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ABSTRACT:  

Within the vast landscape of cloud service providers, each offering a multitude of virtual machines 

(VMs) with diverse configurations, selecting the appropriate VMs becomes a crucial concern for 

companies. A well-informed service selection not only enhances productivity and efficiency but also 

reduces costs. However, due to the modular nature of requests, conflicts between requirements, and 

the impact of network parameters, a systematic approach becomes imperative for effective service 

selection. To address this challenge, we introduce a groundbreaking framework, named "PolyCloud 

Assisted (PCA)", designed specifically for the hybrid environment encompassing peer-assisted, public, 

and private clouds. PCA tackles the service selection problem by identifying conflicts between 

requests and enterprise policies, identifying suitable services based on requirements, and minimizing 

VM rental and end-to-end network expenses. By leveraging resources from multiple clouds and 

optimizing overall costs, PCA employs a combination of set theory, B+ tree, and greedy algorithms to 

achieve its objectives. Our simulation results exhibit that PCA can reduce cloud-related costs by up to 

30 percent and deliver responses at least seven times faster compared to recent studies. 
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INTRODUCTION 

Enterprises leverage computing resources, storage space, and a wide array of applications to 

accomplish their business objectives. However, concerns surrounding the time and cost associated with 

upgrading, updating, and maintaining these resources persist. The advent of cloud computing has 

successfully alleviated many of these challenges. According to the National Institute of Standards and 

Technology (NIST), cloud computing is defined as a paradigm that enables access to shared resource 

pools [1]. Cloud providers offer a diverse range of resources in the form of services, categorized into 

three main levels: software as a service (SaaS), platform as a service (PaaS), and infrastructure as a 

service (IaaS). By renting these services, enterprises can significantly reduce their costs related to 

infrastructure maintenance and upgrades, allowing them to concentrate on their core objectives. 

Typically, service payments are usage-based, although some providers offer discounted or reserved 

services with monthly or yearly costs. 

 

When an enterprise requires resources, it formulates requests consisting of multiple modules. Each 

module represents a specific service with particular specifications. Consequently, the challenge lies in 

finding the appropriate service for each requested module, bearing in mind that these modules may 

also need to communicate with one another. This introduces network traffic costs that further impact 

cloud-related expenses. Consequently, identifying suitable services for each module is a nontrivial 

task. Surveys on cloud computing emphasize the importance of service selection and the definition of 

qualified providers' services from an enterprise's perspective. In a Right Scale survey conducted in 

2018 with 997 IT professionals, it was found that 96% of the surveyed companies were utilizing cloud 

services [2]. This highlights the popularity and significance of cloud computing. The survey also 

reveals that optimizing cloud-related costs is the top challenge faced by enterprises. Additionally, a 

Microsoft survey conducted in 2015 with 1979 IT specialists identified the most crucial factors driving 

enterprises towards cloud computing, including work efficiency, operational cost reduction, and 
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hardware maintenance [3]. Based on these surveys, the service selection process aims to achieve two 

important goals: 

- Meeting the requirements of requested modules to enhance efficiency. 

- Reducing expenditures related to service rental and network communications. 

 

The appropriate service for each requested module should align with these goals. The Right Scale 

survey [2] indicates that 81% of polled enterprises adopt a multi-cloud strategy with an average of five 

cloud providers. This suggests that providers offer a variety of services, as a single provider may not 

be able to satisfy all user requests. Moreover, 63% of enterprises have requirements involving more 

than 1000 modules. In cases where module specifications vary, different providers may host the 

modules, necessitating inter-module communication. Such situations are likely to increase 

communication costs, resulting in the total cost comprising both rental and communication expenses. 

The survey also reveals that around 35% of enterprises have wasted cloud spending, with only a few 

of them implementing automated policies to optimize cloud costs. Consequently, there is a need for a 

system that assists enterprises in service selection. 

 

This paper presents a framework designed to identify appropriate services for an enterprise's requested 

modules. The framework aims to satisfy both aforementioned goals, namely, fulfilling requirements 

and reducing long-term cloud-related expenses. It takes into account the modularity of requests, rental 

and communication costs, VM specifications, QoS parameters (such as response time and availability), 

and the abundance of providers. The vast number of providers offering services with diverse 

specifications contributes to the complexity of service selection. A study by T. H. Noor et al. in 2013 

identified approximately 6686 distinct cloud services varying in terms of cost, location, and VM 

specifications [4]. 

 

The proposed framework addresses the limitations of previous studies concerning scalability in 

handling a large number of providers and service selection response time. Furthermore, most existing 

studies fail to consider the modularity of requests and the comprehensive inter-service 

 

RELATED WORK 

The previous studies can be classified by different factors, including their methods and algorithms, 

considered parameters, assumptions, and objective function. The employed algorithms and methods 

have a significant effect on the execution time of the selection process. Thus, we have classified the 

previous studies based on their methods. The four considered groups are multiple-criteria decision 

making (MCDM), greedy and dynamic algorithms, logical descriptions, and other algorithms. PCA 

framework uses both the logical description and greedy algorithms. The following paragraph describes 

each group in detail. MCDM: It is proper for solving decision problems with a small number of 

parameters that conflict with each other. For example, cost parameter always affects the availability 

and computational power of services. It is less probable to rent a powerful computational service with 

a small charge. MCDM assigns a weight to each parameter according to its priority, and there are more 

than 30 methods for it. S. K. Garg et al. [5] used analytic hierarchy process (AHP) in a framework, 

which ranks cloud services. Even though this research considers many QoS parameters, the framework 

neglects network cost, communications between services, and modularity of requests. A. Taha et al. 

[6] used AHP and considered modularity, but did not consider communications parameters. Reference 

[7] uses TOPSIS. Its method avoids the rank reversal problem of AHP and does not consider network 

cost and modularity of requests. R. R. Kumar et al. [8] used both of the AHP and TOPSIS methods for 

criteria weights and service ranking, respectively. Even though their solution considers fuzzy 

environments, it lacks the service traffic parameter. S. Silas et al. [9] introduced a system based on 

elimination and choice expressing reality (ELECTRE). Even though they considered network delay, 

they did not contemplate the cost and modularity of re-quests. U. S¸ener et al. [10] proposed a decision 
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support system for service selection that uses multiple MCDM methods. L. Zhao et al. [11] described 

a service selector system for service-oriented environments. Modules connections have not been 

mentioned in [10] and [11]. W. Fan et al. [12] proposed a trust model to find more trusted services 

when parameter values have uncertainty. Drawbacks of [9] and [11] exist in [12]. Reference [13] uses 

MCDM and fuzzy logic for considering qualitative parameters. Its scalability is not good enough for 

the large number of services. Reference [14] uses an approach similar to [13], but it is for cloud 

database selection and does not consider the cost. 

Linear programming, Greedy, and Dynamic algorithms: Knapsack algorithm and K-means clustering 

are two of the used methods in this category. Also, some studies use heuristic algorithms. K.-C. Huang 

et al. [15] tried to minimize the cost-of-service composition in dynamic cloud environment with respect 

to constraints of service-level agreement (SLA). They used nonlinear programming, did not consider 

the network costs, and concentrated only on service response time satisfaction. H. Qian et al. [16] 

proposed a greedy algorithm, which considers VM rent, distribution of providers, and connections 

between services. Customers are software providers, but values of parameters are not end-to-end. Also, 

they did not mention the method of service finding and effect of network cost on the selection. A. C. 

Zhou et al. [17] used A∗ method and spot instances to reduce the monetary costs of workflows in 

dynamic cloud environment. Reference [18] describes a dynamic system, which updates the selection 

by the change of VM rent or user requirements. References [17] and [18] do not consider the cost of 

data transfer. J. Yang et al. [19] used Markov Decision Process (MDP) and a greedy algorithm to intro-

duce a way of service combination in the cloud. L. Sun [20] predicted future QoS of the cloud services 

by employing MDP. L. Sun showed that the selected services satisfy users requirements and economic 

constraints. References [19] and [20] lack network cost parameter. S. K. Garg et al. [21] proposed a 

cloud service selector system for SaaS providers. Their system uses a heuristic algorithm that its goals 

are the reduction of software failures and rent of VMs. Even though their system considers the cost of 

bandwidth usage, it assumes that every module must be mapped onto a separated cloud. This 

assumption is not possible for large modular requests or situations that security and reduction of cost 

make the modules to be mapped onto one cloud. G. F. Anastasi et al. [22] proposed a cloud broker, 

which finds in frastructure services by employing genetic algorithm. Even though their proposed 

broker considers the network costs and QoS parameters, the applications are workflows. Logical 

descriptions and artificial intelligence: Dominant methods of this category are first-order logic and 

machine learning algorithms. Reference [23] is one of the studies that proposes a framework for 

enterprises. It describes the requests by first-order logic and finds the conflict between them by formal 

verification and CO. The framework uses heuristic algorithms to find the proper services. This frame-

work does not contemplate network parameters. Y. Liu et al. [24] used rough set theory to find the 

proper service and did not consider modularity of requests. N. Somu et al. [25] used rough set-based 

hypergraph technique for the selection of trustworthy services. Drawbacks of [6] exist in [25]. C. 

Esposito et al. [26] selected cloud-based databases with the help of game theory and theory of evidence. 

This research lacks network cost parameter and requests are not modular.  

 

PCA FRAMEWORK 

This section describes assumptions, input, and output of the cloud service selection problem. Next, our 

proposed frame-work (PCA) and its components are explained in detail. 

 

3.1 Assumptions 

Users of an enterprise have requests, which each one con-sists of a set of connected modules. Each 

module has specific requirements, which are determined by a user. For 
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Fig. 1. PCA framework and its components in enterprise. 

 

each module, the enterprise needs a proper service in a cloud. PCA framework helps in this selection 

process. Fig. 1 shows components of the PCA framework. It receives users’ requests as input and finds 

a suitable service for each requested module as output. Each request is processed in-dividually. These 

suitable services can be in public, private, and peer-assisted clouds. When an enterprise uses external 

clouds, it usually does not use internal resources efficiently [34]. These centralized users’ resources 

can add up and create a peer-assisted cloud, which can satisfy some requests and reduces the cloud-

related monetary costs. 

We assume that enterprises may use multihoming. This means that the enterprise may rent the Internet 

service from two or more ISPs, which brings more availability. Because if one link goes down, the 

enterprise still can keep up its connectivity through another ISP. Furthermore, each link may have a 

different delay and bandwidth cost, and PCA tries to select the proper link for each request. Each peer 

is available with a probability less than one. Like [33], we assume that after VM allocation in internal 

resources, if a peer is available and receives a request, this peer answers the request. This means that 

in situations like data loading period the peer cannot turn off the system. 

 

3.2 PCA Architecture 

For achieving a better selection, PCA considers VMs specifications, network delay, SLA of providers, 

VM location, rent of VM, network cost of ISPs, and inter-data center traffic cost. This framework deals 

with network parameters and request modularity as important factors in contrast to works like [5], [9], 

[16]. In studies like [13] and [16], the increase in the number of cloud service providers can make time 

of the service selection process to take minutes. Thus, PCA makes the scalability more reasonable by 

using B+ tree and indexing. 

This is a component-based framework, which each com-ponent makes a decision with due regard to a 

portion of the requested specifications. This partitioning of responsibilities has two benefits. First, if 

the processing load of the PCA is high in an organization, components can be implemented 

distributively. Second, it makes the framework usable for future works. Researchers can focus on 

specific parts of the service selection algorithms without any concern about other responsibilities. 

The framework needs two prerequisites to be deployed in an enterprise. First, peers of an enterprise 

must install a daemon software to enable peer-assisted cloud. Second, the enterprise must use software-

defined network (SDN). SDN extracts control plane from the switches [35]. Thus, the admin or system 

can configure switches remotely. This control plane can be placed in PCA and brings transparency to 

service selection. Also, it needs a system with at least 8 GB free RAM. 

The framework works as follows: First, a user defines requirements of requested modules via a user 

interface (UI). These requirements are converted to JavaScript Object Notation (JSON) format and are 

sent to PCA as a request. Feasibility component receives the request. As the component name implies, 

it checks the request feasibility. If it finds any conflict, it informs the user to reform specifications of 

the request. This interactive communication keeps up until the component accepts the request, or user 
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discards the request. Feasibility checking happens in two phases: first, by the enterprise’s policies, and 

then by previously answered requests. Feasibility algorithm is described in subsection 5.1. 

By acceptance of the request, Feasibility component passes it to Dispatcher, which is a mediator 

between Internal and External Dispatchers and saves the selection result in the repository. Because of 

the mediating role of the Dis-patcher, organizations can configure it to block the Internal Dispatcher, 

which means they do not want to use the peer-assisted cloud. Dispatcher component sends the request 

to External Dispatcher, which has the ability to communicate with public and private cloud providers. 

Also, different implementations of External Dispatcher can get cloud providers’ SLAs and their VMs 

specifications by web crawling or communicating with some cloud brokers. 

External Dispatcher sends the request to Level 1 Selector for further processing. For each module in 

the request, Level 1 Selector finds all the VMs that can satisfy the specifications. Level 1 Selector does 

not consider the network parameters and cost. Also, the selected set of VMs for each module must not 

violate policies of the enterprise. Its algorithm is explained in subsection 5.2. Level 1 Selector sends 

the request and its resultant sets to Level 2 Selector. Level 2 Selector ranks VMs based on network 

delay, bandwidth, performance, and their total cost. After that, it chooses the proper VM for each 

module and informs the selection to External Dispatcher. Level 2 Selector algorithm is described in 

subsection 5.3. If no VM can satisfy the module, an error is passed to the user. External Dispatcher 

informs Dispatcher about the selection and total cost. 

This time, Dispatcher sends the request to Internal Dis-patcher, which tries to reduce the total cost. 

Before any processing, it sends the request to Internal Selector, which determines which modules can 

be satisfied by internal re-sources through some service replications. The replication happens in 

multiple resources for reaching to a specific availability. The current implementation chooses the 

internal replications randomly and checks their ability to satisfy requirements of a requested module. 

All the specified mod-ules in this step have the chance of mapping onto internal resources, but they 

may increase the total cost. Thus, Internal Dispatcher determines which ones are better to be mapped 

onto internal resources to culminate in the reduction of total cost. Its algorithm is detailed in subsection 

5.4. After finding the proper VMs and their locations, dispatchers begin to send allocation requests to 

clouds. 

 

PROPOSED ALGORITHM 

PCA FRAMEWORK ALGORITHM: 

Our proposed framework, PCA, can process modular requests and considers rent and communication 

costs of clouds. It addresses scalability and response time of the selection algorithm. Furthermore, it 

uses free resources of the enterprise’s peers, which make a peer-assisted cloud. Use peer-assisted cloud 

without considering public and private clouds. In contrast to these previous studies, our proposed 

framework unites different types of clouds. The next section describes the PCA framework 

     Next, our proposed frame-work (PCA) and its components are explained in detail. Users of an 

enterprise have requests, which each one con-sists of a set of connected modules. Each module has 

specific requirements, which are determined by a user. For each module, the enterprise needs a proper 

service in a cloud. PCA framework helps in this selection process. Fig. 1 shows components of the 

PCA framework. It receives users’ requests as input and finds a suitable service for each requested 

module as output. Each request is processed in-dividually. These suitable services can be in public, 

private, and peer-assisted clouds. When an enterprise uses external clouds, it usually does not use 

internal resources efficiently [34]. These centralized users’ resources can add up and create a peer-

assisted cloud, which can satisfy some requests and reduces the cloud-related monetary costs. 

     Feasibility component has two responsibilities of receiving the new policies and processing the 

requests to find the conflicts between specifications and policies. Policy receiver part is a grammar 

parser. The format of input policies in the current version of the PCA is as follows: 
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(Group group ID/ Service service Name/ All Groups/ All Services)( permit/ deny)[bandwidth 

value][locations values... ][services values... location values...][providers values... location 

values...][availability value] 

Feasibility component can receive and parse policies for 

  
 

CONCLUSION AND FUTURE ENHANCEMENT 

In summary, we have proposed PCA framework, which consists of five main components of 

Feasibility, Level 1 and 2 Selectors, Internal Dispatcher, and Internal Selector. As simulation has 

shown, PCA is reasonably scalable and responds in less than a few seconds. It selects the proper 

providers at least seven times faster than the recent studies. Also, by the help of Internal Selector and 

Dispatcher, which consider traffic costs and unused internal resources, PCA has succeeded in reducing 

the total cost significantly. By the favor of Feasibility, PCA is suitable for enterprises that want to exert 

some policies on their users’ requests. It can process up to 1480 different connections in less than one 

second. 
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