic 

knowledge. Specifically, for video noise in the 

current frame with vari- ance (σ t )2, we model it 

in the similar modeling manner as 

 QF (Ft , Ht) = λ ǁ Ft ǁTV +α ǁ Ht ǁ3DTV +β ǁ Ht 

ǁ1 . (21) 

Specifically, QR((σ t )2) and QE (bt ) correspond 

to the reg- ularization terms for the distributions 

of feature map Mt 

  

and noises embedded in Xt , respectively, which 

can be more Update Ft : The subproblem with 

respect to Ft is 

  

intuitively understood by the following 

equivalent forms: 

  

min 

ǁ Ht ◦ (Xt − Ft − Rt ) ǁ2 

  

+2(σt )2λ ǁ Ft  ǁTV , (26) 

  

t 2 t−1 

  

F 

t −1 2 t 2 F 

  

QE ((σ ) ) = N DKL(N(x |0, (σ ) ) ǁ N(x |0, 

(σ ) )),(22) 

  

which is easily solved by the TV regularization 

algorithm [53]. 

  

QR(bt ) = Nt−1   DKL(L(Mt |0, bt−1) ǁ L(Mt |0, 

bt )) 

 t t −1 

 k,s (23) 
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 transform, it’s hard to directly optimize it and we 

resort to the following linear approximation: 

  

where DKL( ) denotes the KL divergence 

between two dis- tributions. Particularly, it can be 

easily observed that QR(bt) functions to rectify 

the rain streaks on the current frame with 

parameter bt to approximate the previously 

learned rain 

t −1 

  

Bt = Bt−1 Ⓢ τ + J Δτ, (27) 

where J is the Jacobian of Xt with respect to τ . 

We can iteratively approximate the original 

nonlinear transformation 

with a locally linear approximation, as τ = τ +Δτ . 

Therefore, 

  

streaks with parameter bks , so as to make the rain 

shapes in the adjacent frames correlated. 

Similarly, the regularization term QE ((σ t )2) 

inclines to enforce the background noise in 

the current frame close to that embedded in the 

previous ones. This easily explains why our 

method can fit dynamic rain, as well as varying 

background noises, in a video with evidently non-

i.i.d. configurations. 

The corresponding augmented Lagrangian 

function of Eq. (18) can be written as follows: 

  

  
This subproblem is a standard convolutional 

sparse coding 

 

(CSC) problem  and can be readily solved by [58], 

which 

adopts the ADMM scheme and FFT to improve 

computation 

  

    

where T t and ρ are the Lagrange variable and the 

penalty 

  

We use online learning algorithm for sparse 

coding [59] 

to update the filters  Dt  = {Dt }K,nk  . The 

algorithm uti- 

  

parameter, respectively. 
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ks k,s   1 

lizes block-coordinate descent with warm restarts 

D 

{Dt −1}K,nk . 

  

t −1 = 

  

ks k,s=1 t t 

  

C. ADMM Algorithm 

  

Update R : The subproblem with respect to R is 

  

We can then readily adopt the alternating 

direction method of multipliers (ADMM) [45], a 

variant of the augmented 

  

min 

Rt 

  

1 

2(σ t )2 

  

ǁ Xt − (Ht)⊥ ◦ (Bt−1 Ⓢ τ)− Ht ◦ Ft − Rt  ǁ2 

  

Lagrangian scheme, to iteratively optimize each 

variable involved in Eq. (24). To simplify the 

relevant subproblems, 

  

K sk 

t t 

 

t t    2 

   

ǁ Xt −((Ht)⊥◦ (Bt−1 Ⓢ τ)+ Ht ◦ Ft + Rt ) ǁ2 

=ǁ (H t)⊥◦(Xt−(Bt−1Ⓢ τ)− Rt ) ǁ2  +ǁ Ht◦(Xt − 

Ft− Rt ) ǁ2 . 

Next, we discuss how to solve each subproblem 

separately. 

Update Ht: The subproblem with respect to Ht is 

 

  

  

The closed-form solution is 

 

  
Update T : Following the general ADMM setting, 

T 

be updated as: 

  

can 

  

This subproblem is a standard energy 

minimization prob- 

lem, which can be efficiently solved by graph cut 

algorithm [56], [57]. 

  

T t = T t −1 + Dt 

k,s 

  

t  − Rt . (34) 

  

Update (σ t )2: The subproblem with respect (σ t 

)2 is 

 

  

 

min 

(σ t )2 

  

1 

 

2(σ t )2 

  

ǁ Xt − ((Ht)⊥ ◦ Bt + Ht ◦ Ft + Rt ) ǁ2 

σ t −12 

  

+d ln σ t + Nt−1(ln σ t + 

Its closed-form solution is: 

  

2(σ t )2 ). (35) 

 (σ t )2 = 1 (σ t )2 + t − 1 σ t−12, (36) 

  

where (σ t )2 = 1  ǁ Xt − ((Ht)⊥ ◦ Bt + Ht ◦ Ft + Rt 

) ǁ2 . 

  

Fig. 2. The changing tendency of the noise 

variance (σ t )2 and the scale 
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d 

Update bt : The subproblem with respect to 

  

F 

bt  is 

  

parameter bt along a video containing dynamic 

snow varying from heavy to light. Since there are 

three different scales of filters (used for 13 × 13, 

9 × 9, 

  

min (d + Nt−1)lnbt  +(bt 

 

)−1(ǁ Mt  ǁ +Nt−1bt−1).  (37) 

  

3 × 3 patch sizes, respectively) are utilized, there 

are three scale parameter 

  

t ks ks 

ks 

  

ks    1 ks 

  

changing curves. 

  

Its closed-form solution is: 

1 t 

  

ks t   ks 

where bt   = 1  ǁ Mt  ǁ1. 

  

+ t − 1 bt−1, (38) 

  

dynamic rain with videos with dynamic rain and 

varying background noises. This advantage is 

naturally conducted by the fact that the model 

assumes that each frame has its own 

specific noise parameter (σ t )2 and scale 

parameter bt , by 

  

ks d ks 

The algorithm for solving this online transformed 

MS-CSC 

(OTMS-CSC) model can then be summarized as 

Algorithm 1. 

 

Algorithm 1 Algorithm for OTMS-CSC Model 

  

simultaneously fitting the knowledge of the 

current frame and being regularized by those ((σ 

t−1)2 and bt−1) obtained from the previous 

frames. This makes this model, implemented for 

each new frame in an online mode, better adapt 

the specific 

  

       structures of rain/snow or background 

for the current frame, 

generally varied from those for previous ones. 

To more intuitively clarify this point, we illustrate 

in Fig. 2 the changing tendencies of parameters (σ 

t )2 and bt for a sequence of video frames, 

containing snow varying from heavy to light. It 

can be seen that both (σ t )2 and bt are gradually 

decreasing along time, finely reflecting the 

dynamic changes of snow along time. 

2) The Case for Videos With Rain/Snow and 

Dynamic Background: Given a sequence of 

surveillance video, if we stack the video frames 

as columns of a matrix, then the low-rank 

component naturally corresponds to the stationary 

background and the remaining component 

captures the moving objects and rain layers. 

Obviously, for videos with rain/snow and 

dynamic background, the background motions 

like swing leaves or water waves should also be 

removed from the stationary background, as 

shown in Fig. 1 (b), thus mixed with the moving 

objects and rain layers. 

  

Actually, the filters Dt 

  

of Eq. (7) can always help distin- 

 

D. Some Remarks 

1) Explanation for Function of DKL 

Regularizations: It should be noted that the DKL 

regularization in Eq. (22) and Eq. (23) 

intrinsically conduct the superiority of the 

proposed OTMS-CSC model for removing  
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dynamic rain/snow. Specif- ically, the offline 

MS-CSC model [16] intrinsically specifies one 

unique value for the parameter σ 2 as well as b to 

represent the background noise variance and scale 

parameter in feature map representing rain/snow, 

respectively, for all the frames of the video. The 

offline model is thus only suitable to be used in 

the video with static background and consistent 

rain/snow shapes. The OTMS-CSC model, 

however, can finely handle 

  

guish background dynamics and rain layers. 

Specifically, the patterns of rain streaks are 

relatively vertical or oblique in most cases, and 

the dynamic backgrounds, like water waves or 

swing leaves, are more often figured by relatively 

more horizontal filters. To make an intuitive 

understanding, the complete decomposition 

process of the OTMS-CSC model on a video with 

generated rain and water waves is displayed in 

Fig. 1. As shown in the second row of Fig. 1, the 

entire rain mixed with water waves can be divided 

into four sub- layers, the corresponding size of 

filters shown in the top-left corner are 5*5, 5*5, 

9*9, 13*13, respectively. The first sep- arated 

layer with the relatively horizontal filter 

appropriately extract the water waves, while the 

other three separated layers encode various rain 

layers with multiple scales and shapes. 

  

Thus, for videos with dynamic background, the 

final dynamic background (as shown in Fig. 1 (e)) 

should be a combination between stationary 

background and those separated sub-layers 

representing background motions, and the rain 

layer (as shown in Fig. 1 (f)) should be a 

combination among those other sub- layers. 

3) Background Amelioration: Our method 

gradually updates the background Bt of the 

current frame from the affine transformation on 

that of the last frame   Bt−1 by Eq. (27). Due to 

constantly temporal scene shifting of the videos 

(especially brought by the camera moving along 

a certain direction in a short time) and incremental 

accumulation of computing errors, the recovered 

video background tends to be gradually deviated 

from the real one, which always makes the rain-

removed videos look more or less blurry after a 

period of algorithm computing. To alleviate this 

issue, our algorithm needs to specifically 

ameliorate the background knowledge Bt after 

implementing certain frames by our algorithm.\ 

 

 
Our strategy is as follows: When our algorithm is 

run l iterations (the current frame is denoted as the 

tth  one), we then pick up two frames before and 

after current frame to get a subgroup as: 

Xˆt  = [Xt−2, Xt−1, Xt , Xt+1, Xt+2]. (39) 

We then easily align all other frames under the 

reference of the current frame by using the similar 

manner as we introduced in Eq. (27), to obtain the 

aligned subgroup as (a h × w × 5 tensor): 

T Xˆ = [T Xt−2, T Xt−1, Xt , T Xt+1, T Xt+2],

 (40) 

where TX j   Xt  τ j ( j   t   2, t   1, t   1, t   2), and 

τ j is calculated readily by Eq. (27)-(29). Then we 

can easily calculate  the  optimal  rank-one  

approximation  Bˆ t −1   of  the unfolded matrix T 

Xˆ ∈ Rhw×5 of T Xˆ efficiently by SVD, and 

replace  Bt−1  as  Bˆ t −1  to get the new 

ameliorated background 

initialization. 

4) Potential to Be Used for Streaming 

Videos: It is evident that the proposed OTMS-
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CSC algorithm is implemented in an online mode, 

i.e., each time run on a unique newly coming 

frame. This learning manner makes our method 

poten- tially applicable to practical streaming 

videos. In specific, in each implementation stage 

for a frame Xt , the algorithm only requires a fixed 

memory to restore related parameters Ht, Bt , Dt , 

(σ t )2, bt . Besides, since the implementation is 

similar to each new frame, its time complexity is 

also fixed in each learning stage. This makes our 

method potentially feasi- ble to the practical 

videos continuously coming with streaming 

format beyond current offline methods, which not 

only need increasingly more space complexity for 

larger length of videos, but also require 

increasingly larger time complexity for larger 

video sequence (even need to pre-implement the 

algorithms on the entire video again). This makes 

them hardly useable to this typical real video 

format in practice. Comparatively, our method 

makes the real-time execution of rain removal 

possible to be realized for practical streaming 

video. What we need to do is to improve the 

efficiency of our algorithm on one frame to make 

it gradually meet the real-time requirements. 

Possible 

  

regimes include further improvement on 

hardware power, further speed-up on algorithm 

implementation (like modify it 

distributed/parallel or transform it in faster 

implementation platform), or replace some of its 

stages with faster algorithms. This is a 

meaningful issue worthy of making further 

endeavors in future research. 

 

IV. EXPERIMENTAL   RESULTS 

To make a sufficiently comprehensive and 

diverse compari- son, this section contains 

experiments on videos with synthetic and real 

rain/snow, experiments on videos with dynamic 

background, further vertification of video rain 

removal on the video instance segmentation task, 

and failure cases. All experiments were 

implemented on a PC with i7 CPU and 32G 

RAM. 

Some state-of-the-art video rain/snow   removal   

meth- ods have also been implemented for 

comparison, includ- ing Garg et al. [5],1 Jiang et 

al. [21],2 Ren et al. [11],3 Wei et al. [12],4   Liu   

et   al.   [13],5   Li   et    al.    [16],6 Chen et al. 

[15]7 and Yang et al. [24].8 Note that these meth- 

ods contain both model-driven MAP-based and 

data-driven deep learning representative state-of-

the-art technologies for a comprehensive 

comparison. And some derain methods for 

surveillance system, like Wei et al. [12] and Li et 

al. [16], are only able to handle the videos with 

definitely static back- ground, thus automatically 

disappeared in visual and quantita- tive 

comparison for videos with background 

transformations, such as Tab. II and Fig. 5. 

 

A. Experiments on Videos With Synthetic 

and Real Rain/Snow 

In this section, to make a sufficiently 

comprehensive and diverse comparison, we not 

only includes almost all typical data in this 

domain, like NTURain [15],9 but also collects 

some real rainy and snowy videos from real-word 

systems and social media platforms. Considering 

the limitation of paper length and inconvenience 

for the result exhibition in video tasks, only 

twelve videos including five synthetic videos and 

seven real videos can be displayed on the paper in 

both quanti- tative and qualitative perspectives. 

More video demonstrations on the obtained 

results by all completing video rain removal 

methods have been reported in our specifically 

constructed website10 for easy and better 

observation. 

All experiments were   implemented   on   a   PC   

with i7 CPU and 32G RAM. Three different 

scales of filters (13 13, 9 9, 5 5) are implemented 

on all videos in this subsection. 

1http://www.cs.columbia.edu/CAVE/projects/ca

mera rain/ 

2Code is provided by the authors 

3http://vision.sia.cn/our%20team/RenWeihong-

homepage/vision- 

renweihong%28English%29.html 

4http://vision.sia.cn/our%20team/RenWeihong-

homepage/vision- 

renweihong%28English%29.html 

5https://github.com/flyywh/J4RNet-Deep-

Video-Deraining-CVPR-2018 

6https://github.com/MinghanLi/MS-CSC-Rain-

Streak-Removal 

7https://github.com/hotndy/SPAC-

SupplementaryMaterials 
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8https://github.com/flyywh/CVPR-2020-Self-

Rain-Removal 

9https://github.com/hotndy/SPAC-

SupplementaryMaterials 

10https://sites.google.com/view/onlinetmscsc/ 

  

TABLE I 

QUANTITATIVE PERFORMANCE 

COMPARISON OF ALL COMPETING 

METHODS  ON  STATIC  VIDEOS  WITH  

SYNTHETIC  RAIN  AND  SNOW. NOTE 

THAT ALL QUANTITATIVE RESULTS ARE 

THE MEAN 

OF  ALL  FRAMES IN  THE  VIDEO 

 
Fig. 3. Visual comparison on a static video with 

synthetic snow. 

1) Experiments on Videos With Synthetic 

Rain/Snow: The synthehtic rainy videos are 

generated by adding clean video and generated 

rain directly by pixel, where the rain/snow with 

various types used were synthetically generated 

by Photoshop on a black background. We first 

introduce experiments exe- cuted on videos with 

synthetic rain/snow, including two with static 

backgrounds, one of them is shown in Fig. 3, and 

one with evidently dynamic background with 

evident translations among adjacent frames, as 

depicted in Fig. 4 and four synthetic videos in the 

group a of the NTURain [15] testing dataset Fig. 

5. The clean videos as shown in Fig. 3 and Fig. 4 

are downloaded from surveillance system of 

Xi’an Jiaotong University and CDNET database 

[17]11 respectively, and sur- veillance system of 

Xi’an Jiaotong University respectively, and those 

of Fig. 5 are the synthetic testing data of the NTU-

Rain dataset [15]. 

The video with static background as shown in Fig. 

3 contains snow. From Fig. 3, we can easily 

observe that the compared methods proposed by 

(c) Garg et al., (d) Jiang et al. and (g) Liu et al. 

fail to completely remove the snow, and that 

proposed by (e) Ren et al., (f) Wei et al. and (h) 

Li et al. have not finely kept the shape of the 

moving objects when removing the rain streaks. 

Comparatively, our proposed OTMS-CSC 

method has a better visual performance in both 

snow removing and background/foreground 

detail preservation. Quantitative comparisons on 

two videos are also presented in Tab. I, which 

11http://www.changedetection.net 

  
fully complies with the aforementioned visual 

observations. Specifically, we adopt three image 

quality assessment (IQA) metrics, called PSNR, 

VIF [60] and SSIM [61], to evaluate the 

performance of all competing methods on entire 

videos. Note that the all quantitative results in the 

table are the mean of all frames in the video. The 

table indicates that our proposed OTMS-CSC 

model can perform best in all cases in terms of all 

IQAs, as compared with other competing 

methods. 

For slow panning videos as shown in Fig. 4 - 5, 

there are obvious rain streaks remaining on the 

recovered frames obtained by the methods 
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proposed by Ren et al. and Liu et al. respectively. 

The method of Jiang et al. has not done well in 

preservation of background details (like the 

texture of wall). Our proposed OTMS-CSC 

method attains a relatively better performance in 

both aspects. For the synthetic testing data of 

NTURain dataset introduced by Chen et al. [15] 

displayed in Fig. 5, all aforementioned methods 

still keep its own limitations in rain removal or 

texture information retention. Besides, the 

method proposed by Chen et al. can hardly 

remove the heavy rain bars with suddenly bright 

forming serious occlusions to background scene 

as shown in 

  

TABLE II 

QUANTITATIVE  PERFORMANCE  

COMPARISON  OF   ALL  COMPETING  

METHODS  ON   VIDEOS  WITH  

SYNTHETIC  RAIN  AND   BACKGROUND 

TRANSFORMATIONS. ALL  

QUANTITATIVE  RESULTS  ARE  

AVERAGED  OVER  ALL  FRAMES  IN  THE  

VIDEOS 

 
      

 

      

  

  
Fig. 6.    Visual comparison on a typical real video 

with dynamic rain and static background. 

 

 

red boxes. Comparatively, our proposed method 

still remains stable and gets expected 

performance on videos with heavy rain and 

complex background texture. The average 

quantitative comparisons in the entire video 

presented in Tab. II further verify that our 

proposed model can stay the highest or the second 

highest in all cases in terms of all IQAs, as 

compared with other competing methods. 

Based on the above tables and figures, proposed 

OTMS-CSC model achieves stable and best 

performance on synthetic videos datasets both 

visually and quantitatively. Considering that all 

other methods are implemented on the entire 

video (iteratively utilizing the video multiple 

times) or need additionally pre-collected training 

data while our method is sequentially 

implemented in the video sequence (i.e., each 

frame is only iterated one time and then dropped 

out), it should be rational to say our method is 

efficient. 

2) Experiments on Videos With Real 

Rain/Snow: We further evaluate the performance 

of the proposed method on videos with real rainy 

or snowy scenarios. Due to the limitation of paper 

length, only five real videos   have been shown in 

our experiments, including a video captured 

under static background and four videos under 

backgrounds with typi- cal transformations like 

random jitter, translation, and scale 

transformation. More video visual results by all 

completing methods have been reported in our 

specifically constructed website10 for easy and 

better observation. Fig. 6 and Fig. 8 

  

 

include three public rain videos used in [5] or 

downloaded from YouTube12 respectively. Fig. 

7 shows two real rainy videos from the real testing 

data of NTURain dataset. 

The video shown in Fig. 6 is captured by a 

surveillance equipment in street, containing 

dynamically varying rain along time. From the 

figures, we can easily observe that the derained 

frames of all other compared methods still contain 

certain rain streaks. By contrast, our proposed 

OTMS-CSC method is capable of better 

removing all the rain and snow. 

Fig. 7 and 8 show rain and snow removal results 

on real videos with slow panning and scaling, 
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respectively. It can be seen from above two 

figures that the methods proposed by (b) Garg et 

al. and (c) Jiang et al. cannot fully remove 

rain/snow and fail to recover the texture 

information underlying the frames, that proposed 

by (d) Ren et al. and (e) Liu et al. fail to detect and 

remove the rain streaks or snowflakes since they 

are not capable of dealing with video 

transformations. The method of (e) Chen et al. 

sometimes misses some heavy rain bars with 

obvious bright. The proposed OTMS-CSC 

method can obtain better visualized performance 

since they consider the background 

transformation and online multi-scale 

convolutional sparse coding in the modeling. This 

verifies that aligning video background can help 

to improve the final performance of rain/snow 

removal especially for videos with background 

transformation. Please refer to the website10 for 

more comprehensive illustration of the video 

results. 

3) Run Time Comparison: Although some 

earlier methods, such as Garg et al. and Jiang et 

al., run very efficiently, their performance is not 

comparable with recent video rain removal 

methodologies. Therefore, considering the 

balance between running time and performance, 

this paper only includes those methods published 

in recent years, which usually are compa- rable in 

performance. To show the efficiency of the 

proposed online method, we list the average 

running time per frame of each compared method 

in Tab. III in four representative static and 

dynamic videos with synthetic and real rain/snow, 

respec- tively. From the table, the speed 

advantage of the OTMS-CSC method is evident 

attributed to its online learning manner. Besides, 

in order to better intuitive time comparisons 

between offline and online learning, 

corresponding to MS-CSC [16] and OTMS-CSC 

model respectively, the time line of MS-CSC 

model in dynamic videos shown in Fig. 9 (c-d) 

also have 

 

12https://www.youtube.com/watch?v=kNTYEK

jXqzs, HbgoKKj7TNA 
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TABLE III 

AVERAGE  RUNNING  TIME   

COMPARISON   OF   ALL   COMPETING   

METHODS ON FOUR TYPICAL 

RAINY/SNOWY VIDEOS WITH STATIC 

OR DYNAMIC BACKGROUND. (UINT: 

S/FRAME) 

 
been provided in this part. As we show in Fig. 

9, this online method has a good scalability, i.e., 

its time cost is linearly increasing with more 

input video frames, naturally due to its fixed 

training time on each video frame. Together 

with its fixed space complexity along time as 

discussed in Sec. 3.4.4, the method is expected 

to be potentially useful for real streaming 

videos. 

 

B. Experiments on Videos With Dynamic 

Background 

The rain removal experiments on videos with 

dynamic background have been performed on 

the proposed synthetic CDNet-Rain dataset. 

The rough process of generating the dataset is 

to add rgenerated ain streaks by Adobe After 

Effects13 to the frames clipped from the 

dynamic back- ground sequences of the CDNet 

[17] dataset. There are seven 

13https://www.adobe.com/products/aftereffect

s.html 

 
Fig. 9. Run time comparison of comparable 

methods on four videos with static ((a) and (b)) 

or transformed background ((c) and (d)) 

respectively. The black point denotes the 

method over the current frames will report the 

error: out of memory. 

 

sequences in the CDNet-Rain dataset, two of 

which are based on the same sequence with 

swing leaves, named Fall01 and Fall02 

respectively. The difference between them is 

that the former does not contain moving 

objects, while the latter does. The detailed 

introduction of CDNet-Rain dataset is listed in 

  

TABLE IV 

QUANTITATIVE  PERFORMANCE  

COMPARISON  OF   ALL   COMPETING 

METHODS  ON  SYNTHETIC  CDNET-

RAIN  DATASET  WITH 

DYNAMIC  BACKGROUND 

 
Tab. IV. Four different scales of filters (13 13, 

9 9, 5 5, 5 5) are adopted on all videos of 

CDNet-Rain dataset. 

In order to test the stability and generalizable 

usefulness of video rain removal algorithms 

more fairly, we execute all seven testing video 

sequences on a fixed experimental setting for 

all competing methods. The quantitative 

performance comparison are listed in Tab. IV. 

It is seen that the proposed OTMS-CSC model 

achieves the best results on five out of the seven 

video sequences, and also stays the best 

average performance on the average of whole 

dataset. For those two video sequences Fall01 

and Fall02, the performance of proposed 

OTMS-CSC model is sligtly lower than the 

SLDNet model, because the graph cut 

algorithm used in our algorithm for cutting 

moving objects mask is not accurate enough in 

the segmentation of the object edges. 

Furthermore, the higher SSIM index of OTMS-

CSC model over SLDNet validates the 

effectiveness of multi-scale convolutional 

sparse coding model, which can separate 

background motions from the mixed rain layer. 

Fig. 10 shows some visual comparison of video 
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rain removal for all competing models on 

synthetic CDNet-Rain dataset. As compared 

with the SLDNet model [24], which can 

preserve most of the details in the background 

but remain some streak residuals, the proposed 

OTMS-CSC model estimates a cleaner 

background with less rain streak residuals, 

which substantiates the superiority of our 

proposed method in generalization on dynamic 

videos. 

 

C. Video Rain Removal Verification on 

Video Instance Segmentation Task 

In order to further verify whether removing rain 

and snow from a video could bring positive 

impact on the sub-sequence video processing 

tasks, we take the video instance segmen- tation 

(VIS) task [18], which aims to simultaneously 

detect, segment and track instances in videos, 

as an example for evaluation. Specifically, the 

video rain removal algorithms can be served as 

a pre-processing step to ameliorate quality of 

images/videos, so as to make the following 

processing task capable of being normally 

handled by off-the-shelf techniques. To 

facilitate such an evaluation, based on the 

large-scale video instance segmentation valid 

dataset YouTube-VIS pro- posed in [18], which 

consists of 301 high-resolution YouTube 

videos, we propose a video rain removal 

benchmark for video instance segmentation 

task called YouTube-VIS-Rain. Specif- ically, 

we selected seventeen outdoor videos from 

YouTube- 

 

Fig. 10. Visual comparison on synthetic 

CDNet-Rain dataset with dynamic background. 

From upper to lower: input frame, groundtruth 

clean frame, results produced by SLDNet and 

OTMS-CSC model respectively. 

 
Fig. 11.   PSNR and SSIM evolution curves of 

video rain removal task on all seventeen 

synthetic videos from the YouTube-VIS-Rain 

dataset. 

 

VIS valid dataset and synthesized rain over 

these videos with varying parameters. In the 

pre-processing step, the seventeen synthetic 

videos were implemented by video rain 

removal methods for removing rains. The 

obtained videos are then put back into the 

YouTube-VIS valid dataset to perform video 

instance segmentation task. 

Quantitative performance metrics for both tasks 

are taken into account, including PSNR and 

SSIM metrics for video rain removal task, 

together with average precision (AP) and 

average recall (AR) metrics [62] for video 

instance segmentation task. For video rain 

removal task, the average quantitative perfor- 

mance comparison on the seventeen videos 

from YouTube- VIS-Rain dataset are shown in 

the second and third columns of Tab. V, and the 

PSNR and SSIM comparison on each video 

sequence are displayed in Fig. 11. Compared 

with the SLDNet model, the proposed OTMS-

CSC method achieves better results on average 

PSNR and SSIM metrics. Visual results shown 

in the first row of Fig. 12 indicate that the 

SLDNet model fails to detect completely rain 

streaks and still leaves obvious rain marks in 

the video, while the proposed 
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Fig. 12.  Performance visual comparison for both video rain removal task and video instance 

segmentation task on a synthetic video of the YouTube

-VIS-Rain dataset. 

TABLE V 

QUANTITATIVE    PERFORMANCE    

COMPARISON    FOR    BOTH    VIDEO    

RAIN 

REMOVAL  TASK  AND  VIDEO  INSTANCE  

SEGMENTATION 

TASKS  ON  YOUTUBE-VIS-RAIN  

DATASET 

 
OTMS-CSC method can better remove rain 

streaks from the background. But affected by total 

variation (TV) regularization on the foreground, 

the OTMS-CSC model perform still not 

sufficiently perfect in removing rain from the 

foreground compared with the SLDNet model. 

This is why the quantitative metrics of OTMS-

CSC model are slightly lower than those of the 

SLDNet model in some videos as shown in Fig. 

11. 

We employ the video instance segmentation 

algorithm pro- posed in [18] to further evaluate 

the impact of rain/snow on the performance of 

video instance segmentation task. There are four 

settings on those seventeen videos from 

YouTube- VIS-Rain dataset for comparison: 

clean videos (GT), rainy videos, rain-free videos 

removed by SLDNet and OTMS-CSC model 

respectively. The corresponding quantitative 

metrics are listed in the last five columns of Tab. 

V. It is seen that compared with taking clean 

videos as input, introducing seventeen dirty 

videos into YouTube-VIS dataset does cause 

obvious performance degradation in all five 

metrics. The mAP index decreased from 30.32 to 

29.75, and the AP75 index fell 1.1. After rain 

removal pre-processing by SLDNet and OTMS-

CSC models, all metrics of VIS task have been 

moder- ately improved. Since the VIS task pays 

more attention on the moving objects, the 

performance of the proposed OTMS-CSC method 

is sightly lower than those of the SLDNet model. 

The second row of Fig. 12 exhibits instance 

segmentation visualization results for four 

settings. As can be seen, in those rainy/snowy 

videos, the actual features of objects (such as 

person) are very likely to be destroyed by rain or 

snow, making it difficult for the network to 

classify and track the instances accurately. The 

rain/snow removal pre-processing does be 

beneficial to the final performance for this task. 

  

D. Failure Cases 

The proposed method still has limitations on 

handling general video rain removal tasks, 

especially for those captured with non-

surveillance cameras. Specifically, there are three 

limitations of our proposed OTMS-CSC method. 

Firstly, when camouflage effects occur (the 

photometric similarity of moving objects and the 

background), the graph cut algorithm used to 

obtain moving object mask in our algorithm tends 

to confuse the moving objects with the 

background, resulting in incomplete moving 

object mask, especially in videos with extensive 

moving objects. Secondly, our proposed OTMS-

CSC model currently cannot handle those 

challenging videos with fast illumination changes 

because it does not meet the low-rank assumption 

of background extraction. Thirdly, the proposed 

model is with limitation for videos captured by 
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fast moving cameras, like the videos in the Group 

b (with the speed range between 20 to 30 km/ h) 

of synthetic test data of the NTURain dataset. For 

those videos, the affine transformation operator 

used to align the background of the video frame 

may lack sufficient overlap information between 

the frames to be aligned. We’ll make further 

endeavor on these degenerated cases for the video 

rain removal task in our future research. 

V. CONCLUSION 

In this paper, we have proposed a new rain/snow 

removal method for surveillance videos 

containing dynamic rain/snow captured with 

camera jitter. Both dynamic characteristics of 

rain/snow variations and background scenes 

along time inevitably encountered in real cases, 

have been fully consid- ered in our method. 

Especially, the method is with a natural online 

implementation manner, with fixed space and 

time complexity for handling each frame of 

continuously coming videos, making it 

potentially useful for dealing with practical 

streaming video sequences. In the future, we will 

further ameliorate the capability of the proposed 

method in more challenging video cases, like 

those captured under fast moving cameras or 

those under background with strong color 

contrast and rain/snow with large streak shapes, 

and try to design rational techniques or use some 

advanced computing equip- ments to further 

speed up the method for each unique frame to 

make it meet with the real-time requirements on 

practical streaming videos. Furthermore, we will 

consider the spatial heteroscedasticity property 

[63] of noises in our future work. We will also try 

to consider how to better express raindrop 

numbers in the rain removal tasks to more 

faithfully encode the feature maps of our model 

in our future investigations. 
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