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Abstract—Half-life of a cluster is a very important parameter to identify it in a nuclear reaction 

where it gets deposited and detected in the detection system. Half-life is also very important 

parameter to understand physical properties of nucleus. Here we use the energy eigenvalue as a 

complex eigenvalue to determine the decay width from which we can calculate the half-life. To 

calculate the half-life of a cluster we assume it to be a point particle. Here we develop the method to 

calculate the decay width and half-life. From this we show that even for the super heavy nuclei 

region the dominant decay process is the alpha decay process over the cluster decay process. 
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I .INTRODUCTION 

The stability of Super- Heavy Nuclei can be greatly studied by the shell model. Super heavy 

elements do not have perfectly spherical nuclei. A spherical nucleus is considered to be most stable. 

Research studies proved that large nuclei are deformed causing the magic number to shift. [1] Since 

Super Heavy Nuclei are unstable these nuclei are artificially created to study its properties. The half-

lives of different radioactive decays such as alpha decays, cluster decays and spontaneous fission are 

signs of formation of Super Heavy Nuclei. [2] The Super Heavy Nuclei decays through the two 

principle decay modes one is alpha decay and the other is spontaneous fission. There are various 

approaches for calculation of half-lives like coulomb and proximity shell model, Cluster models, 

semi classical approach of WKB approximations and also the viola-seaborg formula which is the 

phenomenological formula for alpha decay half-lives from experimental Q values. In the WKB 

approach the transition probability is calculated and to find the half-life and decay width the 

probability is multiplied by the assault frequency (a classical parameter). [3] Hence it is not a fully 

quantum mechanical approach. In the present work we will obtain the decay width from full 

quantum mechanical treatment. Before going to the procedure for finding the decay width we will 

first familiarize ourselves with the idea of a complex energy state. Such a state does not belong to 

the Hilbert space. We will develop the understanding of complex energy and such energy states in 

detail. By considering the state as a gamow state we will get decay width directly from which we 

will get the half-lives. Nowadays research on Super Heavy Nuclei is done extensively to investigate 

the existence of the upper bound of the periodic table.[4]Another curiosity is whether the magic 

number  exists in Super Heavy Nuclei, or why do they fission out as soon as they are formed. The 

nuclear stability is determined by the interaction of nucleons inside the nucleus. Stability is 

decreased as we set for the large nuclear mass which is shown by the probability of spontaneous 

fission. 

 

II. REVIEW 

In recent research it has been seen that if we generalize the real energy eigenvalue to the complex 

energy eigenvalue it gives a rich amount of information about the system like if we consider the 

complex part of the energy it shows decay width of the decaying system. Let us see how it shows 

the decay width. Consider the decaying system. The outgoing particle has a free particle solution at 

a large distance; this wave function will spread out as time passes, thus the probability density at any 

point will tend to zero as time tends to infinity. Hence it is not a stationary state and breaks the time 

independence. But for continuum states like above, decaying states have a norm which is equal to 

infinite and therefore such states do not lie inside usual Hilbert space. To define this state one has to 

construct a space which is a superset of Hilbert space. The Resonance state or decay state is one of 
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such states. Such states are greatly describe by the Gamow states which can be shown by 

eigenvector |𝐸𝑛 − 𝑖𝛤/2⟩. Hermiticity of the Hamiltonian is broken due to the outgoing boundary 

condition therefore it has complex energy eigenvalue. Let us see how these states describe the decay 

state or resonance state. Consider time evolution of wave function 

𝛷𝑛(𝑟, 𝑡) = 𝛷(𝑟)𝑒−𝑖𝜀𝑛𝑡/ħ                                                                                                (1) 

where,  𝜀𝑛 = 𝐸𝑛 − 𝑖𝛤/2, therefore 

𝛷𝑛(𝑟, 𝑡) = 𝛷(𝑟)𝑒−𝑖𝐸𝑛𝑡/ħ𝑒−𝛤𝑡/ħ                                                                                     (2) 

 

Assume that 𝛷𝑛 is properly normalized then no. of particles 𝑁𝑛(𝑡) in the state 𝑛 contained in a one 

dimensional box of length 𝑎 is 

𝑁𝑛(𝑡) = ∫
𝑎

0
|𝛷𝑛(𝑥, 𝑡)|2𝑑𝑥                                                                                         (3) 

𝑁𝑛(𝑡) = 𝑒−𝛤𝑡/ħ ∫
𝑎

0
|𝛷𝑛(𝑥)|2𝑑𝑥                                                                                 (4) 

therefore, 

𝑁𝑛(𝑡) = 𝑒−𝛤𝑡/ħ𝑁𝑛(0)                                                                                                    (5) 

 

Hence if we choose 𝜀 = 𝐸 −  𝑖𝛤/2, it represents a resonance. In our barrier penetration we don't 

have a bound state since the potential is either zero or repulsive. But potentials like given in fig.1 

have both bound and resonance state. The real part shows the position and imaginary part shows half 

the width of resonance. From equation the mean lifetime of the system is the time 𝑇𝑛 at which the 

number of particles in the box has diminished by 𝑒 i.e. 𝑁𝑛(𝑇𝑛) = 𝑁𝑛(0)/𝑒. Therefore 

𝑁𝑛(𝑇𝑛) =
𝑁𝑛(0)

𝑒
= 𝑒−

𝛤𝑛𝑇𝑛
ħ 𝑁𝑛(0)                                                                                   (6) 

 
1

𝑒
= 𝑒−

𝛤𝑛𝑇𝑛
ħ                                                                                                                     (7) 

 

𝛤𝑛𝑇𝑛 = ħ                                                                                                                       (8) 

 

The above relation is known as a gamow relation. In Fig.1 the spectrum of the system is represented. 

One can see that resonance has a width which is minus twice the imaginary part of the energy 

indicated by the red lines. From the gamow relation we see that width reflects the time in which the 

system stays in the resonance states. Wider the resonance i.e. 𝛤𝑛, smaller would be the time 𝑇𝑛 at 

which the system is trapped inside the barrier. At zero energy the width is small since the barrier is 

high and the mean time at which the particle stays inside the barrier is large. At the top of the barrier 

resonance is wide hence the particle can easily escape, therefore mean time is short. If the height of 

the barrier tends to infinity all states have a zero width i.e. all states will be bound as we see in the 

infinite potential well. Therefore Gamow resonances are generalizations of bound states. Gamow 

resonance and bound states have a common property of obeying outgoing boundary conditions. 
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Fig1. Semi-infinite potential well. 

Therefore we will call all states satisfying outgoing boundary conditions as Gamow states. These 

Gamow states are bound states as well Gamow resonances. In the complex 𝐾-plane we will call     

𝐾 = 𝜅 + 𝑖𝛾 
And 

𝜀 =
ħ2𝐾2

2𝑚
=

ħ2

2𝑚
(𝜅2 − 𝛾2 + 2𝑖𝜅𝛾)                                                                                 (9) 

With 𝜀 = 𝐸 − 𝑖𝛤/2 

one gets 

𝐸 =
ħ2

2𝑚
(𝜅2 − 𝛾2)                                                                                                      (10) 

𝛤 = −
2ħ2

𝑚
𝜅𝛾                                                                                                               (11) 

 

The wave function behaves at large distance as 

𝑢(𝐾, 𝑟) → 𝑁𝑒𝑖𝐾𝑟 = 𝑁𝑒𝑖𝜅𝑟𝑒−𝛾𝑟                                                                                                          

(12) 

 

and therefore it is outgoing (incoming) if κ > 0 (κ < 0). 

There are four classes of poles as shown in fig.2. They are 

1) Bound states, 𝜅 = 0, 𝛾 > 0, 
 

𝐸 =  −
ħ

2𝑚
𝛾2  <  0, 𝛤 = 0, 𝑢(𝐾, 𝑟)  → 𝑒−𝛾𝑟 → 0  converges, 

 

2) Anti-bound states, 𝜅 = 0, 𝛾 < 0, 
 

𝐸 =  −
ħ

2𝑚
𝛾2  <  0, 𝛤 = 0, 𝑢(𝐾, 𝑟)  → 𝑒|𝛾|𝑟 → ∞   diverges, 

3) Decaying states, 𝜅 < 0, 𝛾 > 0, 
 

𝐸 =  
ħ

2𝑚
(𝜅2  − 𝛾2) <  0, 𝛤 =  −

2ħ

𝑚
𝜅|𝛾| < 0, 𝑢(𝐾, 𝑟)  → 𝑒𝑖𝜅𝑟𝑒|𝛾|𝑟 → ∞  diverges, 

 

4) Capturing states, 𝜅 < 0, 𝛾 < 0, 
 

𝐸 =  
ħ

2𝑚
(𝜅2  − 𝛾2) <  0, 𝛤 =  −

2ħ

𝑚
|𝜅||𝛾| < 0, 𝑢(𝐾, 𝑟)  → 𝑒𝑖𝜅𝑟𝑒|𝛾|𝑟 → ∞   diverges, 
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Fig 2. Complex plane representing Bound states, Anti Bound states, Capturing States and Decaying                          

states. 

Notice, for all class of states 𝛤 is zero or negative. The above diverging wave function is 

normalized by an appropriate renormalization. The anti-bound states which are not real (virtual) 

states well about the formation of halo nuclei. 

 

III. FORMALISM 

Here cluster is considered to be point particle. [6] It is considered that a cluster moving inside the 

well tries to penetrate the barrier. The smallest clusters emitted are alpha particles so here we would 

first give a description for alpha decay which can then be applied to heavy cluster decay. We 

describe cluster as a point particle with well-defined mass and angular momentum moving in a 

gamow state under the interaction potential formed by interaction between cluster and daughter 

nucleus which we assumed are performed in complex state of parent nucleus and hence the size of 

this potential is considered to be equal to 

   𝑟0𝐴1/3                                                                                                                (13) 

Where, 𝐴 is the mass of the parent nucleus Here we consider the cluster as a point particle because 

constructing a cluster wave function with internal structure is a very difficult task. With this 

assumption of a point particle our model turns out to be a simple effective model. We know super 

heavy elements usually do not have perfectly spherical nuclei but are deformed in their ground state. 

Now this deformation depends on how many particles does this nuclei have and how far they are 

from the shell closure. If the system is spin saturated it will always be spherically symmetric. But as 

we go away from the shell closure the system gets deformed since not all the orbitals are occupied. 

So for simplicity we consider even-even cluster emitters. Now even if the cluster is deformed it 

hides out in our assumption of a point particle. In the present model we consider that a cluster 

moving inside the well tries to penetrate the barrier and once it is through, the only interaction it has 

will be purely coulombic. Hence the outgoing wave function is coulomb wave function therefore the 

radial wave function corresponding to outgoing cluster can be given by.[5] 
 

𝛹𝑙𝑗
𝑜𝑢𝑡(𝑟) = 𝑁𝑙𝑗[𝐺𝑙(𝑟) + 𝑖𝐹𝑙(𝑟)]                                                                           (14) 

Where, 𝐹 and 𝐺 are regular and irregular coulomb functions respectively. The reason for defining 

wave function as 𝑟 times function is to get dimension of 𝑁2 as inverse length. Since in 

this case we are only considering ‘𝑠’ state which corresponds to 𝑙 = 0 and 𝑗 = 0 therefore radial 

wave function corresponding to outgoing cluster becomes 

r 𝛹00
𝑜𝑢𝑡(𝑟) = 𝑁00[𝐺0(𝑟) + 𝑖𝐹0(𝑟)]                                                                       (15) 

Here 𝑁 is a normalization constant and for simplicity let's drop the subscript 00. 

Internal wave function for cluster is given by gamow wave function 𝜙(𝑟) .Since at large 

distance from the parent nucleus outgoing spherical wave functions become plane waves. 
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Therefore at limit 𝑟 → ∞, 

𝑙𝑖𝑚
𝑟→∞

|𝑟𝛹𝑜𝑢𝑡(𝑟)|2 = 𝑁2                                                                                            (16) 

The normalization constant is extracted by a matching condition, where both internal and 

outgoing functions are equal to each other. Now this condition is found at boundary 𝑟 = 𝑅 where 

the outgoing coulomb wave function 𝛹(𝑟) is equal to the internal gamow wave function 𝜙(𝑟) 

𝑅2|𝜙(𝑅)|2 = 𝑅2|𝛹(𝑅)|2                                                                                         (17) 

 

|𝑁|2[𝐹2(𝑘𝑅) + 𝐺2(𝑘𝑅)] = 𝑅2|𝛹(𝑅)|2                                                                  (18) 

 

|𝑁|2 =
𝑅2|𝛹(𝑅)|2

[𝐹2(𝑘𝑅)+𝐺2(𝑘𝑅)
                                                                                               (19) 

Here 𝐹 and 𝐺 are explicitly shown in terms of 𝑘𝑅 as coulomb wave function is a function of 

𝑟 and if we look at this function as a power series we cannot add length to length square. We 

need to make it dimensionless we need to multiply it with the quantity having dimension of 

inverse length that is 𝑘 where 𝑘 is a wave number of the outgoing particle. Now dimensionally 

matching the internal gamow and outgoing coulomb wave function the quantity 𝑁2 physically 

turns out to decay probability per unit length at infinity. If we multiply this with 𝑣 we will 

get the probability of decay per second. Here 𝑣 is the velocity of the outgoing particle, and is given 

by 

𝑣 =
ħ𝑘

𝜇
                                                                                                                        (20) 

Where 𝜇 is reduced mass of binary system formed by cluster and daughter and ħ𝑘 momentum of 

outgoing particle. And 

𝑣|𝑁|2 =
ħ𝑘

𝜇

𝑅2|𝛹(𝑅)|2

[𝐹2(𝑘𝑅)+𝐺2(𝑘𝑅)
                                                                                           (21) 

 

Now the quantity decay probability per unit second is 1 over mean lifetime τ. now since 

we know 

𝜏1/2 = 𝑙𝑛2𝜏                                                                                                                 (22) 

We deduce decay half-life as 
1

𝑡1/2
=

1

𝑙𝑛2𝜏
=

1

𝑙𝑛2
𝑣|𝑁|2 =

1

𝑙𝑛2

ħ𝑘

𝜇

𝑅2|𝛹(𝑅)|2

[𝐹2(𝑘𝑅)+𝐺2(𝑘𝑅)
                                                            (23) 

than we know that decay width Γ is related to half-life by gamow relation as follows 

𝛤 =
ħ

𝑡1/2
                                                                                                                         (24) 

Now by substituting the value for  𝑡1/2, we get 

𝛤 =
1

𝑙𝑛2

ħ2𝑘

𝜇

𝑅2|𝛹(𝑅)|2

[𝐹2(𝑘𝑅)+𝐺2(𝑘𝑅)
                                                                                               (25) 

This is how we got the decay width and decay half-life by exact quantum mechanical treatment [5] 

As the above calculation done for decay in non-deformed even-even nuclei decay in deformed and 

odd nuclei is also important. So in General, the single particle or point cluster outgoing wave 

function is given as 

𝑟𝛹𝑙𝑗
𝑜𝑢𝑡(𝑟) = 𝑁𝑙𝑗[𝐺𝑙𝑗(𝑟) + 𝑖𝐹𝑙𝑗(𝑟)]                                                                           (26) 

The probability per second that the particle passes through a area element 𝑑𝑆 = 𝑟2𝑑𝜃𝑑𝜑 

is given by 𝐹𝑙𝑗 = |𝛹𝑜𝑢𝑡(𝑟)|22𝑣𝑑𝑆 where 𝑣 is the velocity of the particle. Since 

𝑙𝑖𝑚
𝑟→∞

|𝑟𝛹𝑙𝑗
𝑜𝑢𝑡|2 = |𝑁𝑙𝑗|2                                                                                              (27) 

the probability of decay per second, i.e., the reciprocal of the half-life obtained by integrating 

𝐹𝑙𝑗   about the angles and therefore the decay width is given as 

𝛤𝑙𝑗 =
1

𝑙𝑛2

ħ2𝑘

𝜇

𝑅2|𝛹𝑙𝑗(𝑅)|
2

[𝐹𝑙𝑗
2(𝑘𝑅)+𝐺𝑙𝑗

2(𝑘𝑅)
                                                                                     (28) 
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which is independent of 𝑅. The above expression gives the exact quantum mechanical value of 

the width. 

For our present calculations we will calculate the partial decay width for angular momentum 

projected states. We will assume that the deformation of the parent nuclei and mother 

nuclei to be the same also we will assume that the mother nucleus is odd and the wave function for 

such nucleus is given as [5] 

 

𝛹𝑚
𝐽𝑖𝑀𝑖𝐾𝑖 = (

2𝐽𝑖+1

16𝜋2 )
1/2

[𝐷𝑀𝑖𝐾𝑖

𝐽𝐼𝜒𝐾𝑖
+ (−1)𝐽𝑖+𝑀𝑖𝐷𝑀𝑖−𝐾𝑖

𝐽𝐼𝜒Ǩ𝑖
]                                        (29) 

where 𝐷 are the Wigner matrices and 𝜒𝐾 is the intrinsic single particle or cluster (which is 

assumed to be a point particle) wave function which can be expanded in spherical component 

as 

𝜒𝐾𝑖
(𝑟) = ∑𝑗≥𝐾𝑖

𝛼𝑙𝑗(𝑟)[𝑌𝑙(𝑟)𝜒1/2]
𝑗𝐾𝑖

                                                                        (30) 

where 𝑙 is determined by the parity of the state.We assume that the decay is possible with 

maximum probability when the nucleus is in the lowest energy state with 𝐽𝑖 = 𝐾𝑖.The daughter 

wave function is given as 

𝛹𝑑
𝐽𝑑𝑀𝑑𝐾𝑑 = (

2𝐽𝑑+1

8𝜋2 )
1/2

𝐷𝑀𝑑𝐾𝑑

𝐽𝑑                                                                                    (31) 

 

The outgoing particle has a maximum energy when it leaves the daughter nucleus in the 

ground state on which the condition 𝐽𝑑 = 𝐾𝑑 = 𝑀𝑑 = 0 can be imposed.Therefore from the 

conservation of angular momentum the outgoing particle have the same angular momentum 

as that of parent nucleus i.e. 𝑗𝑝 = 𝐽𝑖 = 𝐾𝑖. At a large distance 𝑅 there is only coulombic 

interaction and nuclear interaction vanishes therefore the outgoing particle wave function is 

given as 

𝑅𝜒𝐾𝑖
𝑜𝑢𝑡(𝑅) = ∑𝑙𝑗 𝑁𝑙𝑗[𝐺𝑙𝑗(𝑅) + 𝑖𝐹𝑙𝑗(𝑅)][𝑌𝑙(𝑅)𝜒1/2]𝑗𝐾𝑖

                                        (32) 

𝑁𝑙𝑗 is determined by 

|𝑅𝜒(𝑅)|2 = |𝑅𝜒𝑜𝑢𝑡(𝑅)|2                                                                                            (33) 

at matching radius 𝑅. From the orthogonal condition of the different partial waves we find 

that the partial decay width of particular decay channel 𝑙𝑝𝑗𝑝 is given by 

𝛤𝑙𝑝𝑗𝑝
=

1

𝑙𝑛2

ħ2𝑘

𝜇

𝑅2𝛼𝑙𝑝𝑗𝑝
2(𝑅)

[𝐹𝑙𝑝𝑗𝑝
2(𝑘𝑅)+𝐺𝑙𝑝𝑗𝑝

2(𝑘𝑅)
                                                                                  (34) 

The cluster is formed just outside the surface of the daughter nucleus. [7] 

 The formation probability of cluster is the absolute square of the wave function describing the 

cluster. Therefore 

the formation probability of cluster is given as 

𝑃 = ∫ 𝑟2𝑑𝑟|𝜙(𝑟)|2
                                                                                              (35) 

where 𝜙(𝑟) is a Gamow wave function. We will show that the above formalism to be successful 

in calculating the half-lives of alpha particles as well as clusters. 

 

V. CALCULATIONS 

We used the computer code GAMOW to evaluate the outgoing cluster wave functions. 

Here we have assumed the interaction of standard wood saxon form which have three 

adjustable parameters. [8] 

1) Depth (𝑉0) 

2) Half density radius (𝑅1/2 = 𝑟0𝐴1/3) 

3) Diffusivity (𝑎) 
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For Depth 𝑽𝟎 

In our model the cluster is considered to be a point particle moving in an energy state 

with energy equal to Q value. So here we fix Q value and adjust the depth. It is 

observed that it is good to search for the depth around -200 MeV. This value of the 

Depth is used in all the calculation. [8] 

 

For 𝒓𝟎 

It has been found that the value of r0 has a dependence on the Q value. So we choose 

𝒓𝟎 = 1.31 fm for Q value about 70 Mev and 𝒓𝟎 = 1.35 for Q value of about 70 Mev for 

simplicity. [8] 

 

For 𝒂 

Considering that the half lives depend on the width of the barrier it is found that diffusivity does 

not change the barrier width much. Thus on concluding that half-lives are not much dependent to 

’𝒂’ we set the value of 𝒂 = 0.54 fm. [8] 

 

VI. RESULTS 

 
Table 1 

 
Table 2 

 
 Table 3 

 

VII. CONCLUSION 

Table 1 shows formalism works great even for the cluster in which we had considered it as a point 

particle. It has been stated that in super heavy nuclei the dominant decay process is cluster decay 

over alpha decay. It is natural to assume that for heavy nuclei to stabilize heavy clusters should be 

emitted. But from our result Table 2 shows that alpha decay always dominates over cluster decay 
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even for the super heavy nuclei. From Table 2 we infer that the half-life of the cluster is much larger 

than the half-life of alpha with a much larger factor. From time scale if there is an alpha particle 

count we have to wait billions of years to get the single count of the cluster. Also we can see that the 

formation probability of a cluster is much less or negligible as compared to the formation probability 

of an alpha particle. Therefore we can say that alpha decay always dominates over cluster decay. We 

have also calculated nucleon decay which works fine for our case. The calculated half-life nearly 

matches with the experimental value which is 𝑙𝑜𝑔10𝑇1/2 = −1.176. For alpha decay of odd nuclei we 

have considered the available Angular momentum. Table 3 shows efforts made in calculation of half-life of 

odd-odd super heavy nuclei which further opens the application of this model in decay from odd parent 

nucleus with odd cluster. This theoretical Model has given us results over the region where Experimental 

techniques are yet not able to reach. 
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