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Abstract 

The principle point of this paper is the means by which viably Data Driven Modeling (DDM) can be 

adequately utilized for biological system administrations contrasting and the traditional displaying, the 

DDM (Data Driven Modeling) measure gives the best exactness. For going through preparing, tree 

order calculations were utilized like choice tree, packing, irregular woods with boosting angle like 

XGBoosting. The biological system dataset is contrasted here and all most appropriate calculations. In 

Random woods the way toward finding the root hub and parting the element hubs will run arbitrarily. 

The highlights assume a significant part in arbitrary backwoods calculation particularly tracking down 

the significant component for preparing the set. Over fitting is one basic issue that may aggravate the 

outcomes, yet for Random Forest calculation, if there are sufficient trees in the woodland, the classifier 

will not over fit the model particularly for arrangement issues. Irregular backwoods with XGBoost 

(eXtreme Gradient Boosting) which an incredible, and lightning quick AI library where the trees are 

developed successively and the speed is expanded by equal preparing. This information is prepared 

utilizing Random Forest in XGBoosting with extra hyper boundaries and the exactness is anticipated.  

Keywords: Data pre-processing, XGBoosting algorithms, Random Forest algorithm, Predictive model. 

 

Introduction 

Mathematical modeling of cellular processes for mechanism exploration has now become 

commonplace using various techniques [1–5], but challenges remain as to how models should be built, 

calibrated, analyzed and interpreted to extract much- needed mechanistic knowledge from 

experimental data. Historically, methods and techniques from other fields have been directly imported 

to systems biology with varying success. For example, early interpretations of cellular processes as 

circuits provided insights about basic regulatory motifs that could explain cellular behaviors [6]. 

Similarly, techniques from chemistry, physics, and various engineering disciplines have been used to 

model cellular processes [7,8], but due to the spatiotemporal complexity of cellular processes, from 

femtosecond/nanometer electron transfer reactions to years and meter scales in tumor growth, no 

established paradigm has emerged to capture the full complexity of cellular processes. Multiple tools 

have been developed to achieve specific modeling tasks. For example, COPASI [5], RuleMonkey [9], 

Simmune [10], and StochSS [11] all provide graphical user interfaces that cater to non-expert modelers 

wishing to encode mechanistic representations of biological processes. More abstract approaches such 

as BioNetGen [12], Kappa [13], and CobraPy [14] employ a domain- specific language (DSL) to 

describe and simulate models. However, most tools are 

self-contained platforms with a small set of included methods and analyses, limiting access to other 

standalone simulation tools such as StochKit [4], SciML tools[15], URDME [16], SmolDyn [17]. 

Similarly, optimization techniques ranging from vector- based optimization methods [18,19] to 

probabilistic-based methods [20*,21] exist in yet another isolated domain. Therefore, the current 

modeling and simulation ecosystem is compartmentalized and fractured, and thus, unification and 

intercompatibility efforts are sorely needed. 

 

Valuable efforts toward unification have been put forth to create standards for model instantiation, 

simulation, analysis and dissemination [22,23**,24–26]. Of these, Systems Biology Markup Language 

(SBML) is perhaps the most successful to date. However, mathematical modeling for cell biology 

remains challenging to scale - both vertically (larger, more complex models) and horizontally (more 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 2, February : 2024 
 

UGC CARE Group-1,                                                                                                        94 

active collaborators). While mathematical tools are the obvious way forward to describe cellular 

processes, the complexity challenge results in a knowledge base that is highly domain specific, with 

some notable exceptions [27*]. 

 

A novel, more flexible approach to encode knowledge about biological processes as computer 

programs is slowly emerging and gaining momentum [3,28,29]. In this approach, biological models 

are no longer static documents, but computer code that aggregates community knowledge and opens 

doors toward crowd-driven mathematical models of biological processes. Although computer 

languages like Lisp [30] and proprietary packages such as MATLAB have been used toward this goal, 

we believe Python provides the largest ecosystem, myriad learning resources, and large applicable 

base to unify modeling practices in the field. Adopting a programmatic modeling paradigm for systems 

biology automatically accrues decades of computer science practices including structured 

documentation, integrated development environments (IDEs), (model) version control, code-sharing 

platforms, code testing frameworks, and importantly, literate programming/computational notebook 

dissemination. Here, we review the recent developments in programming-based approaches for 

systems biology. The structure of the manuscript is motivated by the model specification, simulation, 

calibration, analysis, and visualization paradigm/pipeline, commonly practiced in systems biology. 

Throughout, we note how this approach could be supplemented and improved by incorporating best 

practices from software engineering (Figure 1). 

  
Figure 1: The traditional modeling paradigm in systems biology entails model building, simulation, 

calibration, and analysis (left column), which is carried out with myriad tools and practices. Software 

engineering practices can add much needed structure to the practice through maintenance, testing, 

documentation and sharing paradigms (right column), vetted by a the software community. 

Table 1: List of key frameworks, tools, and services for programmatic modeling in Python. BSD, MIT, 

and PSF are permissive software licenses. GPL is a “copyleft” software license. 

*Free for open-source projects. 

Tool or service Usage 

terms 

Notes 

Frameworks 

PySB [3] BSD Bespoke Python object-based model format, multiple simulation 

backends 
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Tellurium [29] Apache Bespoke DSL (Antimony), ODE and SSA simulation backends 

PySCeS [70] BSD Bespoke DSL, ODE simulation backend 

ScrumPy [71] GPL Metabolic modeling 

CobraPy [14] GPL Metabolic modeling 

Testing 

PyTest MIT Testing framework; pytest.org 

GitHub Actions Free* 

service 

Continuous Integration; github.com/features/actions 

Circle CI Free* 

service 

Continuous Integration; circleci.com 

Calibration 

PyBioNetFit [48*] BSD BNGL and SBML models 

PyPESTO [49] BSD SBML and PEtab support 

PyDREAM [20*] GPL PySB interface 

Analysis & Visualization 

Matplotlib PSF Plotting library; matplotlib.org 

Jupyter Notebooks BSD Computational notebooks; jupyter-notebook.readthedocs.io 

PyVIPR [58*] MIT PySB, Tellurium interfaces 

Sharing and modification 

Github Free* 

service 

Code hosting and collaboration suite; github.com 

 

Model specification 

Traditionally, encoding a model of biochemical reactions would require the user to write each equation 

by hand, encode these into a solver, and run the simulations [31]. Although this is still common practice 

for smaller model systems, these lists of equations often lead to a model dead-end as the biological 

context is completely lost in the mathematical representation, which hinders model reuse. Reaction-

based modeling formats add one layer of abstraction where the user instead writes chemical reactions 

of the form 𝐴 + 𝐵 ↔ 𝐶 in a program-specific notation and the computer parses this information into a 

mathematical representation [32]. These DSLs can operate either through a GUI that generates the 

code in the background, or directly through a text editor. For example, Antimony [32] requires manual 

enumeration of every species and reaction explicitly. However, signaling pathways often comprise a 

large number of molecular complexes, which can assemble in multiple orders, leading to a large 
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number of reactions and intermediate species during complex assembly and degradation. Therefore, 

traditional approaches become unwieldy as model systems become larger, learning to model dead-

ends. Another level of abstraction is presented by rule-based modeling formalisms whereby reaction 

rules rather than explicit reactions (or equations) are used to encode the system [3,12,13]. A reaction 

rule is a template for reaction patterns to be enumerated and instantiated recursively, starting from a 

defined list of initial species, thereby saving the user time and reducing error- prone repetition. In rule-

based approaches, the reaction center (the relevant molecular components for a given reaction) is 

separated from the context (attached molecular components which have minimal or no effect on the 

reaction). These approaches often require a pre-processing step to generate the network of nodes 

(chemical species) and edges (chemical reactions) from the initial pool of chemical species and a set 

of reaction rules. However, network-free methodologies have been proposed to bypass the network 

generation step [33]. 

 

Model specification can also be embedded into General Purpose Programming Languages (GPPL) to 

provide a more powerful approach to biological modeling. In the programmatic modeling paradigm, 

the model is encoded as an executable piece of code, thereby offering all the advantages of a full-

fledged computer programming language (Figure 2). Modularity, in which a model can be split into 

smaller, reusable code objects, is perhaps the most useful aspect for cell biology modeling. For 

example, PySB currently includes a library of 25 macros (small modules or functions) that encode 

reaction patterns commonly found in biology such as catalytic activation, molecule-molecule 

inhibition, or complex oligomerization. From a user perspective, GPPLs have greater integration with 

IDEs than DSLs, thus allowing syntax highlighting and checking, and navigation between functions. 

The model is also inspectable at runtime, allowing searching and filtering of model components. For 

example, a user could check whether certain species or reactions are present before simulation 

commences. Currently, the most used modeling frameworks using the programmatic modeling 

paradigm in Python are PySB [3], written in and using Python, and Tellurium [29], which is written in 

Python but uses Antimony [32], a DSL with function support, for model specification. 

  
Figure 2: Levels of abstraction in programmatic modeling. Models are composed of modules and 

macros, which are handled by the programming language interpreter/compiler; rules encode sets of 

reactions using structured pattern templates; reactions specify biochemical species’ transformations; 

and finally equations are handled by an ODE integrator or simulation algorithm directly. 
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Model simulation 

Model simulation involves numerically solving the model equations to obtain trajectories for 

dynamically controlled species. Concentrations or molecule counts of chemical species in the model 

are the most commonly simulated quantities. Integration of systems of ordinary differential equations 

(ODEs) for deterministic simulations is the most common model simulation approach. Many ODE 

integrators are available and the best choice depends on model stiffness, desired integrator tolerances, 

and other requirements. In Python, a family of integrators is available through SciPy [34**] including 

VODE and LSODA, but many other solvers have been proposed. Other commonly used solver suites 

include StochKit (Stochastic Simulation Algorithm) [4,35], BioNetGen (CVODE, SSA, tau-leaping 

algorithm, partition-leaping algorithm) [12], cupSODA (GPU ODE) [36], GPU_SSA (GPU SSA) [37], 

and Libroadrunner (CVODE, 

  

SSA) [38]. Within the Python ecosystem, PySB provides a simulation class that enables users to use 

many of these simulation tools or to connect new tools as needed. In addition, users of other Python-

based tools such as Tellurium can also take advantage of these resources. 

 

Model calibration 

Model calibration is the process of adjusting model parameters to match experimental data, also known 

as parameter estimation/optimization when applied to parametric models. The most common form of 

model calibration involves a process of running many simulations (thousands to millions or more) and 

checking the distance between model and experimental data error using an objective function, which 

gives a measure of the model’s simulation “error” versus experiment; for a review see [39]. Since 

dynamic data for signaling models are hard to come by, the modeler often only has data for a few 

species, and thus model calibration often leaves a model underdetermined - multiple parameter sets fit 

the data equally well [40]. The concept of parameter “sloppiness” states that only a few “stiff” 

combinations of parameters are important in determining model outcomes, and others are “sloppy” 

and have little effect. Thus, an undetermined model can still be useful in predicting biological 

properties [41]. However, the interpretation of large, underdetermined models in the context of limited 

data is still up for debate. Lessons from e.g. hydrology and climate modeling have been highly 

influential toward addressing these issues [20*,42,43]. 
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The landscape of model parameters is often envisioned as a multidimensional surface with “height” 

representing the objective function, where the (ideally global) minimum or minima (representing the 

best fit(s)) must be found. SciPy [34**], for example, includes gradient descent and simplex-based 

methods. However, the curse of dimensionality means that local optimization can give far-from-

globally optimal results as the number of model parameters increases. Finding the global minimum of 

a multivariate nonlinear model is NP-hard [44], however several methods can make statistically good 

approximations. Markov Chain Monte Carlo sampling methods are among the most popular algorithms 

[45]. General purpose optimization toolkits for Python include SciPy.optimize [34**] and Pyomo [46]. 

We have found that DEAP [19] provides excellent support for PSO and genetic algorithm-based 

optimization. 

 

Given the dearth of data available for biological model calibration, conditional probability (Bayesian) 

approaches are gaining traction. These approaches provide a probabilistic interpretation of model 

parameters [47], including uncertainty quantification, at the cost of increased computer time. However, 

new GPU-based integrators mitigate this problem. Excellent tools for Bayesian parameter inference 

include PyDREAM (which can readily take PySB models) [20*], PyBioNetFit [48*], PyPESTO [49], 

PyMC3 [50], and PySTAN [51], although popular data-science tools such as TensorFlow [52] and 

PyTorch [53] also provide Bayesian inference capabilities. ABC-SysBio [54] provides a hybrid 

solution to the computation problem but still within a Bayesian context. 

 

Model analysis and visualization 

Model analysis and visualization is likely the least developed area in systems biology as no clear 

standards have been proposed. In general, modelers explore the chemical species concentration 

trajectories in their model to infer mechanistic behaviors and properties. Exploration of biochemical 

flux through reactions is highly challenging with some notable attempts toward this goal in the 

literature [7,47], but much work is still needed. For visualization, perhaps the most useful tool in 

Python is matplotlib [55], which provides flexible graphing capabilities. Other Python tools include 

Seaborn (https://seaborn.pydata.org/), Plotly [56], and Mayavi [57]. Network visualization is perhaps 

the other major area of model analysis that is addressed in various ways in Python. For example, 

PyVIPR [58*] is a visualization tool built on Cytoscape.js [59] for rule- and reaction-based models 

which animates model dynamics over time, overlaid on a graph. MASSPy [60] also provides some 

visualization capabilities for metabolic models. We note, however, that excellent tools for graph 

manipulation in Python exist, such as NetworkX [61]. 

 

Model sharing and modification 

Perhaps the most appealing benefit for the systems biology community from program- based paradigm 

is the use of literate programming for model and results dissemination. Introduced by Donald Knuth, 

literate programming is a paradigm whereby the code and the document coexist in an interactive format 

[62]. Jupyter Notebook, a popular format, has been described as “data scientists’ computational 

notebook of choice” [63]. Jupyter Notebooks allow analyses to be run in a web browser, checked into 

version control, and include documentation alongside analyses, in turn improving transparency and 

reproducibility. We believe that Jupyter notebooks are a highly desirable step forward in systems 

biology as it greatly contributes to model transparency, revision, and dissemination, and should be 

included in paper submissions where computational simulation and analysis are involved. 

 

Programmatic models’ code can be managed using existing version control tools. Git has emerged as 

the de facto standard for version control, providing powerful capabilities for decentralized editing, 

branching, and merging, with online platforms such as GitHub adding a collaborative interface for 

change management, commenting, and other functions. In PySB, models are Python programs, and so 

can be imported like other Python modules and extended or modified. The code can be inspected, for 
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example the model can be searched for species or reactions using pattern matching. Tellurium’s 

antimony language has an import function, but previous model definitions are currently not 

programmatically searchable or modifiable. 

 

Good documentation can be vital to ensure model reproducibility and interpretability by others. Sphinx 

(sphinx-doc.org) is a de facto documentation standard for Python code, which allows code comments 

to be compiled into multiple formats including website (HTML) and PDF. The former can be 

combined with continuous integration, for always up-to-date documentation (readthedocs.io). 

 

Model checking and testing 

Complex biochemical models present challenges in both ensuring they are correctly encoded, and 

ensuring their dynamics meet a given specification. In software engineering, it has become common 

practice to build an accompanying test suite while developing code, which runs the code under scrutiny 

to test that works as expected. 

Subtle errors can be introduced as models grow larger. In our opinion, the field should establish 

minimum standards to ensure software is runnable, reproducible, and meets basic quality standards 

[64]. In the context of models-as-programs, unit and integration tests can be borrowed from software 

engineering to ensure code correctness. Unit tests refers to code which checks the functionality of 

other, minimal units of code; integration tests check that units work as expected when combined. 

Python has several frameworks for testing, PyTests is a popular option with a plugin for Jupyter 

Notebooks [65]. PySB introduces a framework for testing static properties of rule- based models after 

network generation; for example, checking that certain species are produced by the reaction network, 

or that certain reactions are present. Using continuous integration (CI), these tests can be run 

automatically when changes are made and checked into version control, and/or on a regular basis. 

Running tests regularly is recommended because, even if a model itself does not change, changes to 

software dependencies could lead to unexpected errors. The importance of this is emphasized by a 

recent review, which found a majority of Jupyter Notebooks were not automatically reproducible, often 

due to dependency errors [66**]. For open-source models, these tests can be run for free using services 

such as Github Actions, Travis, and Circle CI. Finally, we recommend containerization technologies 

such as Docker 

[67] and Singularity [68], which bundle model and software dependencies together in a self-contained 

environment, further aiding reproducibility and cross-platform compatibility. 

 

Conclusions 

Python has recently turned 30 years old and is now one of the most popular programming languages 

in the world. There are many reasons for its success, but a key insight of its creator is that code is read 

much more often than it’s written [69]. The same principle applies to models, which emphasizes the 

importance of clear documentation, transparency of approach, and the separation of model 

specification from simulation and downstream analysis code. These efforts are central to improving 

reproducibility, code maintenance, and model extensions, by original authors and third parties. 

 

For beginners interested in modeling cell signaling, we recommend either the PySB or Tellurium 

frameworks, both of which have high quality documentation and active communities for support. We 

expect the Python modeling ecosystem will continue to grow, and efforts for framework and package 

interoperability to increase. 
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