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Abstract 

 Recently, there has been surge in the use of models composed of several layers of nonlinear 

processing. It has been established that deep networks are more suitable in tackling complex 

problems on large datasets.  Unsupervised layer-wise pre-training and subsequent supervised fine 

tuning has shown promising results in the training of deep networks.  Unsupervised pre-training 

which involves stacking of restricted Boltzmann machine is used to initialize the parameters of deep 

network, while as supervised fine tuning improves upon what has been learned in the pre-training 

stage. The most commonly used algorithm in the supervised fine tuning stage is back- propagation. 

In this paper we explore the performance of dropout and No-prop in supervised fine tuning of deep 

networks. The performance of these algorithms is evaluated on MNIST dataset. Experimental results 

demonstrate that dropout gives better results in training of deep networks. 

 

Keywords: back-propagation; deep neural network; dropout; No-Prop; restricted Boltzmann 

machine.  

 

I. INTRODUCTION 

MNIST handwritten digit recognition problem [1] is a well-known benchmark problem used 

extensively in the field of machine learning. Artificial neural networks (ANN) with single layer of 

nonlinear processing (shallow architecture) were among the first models evaluated on MNIST. 

However ANN with single hidden layer did not yield promising results on MNIST. Recent 

developments have demonstrated that deep architectures can represent highly varying functions 

much more efficiently and compactly (sometimes exponentially) than shallow architectures, in terms 

of number of computational elements and parameters [2]. However, training deep neural networks 

(DNN) has proven to be challenging. The standard strategy for training neural networks which 

consists of randomly initializing the parameters of neural network followed by training using back-

propagation (BP) algorithm, did not work well in the context of DNN. It was empirically observed 

that training DNN using BP algorithm results in finding poor solutions and sometimes display 

performance worse than shallow networks. The reason behind the poor performance of the DNN has 

been attributed to the gradient based nature of BP algorithm. The BP algorithm is likely to get stuck 

in poor local minima. The number and the width of these local minima increase with increase in the 

number of layers, which leads to sub optimal results. Furthermore the gradient information vanishes 

as it is back propagated from layer to layer [3]. Another disadvantage of BP algorithm is its slow 

learning speed. It becomes computationally excruciating when the depth of network increases, as it 

requires propagating errors across the network. Moreover BP algorithm requires the presence of 

labelled data, which entails a problem when labelled data is scarce and non-existent.  

Many novel strategies were introduced to alleviate the problem of training deep DNN. In this 

paper our objective is to explore the use of No-Prop [4] and dropout [5] in the training of DNN. An 

empirical analysis is done to investigate the performance of these algorithms in fine tuning of DNN 

that have been initialized using the unsupervised pre-training. The performance of these algorithms is 
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evaluated on the MNIST dataset. The goal of this study is to determine which of the algorithm yields 

substantial improvement in training of DNN on MNIST dataset. 

The paper is structured as follows. Section II details some recent works done to overcome the 

problem of training DNN. Section III describes the deep neural network architecture that we have 

used in detail. Section IV describes the dropout and No-prop. In Section V we present the 

experimental results. Finally, the conclusion is drawn in Section VI. 

 

II. LITERATURE REVIEW 

A breakthrough in training of deep architectures happened with the proposal of greedy layer-wise 

unsupervised pre-training [6], as a way of initializing deep supervised neural network. It was 

empirically observed that unsupervised pre-training often yields better representations [8] [7]. A 

supervised version of layer-wise pre-training called the greedy layer-wise supervised pre-training 

was given by [9]. The performance improvements obtained using [9] were not comparable to those 

obtained using unsupervised pre-training; nevertheless they were far better than using no pre-training 

at all. Reference [10] used the previous layer outputs as extra inputs to the subsequent layer (in 

addition to raw input). Another variant [11] pre-trains in a supervised way all the previously added 

layers at each step of the iteration.  

Based on the idea that the flow of activations and back-propagated gradients should be maintained 

in a deep architecture, well designed initialization strategies were put forward for training DNN. 

Reference [12] proposed a new weight initialization scheme that significantly improved the 

convergence speed of deep networks. This technique preserved the variance of activation and back-

propagated gradients. Other similarly motivated strategies were proposed by [13] [14]. Reference 

[14] introduced the concept of setting initial conditions on the weights, while as [13] presented a new 

heuristic technique for initializing DNN, a procedure called as Random Walk Initialization. 

Recent studies have established that the choice of activation functions have a strong influence on 

the training of deep architectures [12].  Reference [15] explored the use of rectifier neurons in the 

training of deep networks. It was established that this hard-limiting non-linearity actually works very 

well and can show best performance without using unsupervised pre-training for parameter 

initialization when large labelled datasets are existent. Furthermore, it expedites convergence of the 

training procedure [16] and leads to remarkable results [15]; than conventional sigmoid like units. 

Reference [17] proposed a generalized version of rectified unit called Parametric Rectified Linear 

Unit (PReLU). PReLU improved model fitting without requiring any extra computational cost and 

minuscule risk of over-fitting. Activation functions [18] [19] based on the local competition were 

also put forward to train DNN.  

 

III. DEEP NEURAL NETWORK 

A deep neural network (DNN) is a multi-layer feed-forward, artificial neural network. DNN takes 

input from the lower layers, processes it, until the upper layers learn a higher level representation of 

the data. Lower layers produce features which are combined to produce higher level features at the 

next level.  However, training them using standard procedure is known to be hard. Unsupervised pre-

training using stacked RBM followed by fine-tuning is known to yield significant performance 

improvement over fine tuning using random initialization. Unsupervised pre-training provides initial 

configuration to the parameters with which gradient based training is initialized. In this paper, 

instead of initializing the parameters of DNN randomly; we have used unsupervised pre-training for 

the parameter initialization. The DNN is constructed in the following manner: The initial RBM is 

trained on the input data by contrastive divergence (CD) algorithm; the outputs of the trained RBM 

create a second level representation of data which is used to train the second RBM. This process is 

iterated until a predefined number of RBM’s is trained. This stack of RBM’s is called Deep Belief 

Network (DBN). The trained DBN can be used as a generative or discriminative model.  In this 
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paper we have used DBN as discriminative model by adding to it an output layer. We refer to the 

constructed network as DBN-DNN. Subsequently, the parameters (weights and biases) of DBN-

DNN are then fine-tuned in supervised manner for better discrimination. The supervised algorithms 

that we have used for the fine tuning of the constructed model are discussed in Section IV. The 

unsupervised training of RBM’s is referred as pre-training and the normal supervised training of the 

whole network is called fine tuning. The unsupervised pre-training step finds features in the training 

data and fine tuning phase improves the recognition ability by slightly modifying “these features to 

adjust the boundaries between classes” [20].Unsupervised pre-training initializes the parameters of 

deep networks to sensible values so that they represent the structure of input data in a more 

meaningful way than the random initialization, thereby yielding significant improvement in the 

generalization performance [2].  

Following sections describe the components of DBN-DNN: 

A. Restricted Boltzmann Machine 

RBM is a generative model that is able to generate samples similar to those in the training set. The 

training procedure of RBM involves adjusting the weights in such a manner so as to maximise the 

probability of generating the training data. RBM consists of two layers of neurons: visible layer and 

hidden layer. All the neurons in the visible layer are connected to the neurons in the hidden layer, 

with no intralayer connections [2]. 

The probability distributions over couples (𝑣 , ℎ ) of visible units and hidden units is given as: 

𝑝(𝑣, ℎ; 𝑊, 𝑐, 𝑏)=
1

𝑍
𝑒−𝐸(𝑣,ℎ;𝑊,𝑐,𝑏)                         (1) 

Where 𝑧 is the partition function; 𝐸 is the energy function; 𝑊 represents weights;  𝑏 is the bias for 

hidden units and 𝑐 is the bias for visible units. 

The Energy function 𝐸 is 

𝐸(𝑣, ℎ; 𝑊, 𝑐, 𝑏)=−𝑐𝑇𝑣 − 𝑏𝑇ℎ − 𝑣𝑇𝑤ℎ           (2) 

The states of the visible vector v are associated to the input data and the hidden vector h presents 

the states of the hidden neurons, i.e. the hidden features. Given a data vector v, the conditional 

probability that the units of the hidden layer will be activated can be given as: 

𝑃(ℎ𝑗 = 1|𝑣) = 𝑠𝑖𝑔𝑚(𝑏𝑗 + ∑ 𝑤𝑖𝑗𝑣𝑖
𝑚
𝑖=1 )           (3) 

Where 𝑠𝑖𝑔𝑚 = 1
1 + 𝑒𝑥𝑝−𝑥⁄  is the sigmoid activation. 

The hidden states can then be used to produce the reconstruction of the data by activating the units 

in visible layer with conditional probability:  

𝑃(𝑣𝑖 = 1|ℎ) = 𝑠𝑖𝑔𝑚(𝑐𝑖 + ∑ 𝑤𝑖𝑗ℎ𝑗
𝑛
𝑗=1 )           (4) 

B. Contrastive divergence 

RBM’s are trained to improve the reconstruction ability and thus to maximize the log- likelihood 

of training datalog 𝑝(𝑣(0)) over the training parameters for a given training example 𝑣(0)[6]. In order 

to train the parameters of RBM (𝑊, 𝑏, 𝑐), a training algorithm –contrastive divergence (CD) [21] is 

used. The parameters of RBM are updated using CD as: 

∆𝑤𝑖𝑗 = 𝜂 < 𝑣𝑖
0ℎ𝑗

0 >𝑑𝑎𝑡𝑎 −< 𝑣𝑖
1ℎ𝑗

1 >𝑚𝑜𝑑𝑒𝑙          (5) 

where 𝜂 is the learning rate; <. >𝑑𝑎𝑡𝑎and <. >𝑚𝑜𝑑𝑒𝑙are the expectations under the distributions 

defined by the data and the model.  Given the training data 𝑣0, the hidden states can be inferred from 

(3) and in a similar manner visible states can be inferred from hidden states using (4). 

 

IV. DROPOUT AND NO-PROP 

For the supervised fine tuning of pre-trained deep networks, a number of supervised learning 

algorithms are available. However, BP is known to yield remarkable results in the fine tuning of deep 

networks. BP algorithm propagates the error across the neural network to adjust the weights. 

Training of neural network using BP involves two stages: feed-forward and back-propagation stage. 

In the feed forward stage, training patterns are presented to the network and the output is calculated. 

The output calculated is compared with the target output and an error is computed. In the back-
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propagation stage, the error calculated is propagated backwards to change the weights of network. 

This procedure is iterated until a particular termination criterion is satisfied. Here we experiment 

with the recently introduced techniques used in the training of neural networks i.e. Dropout and No-

Prop. Both of these techniques are used in the supervised fine tuning of the pre-trained networks and 

their performance is compared with the fine tuning done by standard BP.  

Dropout [5] is a recently introduced technique for training deep networks. It can be interpreted as 

a special way of averaging different models that share subset of parameters. It involves 

probabilistically dropping out neurons from the network on each presentation of training example. 

Activations flow only through those neurons that are retained and in a similar manner errors are back 

propagated only through the non-dropped neurons. When any neuron is dropped it is equivalent to 

dropping all its weighted connections. The combination of dropped out neurons is unique for a large 

network, thus each input vector trains its own network,  which excessively share the retained weights 

with other networks. The neurons in the dropout are dropped out randomly with a probability 𝑞 =
1 − 𝑝. The main objective of dropping out neurons is to prevent coadaptation in neurons, such that 

each neuron behaves as a reasonable model without relying on other neurons being there. This 

procedure forces each neuron to be more robust, independently useful and pushes it towards creating 

more meaningful representation instead of relying on others. Using dropout is equivalent to sampling 

a sub-network from it. The sub-network consists of a combination of neurons that endure the 

dropout. If a neural network consists of n units, we can have 2𝑛 possible sub-networks. Given a 

training vector, a new sub - network is produced and trained. Under this interpretation, a neural 

network trained using dropout can be seen as training a collection of 2𝑛 sub-networks. After the 

training of the sub-networks is finished, the 2𝑛 sub-networks that involve excessive weight sharing 

are combined into a single network. This single network is then used at the test time; however the 

predictions at the test time are produced by suitably scaling the weights. The idea is that if at the time 

of training, a layer is trained with dropout and all the units of that layer are retained with a 

probability p. Then at the prediction time the output weights of these units must be multiplied by p. 

      Consider a fully connected feed forward neural network with H hidden layers. Let ℎ ∈
{1, … . , 𝐻}be the hidden layers of the network. Let 𝒔(ℎ)be the input vector into layer h and 𝒐(ℎ) be the 

output vector from layer (By convention, we define 𝑜(0) = x is the input). Let 𝑊(ℎ) be the matrix of 

weights and  𝑏(ℎ)vector of bias terms at layer ℎ .The forward flow of activation in standard neural 

network (for hidden unit i) can be given as: 

          𝑠𝑖
(ℎ+1)

= 𝒘𝑖
(ℎ+1)

𝒐(ℎ) + 𝑏𝑖
(ℎ+1)

                             (6) 

𝑜𝑖
(ℎ+1)

=  𝑔(𝑠𝑖
(ℎ+1)

)                         (7) 

      The forward flow of activation using dropout procedure can be described as: 

𝒐(ℎ) = 𝑚(ℎ) ∗ 𝒐(ℎ)                          (8) 

𝑠𝑖
(ℎ+1)

= 𝒘𝑖
(ℎ+1)

�̃�(ℎ) + 𝑏𝑖
(ℎ+1)

               (9) 

𝑜𝑖
(ℎ+1)

=  𝑔(𝑠𝑖
(ℎ+1)

)                           (10) 

where 𝑔 is any activation function and 𝑚(ℎ) is drawn independently from Bernoulli distribution. 

 No-prop [4] is a simple and effective algorithm for training feed forward networks. No-Prop 

stands for no back-propagation. This algorithm involves setting the weights of hidden layer neurons 

to some random values and training only the output layer weights. The network output weights are 

trained using the steepest descent and the objective is to minimize the error using the LMS gradient 

algorithm of Widrow and Hoff. Instead of back-propagating the errors across the entire network, it 

involves adapting only the network output weights with the weights of hidden layers being set and 

fixed with random values. No-Prop algorithm always converges on a global optimum and as the error 

is propagated only to the last hidden layer; the problem of gradient vanishing becomes less evident, 
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which occurs in case of BP. However, for training over capacity networks, No-Prop requires last 

hidden layer to be much larger, than neural networks trained using BP.  

 

V. EXPERIMENT AND RESULTS 

In order to measure the benefit of dropout and No-prop in the training of deep neural networks, 

we have used them in the fine tuning of deep network which have been pre-trained using 

unsupervised feature learning. The performance of these algorithms is compared with standard BP. 

All of these methods are evaluated on MNIST dataset of handwritten digit images.  The MNIST 

dataset consists of 70,000 labelled handwritten digit images, each representing a 28×28 pixel 

grayscale image of one of the 10 digits( 0 – 9). The dataset is partitioned into training set of 60,000 

and test set of 10,000 images. The selected architecture of the neural network is 784-1200-1200-10 

for DBN-DNN fine-tuned with dropout and BP. However for No-Prop we have used 784-1200-2000-

10 architecture as we are training over Capacity network, which requires increasing the neurons in 

the last hidden layer. In this paper dropout is used at the input layer as well as at the hidden layer. At 

the input layer, the input components are retained with the probability of 0.8. While as, at the hidden 

layer the units were retained with probability of 0.5.  

The performance is evaluated using the following metric: 

𝑒𝑟𝑟 =
𝑁𝑖𝑛𝑐

𝑁⁄              (11) 

where 𝑁𝑖𝑛𝑐 is the count of miss classified inferences and 𝑁 stands for the number of training 

samples.  

The comparison results are summarized in Table I.  The experimental results demonstrate that fine 

tuning with dropout gives better results in comparison to No-Prop and BP. 

Table 1: Performance comparison on mnist 

Method Error[%] 

DBN-DNN+ BP fine tuning 1.68 

DBN-DNN + Dropout fine tuning 1.57 

DBN-DNN+ No-Prop fine tuning 9.59 

 

VI. CONCLUSION 

       Training deep architectures has proven to be challenging. Recent developments have 

demonstrated the use of layer-wise unsupervised pre-training as an effective way of improving the 

performance of deep neural networks. This work explores the use of No-Prop and dropout in the 

supervised fine tuning of deep neural networks, the parameters of which have been initialized using 

unsupervised pre-training. Our simulation results show that fine tuning by dropout gives better 

results in comparison to No-Prop. The improvements that we obtained using dropout suggest that 

fine tuning is a crucial stage in the training of deep networks and moving beyond the traditional way 

of fine tuning deep networks is worthy of the further research.  For future work, it may be promising 

to consider the fine tuning of deep networks using different variants of BP combined with the 

dropout strategy.  
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