

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 93

BIOLOGICAL SYSTEM ADMINISTRATIONS FOR COMPELLING UTILIZE OF

INFORMATION DRIVEN MODELING

Nagaraj Rathod Assistant Professor, Department of Computer Science and Engineering St.

Martin’s Engineering College, Secunderabad, Telangana, India E-mail:

nagarajrathodcse@smec.ac.in

Abstract

The principle point of this paper is the means by which viably Data Driven Modeling (DDM) can be

adequately utilized for biological system administrations contrasting and the traditional displaying, the

DDM (Data Driven Modeling) measure gives the best exactness. For going through preparing, tree

order calculations were utilized like choice tree, packing, irregular woods with boosting angle like

XGBoosting. The biological system dataset is contrasted here and all most appropriate calculations. In

Random woods the way toward finding the root hub and parting the element hubs will run arbitrarily.

The highlights assume a significant part in arbitrary backwoods calculation particularly tracking down

the significant component for preparing the set. Over fitting is one basic issue that may aggravate the

outcomes, yet for Random Forest calculation, if there are sufficient trees in the woodland, the classifier

will not over fit the model particularly for arrangement issues. Irregular backwoods with XGBoost

(eXtreme Gradient Boosting) which an incredible, and lightning quick AI library where the trees are

developed successively and the speed is expanded by equal preparing. This information is prepared

utilizing Random Forest in XGBoosting with extra hyper boundaries and the exactness is anticipated.

Keywords: Data pre-processing, XGBoosting algorithms, Random Forest algorithm, Predictive model.

Introduction

Mathematical modeling of cellular processes for mechanism exploration has now become

commonplace using various techniques [1–5], but challenges remain as to how models should be built,

calibrated, analyzed and interpreted to extract much- needed mechanistic knowledge from

experimental data. Historically, methods and techniques from other fields have been directly imported

to systems biology with varying success. For example, early interpretations of cellular processes as

circuits provided insights about basic regulatory motifs that could explain cellular behaviors [6].

Similarly, techniques from chemistry, physics, and various engineering disciplines have been used to

model cellular processes [7,8], but due to the spatiotemporal complexity of cellular processes, from

femtosecond/nanometer electron transfer reactions to years and meter scales in tumor growth, no

established paradigm has emerged to capture the full complexity of cellular processes. Multiple tools

have been developed to achieve specific modeling tasks. For example, COPASI [5], RuleMonkey [9],

Simmune [10], and StochSS [11] all provide graphical user interfaces that cater to non-expert modelers

wishing to encode mechanistic representations of biological processes. More abstract approaches such

as BioNetGen [12], Kappa [13], and CobraPy [14] employ a domain- specific language (DSL) to

describe and simulate models. However, most tools are

self-contained platforms with a small set of included methods and analyses, limiting access to other

standalone simulation tools such as StochKit [4], SciML tools[15], URDME [16], SmolDyn [17].

Similarly, optimization techniques ranging from vector- based optimization methods [18,19] to

probabilistic-based methods [20*,21] exist in yet another isolated domain. Therefore, the current

modeling and simulation ecosystem is compartmentalized and fractured, and thus, unification and

intercompatibility efforts are sorely needed.

Valuable efforts toward unification have been put forth to create standards for model instantiation,

simulation, analysis and dissemination [22,23**,24–26]. Of these, Systems Biology Markup Language

(SBML) is perhaps the most successful to date. However, mathematical modeling for cell biology

remains challenging to scale - both vertically (larger, more complex models) and horizontally (more

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 94

active collaborators). While mathematical tools are the obvious way forward to describe cellular

processes, the complexity challenge results in a knowledge base that is highly domain specific, with

some notable exceptions [27*].

A novel, more flexible approach to encode knowledge about biological processes as computer

programs is slowly emerging and gaining momentum [3,28,29]. In this approach, biological models

are no longer static documents, but computer code that aggregates community knowledge and opens

doors toward crowd-driven mathematical models of biological processes. Although computer

languages like Lisp [30] and proprietary packages such as MATLAB have been used toward this goal,

we believe Python provides the largest ecosystem, myriad learning resources, and large applicable

base to unify modeling practices in the field. Adopting a programmatic modeling paradigm for systems

biology automatically accrues decades of computer science practices including structured

documentation, integrated development environments (IDEs), (model) version control, code-sharing

platforms, code testing frameworks, and importantly, literate programming/computational notebook

dissemination. Here, we review the recent developments in programming-based approaches for

systems biology. The structure of the manuscript is motivated by the model specification, simulation,

calibration, analysis, and visualization paradigm/pipeline, commonly practiced in systems biology.

Throughout, we note how this approach could be supplemented and improved by incorporating best

practices from software engineering (Figure 1).

Figure 1: The traditional modeling paradigm in systems biology entails model building, simulation,

calibration, and analysis (left column), which is carried out with myriad tools and practices. Software

engineering practices can add much needed structure to the practice through maintenance, testing,

documentation and sharing paradigms (right column), vetted by a the software community.

Table 1: List of key frameworks, tools, and services for programmatic modeling in Python. BSD, MIT,

and PSF are permissive software licenses. GPL is a “copyleft” software license.

*Free for open-source projects.

Tool or service Usage

terms

Notes

Frameworks

PySB [3] BSD Bespoke Python object-based model format, multiple simulation

backends

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 95

Tellurium [29] Apache Bespoke DSL (Antimony), ODE and SSA simulation backends

PySCeS [70] BSD Bespoke DSL, ODE simulation backend

ScrumPy [71] GPL Metabolic modeling

CobraPy [14] GPL Metabolic modeling

Testing

PyTest MIT Testing framework; pytest.org

GitHub Actions Free*

service

Continuous Integration; github.com/features/actions

Circle CI Free*

service

Continuous Integration; circleci.com

Calibration

PyBioNetFit [48*] BSD BNGL and SBML models

PyPESTO [49] BSD SBML and PEtab support

PyDREAM [20*] GPL PySB interface

Analysis & Visualization

Matplotlib PSF Plotting library; matplotlib.org

Jupyter Notebooks BSD Computational notebooks; jupyter-notebook.readthedocs.io

PyVIPR [58*] MIT PySB, Tellurium interfaces

Sharing and modification

Github Free*

service

Code hosting and collaboration suite; github.com

Model specification

Traditionally, encoding a model of biochemical reactions would require the user to write each equation

by hand, encode these into a solver, and run the simulations [31]. Although this is still common practice

for smaller model systems, these lists of equations often lead to a model dead-end as the biological

context is completely lost in the mathematical representation, which hinders model reuse. Reaction-

based modeling formats add one layer of abstraction where the user instead writes chemical reactions

of the form 𝐴 + 𝐵 ↔ 𝐶 in a program-specific notation and the computer parses this information into a

mathematical representation [32]. These DSLs can operate either through a GUI that generates the

code in the background, or directly through a text editor. For example, Antimony [32] requires manual

enumeration of every species and reaction explicitly. However, signaling pathways often comprise a

large number of molecular complexes, which can assemble in multiple orders, leading to a large

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 96

number of reactions and intermediate species during complex assembly and degradation. Therefore,

traditional approaches become unwieldy as model systems become larger, learning to model dead-

ends. Another level of abstraction is presented by rule-based modeling formalisms whereby reaction

rules rather than explicit reactions (or equations) are used to encode the system [3,12,13]. A reaction

rule is a template for reaction patterns to be enumerated and instantiated recursively, starting from a

defined list of initial species, thereby saving the user time and reducing error- prone repetition. In rule-

based approaches, the reaction center (the relevant molecular components for a given reaction) is

separated from the context (attached molecular components which have minimal or no effect on the

reaction). These approaches often require a pre-processing step to generate the network of nodes

(chemical species) and edges (chemical reactions) from the initial pool of chemical species and a set

of reaction rules. However, network-free methodologies have been proposed to bypass the network

generation step [33].

Model specification can also be embedded into General Purpose Programming Languages (GPPL) to

provide a more powerful approach to biological modeling. In the programmatic modeling paradigm,

the model is encoded as an executable piece of code, thereby offering all the advantages of a full-

fledged computer programming language (Figure 2). Modularity, in which a model can be split into

smaller, reusable code objects, is perhaps the most useful aspect for cell biology modeling. For

example, PySB currently includes a library of 25 macros (small modules or functions) that encode

reaction patterns commonly found in biology such as catalytic activation, molecule-molecule

inhibition, or complex oligomerization. From a user perspective, GPPLs have greater integration with

IDEs than DSLs, thus allowing syntax highlighting and checking, and navigation between functions.

The model is also inspectable at runtime, allowing searching and filtering of model components. For

example, a user could check whether certain species or reactions are present before simulation

commences. Currently, the most used modeling frameworks using the programmatic modeling

paradigm in Python are PySB [3], written in and using Python, and Tellurium [29], which is written in

Python but uses Antimony [32], a DSL with function support, for model specification.

Figure 2: Levels of abstraction in programmatic modeling. Models are composed of modules and

macros, which are handled by the programming language interpreter/compiler; rules encode sets of

reactions using structured pattern templates; reactions specify biochemical species’ transformations;

and finally equations are handled by an ODE integrator or simulation algorithm directly.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 97

Figure 2: Levels of abstraction in programmatic modeling. Models are composed of modules and

macros, which are handled by the programming language interpreter/compiler; rules encode sets of

reactions using structured pattern templates; reactions specify biochemical species’ transformations;

and finally equations are handled by an ODE integrator or simulation algorithm directly.

Model simulation

Model simulation involves numerically solving the model equations to obtain trajectories for

dynamically controlled species. Concentrations or molecule counts of chemical species in the model

are the most commonly simulated quantities. Integration of systems of ordinary differential equations

(ODEs) for deterministic simulations is the most common model simulation approach. Many ODE

integrators are available and the best choice depends on model stiffness, desired integrator tolerances,

and other requirements. In Python, a family of integrators is available through SciPy [34**] including

VODE and LSODA, but many other solvers have been proposed. Other commonly used solver suites

include StochKit (Stochastic Simulation Algorithm) [4,35], BioNetGen (CVODE, SSA, tau-leaping

algorithm, partition-leaping algorithm) [12], cupSODA (GPU ODE) [36], GPU_SSA (GPU SSA) [37],

and Libroadrunner (CVODE,

SSA) [38]. Within the Python ecosystem, PySB provides a simulation class that enables users to use

many of these simulation tools or to connect new tools as needed. In addition, users of other Python-

based tools such as Tellurium can also take advantage of these resources.

Model calibration

Model calibration is the process of adjusting model parameters to match experimental data, also known

as parameter estimation/optimization when applied to parametric models. The most common form of

model calibration involves a process of running many simulations (thousands to millions or more) and

checking the distance between model and experimental data error using an objective function, which

gives a measure of the model’s simulation “error” versus experiment; for a review see [39]. Since

dynamic data for signaling models are hard to come by, the modeler often only has data for a few

species, and thus model calibration often leaves a model underdetermined - multiple parameter sets fit

the data equally well [40]. The concept of parameter “sloppiness” states that only a few “stiff”

combinations of parameters are important in determining model outcomes, and others are “sloppy”

and have little effect. Thus, an undetermined model can still be useful in predicting biological

properties [41]. However, the interpretation of large, underdetermined models in the context of limited

data is still up for debate. Lessons from e.g. hydrology and climate modeling have been highly

influential toward addressing these issues [20*,42,43].

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 98

The landscape of model parameters is often envisioned as a multidimensional surface with “height”

representing the objective function, where the (ideally global) minimum or minima (representing the

best fit(s)) must be found. SciPy [34**], for example, includes gradient descent and simplex-based

methods. However, the curse of dimensionality means that local optimization can give far-from-

globally optimal results as the number of model parameters increases. Finding the global minimum of

a multivariate nonlinear model is NP-hard [44], however several methods can make statistically good

approximations. Markov Chain Monte Carlo sampling methods are among the most popular algorithms

[45]. General purpose optimization toolkits for Python include SciPy.optimize [34**] and Pyomo [46].

We have found that DEAP [19] provides excellent support for PSO and genetic algorithm-based

optimization.

Given the dearth of data available for biological model calibration, conditional probability (Bayesian)

approaches are gaining traction. These approaches provide a probabilistic interpretation of model

parameters [47], including uncertainty quantification, at the cost of increased computer time. However,

new GPU-based integrators mitigate this problem. Excellent tools for Bayesian parameter inference

include PyDREAM (which can readily take PySB models) [20*], PyBioNetFit [48*], PyPESTO [49],

PyMC3 [50], and PySTAN [51], although popular data-science tools such as TensorFlow [52] and

PyTorch [53] also provide Bayesian inference capabilities. ABC-SysBio [54] provides a hybrid

solution to the computation problem but still within a Bayesian context.

Model analysis and visualization

Model analysis and visualization is likely the least developed area in systems biology as no clear

standards have been proposed. In general, modelers explore the chemical species concentration

trajectories in their model to infer mechanistic behaviors and properties. Exploration of biochemical

flux through reactions is highly challenging with some notable attempts toward this goal in the

literature [7,47], but much work is still needed. For visualization, perhaps the most useful tool in

Python is matplotlib [55], which provides flexible graphing capabilities. Other Python tools include

Seaborn (https://seaborn.pydata.org/), Plotly [56], and Mayavi [57]. Network visualization is perhaps

the other major area of model analysis that is addressed in various ways in Python. For example,

PyVIPR [58*] is a visualization tool built on Cytoscape.js [59] for rule- and reaction-based models

which animates model dynamics over time, overlaid on a graph. MASSPy [60] also provides some

visualization capabilities for metabolic models. We note, however, that excellent tools for graph

manipulation in Python exist, such as NetworkX [61].

Model sharing and modification

Perhaps the most appealing benefit for the systems biology community from program- based paradigm

is the use of literate programming for model and results dissemination. Introduced by Donald Knuth,

literate programming is a paradigm whereby the code and the document coexist in an interactive format

[62]. Jupyter Notebook, a popular format, has been described as “data scientists’ computational

notebook of choice” [63]. Jupyter Notebooks allow analyses to be run in a web browser, checked into

version control, and include documentation alongside analyses, in turn improving transparency and

reproducibility. We believe that Jupyter notebooks are a highly desirable step forward in systems

biology as it greatly contributes to model transparency, revision, and dissemination, and should be

included in paper submissions where computational simulation and analysis are involved.

Programmatic models’ code can be managed using existing version control tools. Git has emerged as

the de facto standard for version control, providing powerful capabilities for decentralized editing,

branching, and merging, with online platforms such as GitHub adding a collaborative interface for

change management, commenting, and other functions. In PySB, models are Python programs, and so

can be imported like other Python modules and extended or modified. The code can be inspected, for

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 99

example the model can be searched for species or reactions using pattern matching. Tellurium’s

antimony language has an import function, but previous model definitions are currently not

programmatically searchable or modifiable.

Good documentation can be vital to ensure model reproducibility and interpretability by others. Sphinx

(sphinx-doc.org) is a de facto documentation standard for Python code, which allows code comments

to be compiled into multiple formats including website (HTML) and PDF. The former can be

combined with continuous integration, for always up-to-date documentation (readthedocs.io).

Model checking and testing

Complex biochemical models present challenges in both ensuring they are correctly encoded, and

ensuring their dynamics meet a given specification. In software engineering, it has become common

practice to build an accompanying test suite while developing code, which runs the code under scrutiny

to test that works as expected.

Subtle errors can be introduced as models grow larger. In our opinion, the field should establish

minimum standards to ensure software is runnable, reproducible, and meets basic quality standards

[64]. In the context of models-as-programs, unit and integration tests can be borrowed from software

engineering to ensure code correctness. Unit tests refers to code which checks the functionality of

other, minimal units of code; integration tests check that units work as expected when combined.

Python has several frameworks for testing, PyTests is a popular option with a plugin for Jupyter

Notebooks [65]. PySB introduces a framework for testing static properties of rule- based models after

network generation; for example, checking that certain species are produced by the reaction network,

or that certain reactions are present. Using continuous integration (CI), these tests can be run

automatically when changes are made and checked into version control, and/or on a regular basis.

Running tests regularly is recommended because, even if a model itself does not change, changes to

software dependencies could lead to unexpected errors. The importance of this is emphasized by a

recent review, which found a majority of Jupyter Notebooks were not automatically reproducible, often

due to dependency errors [66**]. For open-source models, these tests can be run for free using services

such as Github Actions, Travis, and Circle CI. Finally, we recommend containerization technologies

such as Docker

[67] and Singularity [68], which bundle model and software dependencies together in a self-contained

environment, further aiding reproducibility and cross-platform compatibility.

Conclusions

Python has recently turned 30 years old and is now one of the most popular programming languages

in the world. There are many reasons for its success, but a key insight of its creator is that code is read

much more often than it’s written [69]. The same principle applies to models, which emphasizes the

importance of clear documentation, transparency of approach, and the separation of model

specification from simulation and downstream analysis code. These efforts are central to improving

reproducibility, code maintenance, and model extensions, by original authors and third parties.

For beginners interested in modeling cell signaling, we recommend either the PySB or Tellurium

frameworks, both of which have high quality documentation and active communities for support. We

expect the Python modeling ecosystem will continue to grow, and efforts for framework and package

interoperability to increase.

References

1. Albert R, Thakar J: Boolean modeling: a logic-based dynamic approach for understanding

signaling and regulatory networks and for making useful predictions. Wiley Interdiscip Rev Syst Biol

Med 2014, 6:353–369.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 2, February : 2024

UGC CARE Group-1, 100

2. Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P: PhysiCell: An open

source physics-based cell simulator for 3-D multicellular systems. PLOS Comput Biol 2018,

14:e1005991.

3. Lopez CF, Muhlich JL, Bachman JA, Sorger PK: Programming biological models in Python

using PySB. Mol Syst Biol 2013, 9.

4. Sanft KR, Wu S, Roh M, Fu J, Lim RK, Petzold LR: StochKit2: software for discrete stochastic

simulation of biochemical systems with events. Bioinformatics 2011, 27:2457–2458.

5. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer

U: COPASI—a COmplex PAthway SImulator. Bioinformatics 2006, 22:3067– 3074.

6. Tyson JJ: Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci

1991, 88:7328–7332.

7. Mallela A, Nariya MK, Deeds EJ: Crosstalk and ultrasensitivity in protein degradation

pathways. PLOS Comput Biol 2020, 16:e1008492.

8. Lander AD, Nie Q, Sanchez-Tapia C, Simonyan A, Wan FYM: Regulatory feedback on

receptor and non-receptor synthesis for robust signaling. Dev Dyn Off Publ Am Assoc Anat 2020,

249:383–409.

9. Colvin J, Monine MI, Gutenkunst RN, Hlavacek WS, Von Hoff DD, Posner RG: RuleMonkey:

software for stochastic simulation of rule-based models. BMC Bioinformatics 2010, 11:404.

10. Angermann BR, Klauschen F, Garcia AD, Prustel T, Zhang F, Germain RN, Meier-

Schellersheim M: Computational modeling of cellular signaling processes embedded into dynamic

spatial contexts. Nat Methods 2012, 9:283–289.

11. Drawert B, Hellander A, Bales B, Banerjee D, Bellesia G, Jr BJD, Douglas G, Gu M, Gupta

A, Hellander S, et al.: Stochastic Simulation Service: Bridging the Gap between the Computational

Expert and the Biologist. PLOS Comput Biol 2016, 12:e1005220.

12. Harris LA, Hogg JS, Tapia J-J, Sekar JAP, Gupta S, Korsunsky I, Arora A, Barua D, Sheehan

RP, Faeder JR: BioNetGen 2.2: advances in rule-based modeling. Bioinformatics 2016, 32:3366–3368.

13. Boutillier P, Maasha M, Li X, Medina-Abarca HF, Krivine J, Feret J, Cristescu I, Forbes AG,

Fontana W: The Kappa platform for rule-based modeling. Bioinformatics 2018, 34:i583– i592.

14. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR: COBRApy: COnstraints-Based

Reconstruction and Analysis for Python. BMC Syst Biol 2013, 7:74.

15. Rackauckas C, Nie Q: DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem

for Solving Differential Equations in Julia. J Open Res Softw 2017, 5:15.

16. Drawert B, Trogdon M, Toor S, Petzold L, Hellander A: MOLNs: A CLOUD PLATFORM

FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC

COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME. SIAM J Sci

Comput Publ Soc Ind Appl Math 2016, 38:C179–C202.

17. Andrews SS: Smoldyn: particle-based simulation with rule-based modeling, improved

molecular interaction and a library interface. Bioinforma Oxf Engl 2017, 33:710–717.

18. Kennedy J, Eberhart R: Particle swarm optimization. In Proceedings of ICNN’95 -

International Conference on Neural Networks. . 1995:1942–1948 vol.4.

19. Fortin F-A, De Rainville F-M, Gardner M-AG, Parizeau M, Gagné C: DEAP: evolutionary

algorithms made easy. J Mach Learn Res 2012, 13:2171–2175.

20. * Shockley EM, Vrugt JA, Lopez CF: PyDREAM: high-dimensional parameter inference for

biological models in python. Bioinformatics 2018, 34:695–697.

