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Abstract 

This research delves into the critical domain of path planning and trajectory optimization to enhance 

the agility and dexterity of robotic manipulators. Agile and dexterous robotic systems hold immense 

potential for a wide array of applications, from industrial automation to intricate surgical procedures. 

The key challenges lie in enabling these robots to navigate complex environments with obstacles and 

execute tasks with speed and precision. This study addresses these challenges through a multifaceted 

approach. The research begins with the development of accurate kinematic and dynamic models for 

robotic manipulators, considering joint configurations, link lengths, and payload dynamics. 

Environmental perception plays a pivotal role, requiring the implementation of robust sensors and 

advanced perception algorithms, including computer vision and lidar, to facilitate real-time mapping 

of the surroundings. A significant focus is placed on the design and implementation of path planning 

algorithms that can generate optimal trajectories, accounting for the kinematic constraints of the 

robotic manipulator and the intricacies of the environment. The utilization of rapidly exploring 

random trees (RRT), A* algorithms, and machine learning-based approaches contributes to adaptive 

planning strategies. Through this comprehensive investigation, the research aims to provide a 

foundation for the advancement of agile and dexterous robotic systems, offering insights into the 

development of cutting-edge algorithms and methodologies. The outcomes of this study hold the 

potential to revolutionize the capabilities of robotic manipulators, unlocking new possibilities for 

efficient and precise operations in dynamic and challenging environments. 

1. Introduction  

In recent years, the field of robotics has undergone a paradigm shift with an increasing emphasis on 

the development of agile and dexterous robotic manipulators. These advanced robotic systems are 

characterized by their ability to navigate complex environments, avoid obstacles, and execute intricate 

tasks with a level of adaptability and precision previously unseen. This shift is driven by the growing 

demand for robotics in diverse applications, including industrial automation, healthcare, search and 

rescue operations, and beyond. 

The agility and dexterity of a robotic manipulator are pivotal in determining its effectiveness 

across various domains. An agile robotic system can swiftly respond to dynamic changes in its 

environment, enabling it to perform tasks efficiently and with reduced time latency. On the other 

hand, dexterity, characterized by the ability to manipulate objects with precision, is crucial for 

applications such as delicate surgical procedures or tasks in unstructured environments.One of the 

primary challenges in realizing the full potential of agile and dexterous robotic manipulators lies in 

developing sophisticated path planning and trajectory optimization techniques. These techniques play 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 2, No. 2, February : 2023 
 

UGC CARE Group-1,                                                                                                         755 

a foundational role in orchestrating the motion of robotic manipulators, ensuring not only efficient 

navigation but also the ability to perform complex tasks with the required accuracy. 

The complexity of real-world environments, coupled with the intricacies of robotic kinematics and 

dynamics, demands advanced solutions for path planning. Traditional methods often fall short in 

addressing the agility and dexterity requirements of modern robotic systems. Hence, there is an 

imperative need to explore and develop novel algorithms and methodologies that can unlock the full 

potential of agile and dexterous robotic manipulators. This research seeks to contribute to the evolving 

landscape of robotics by investigating and advancing the state-of-the-art in path planning and 

trajectory optimization for agile and dexterous robotic manipulators. By doing so, we aim to 

overcome the existing limitations, provide new insights, and pave the way for the practical 

implementation of highly efficient and adaptable robotic systems. 

 

 

1.1 Motivation 

The motivation behind this research stems from the transformative impact that agile and dexterous 

robotic manipulators can have across various industries. In industrial settings, the ability to swiftly 

and precisely maneuver robotic arms can significantly enhance manufacturing processes, leading to 

increased productivity and flexibility. In the healthcare sector, agile robotic systems can revolutionize 

surgical procedures, making them less invasive and more precise. Moreover, in scenarios such as 

disaster response and search and rescue operations, dexterous robotic manipulators can navigate 

complex terrains and manipulate objects to aid in critical tasks. Despite these potentials, the 

realization of truly agile and dexterous robotic systems requires a fundamental understanding and 

advancement of their path planning and trajectory optimization capabilities. The motivation to address 

this challenge lies in the broader goal of harnessing the full potential of robotics to make significant 

contributions to human well-being, industrial efficiency, and the overall advancement of technology. 

1.2 Scope of the Research 

This research has a broad scope that encompasses both theoretical developments and practical 

implementations in the realm of path planning and trajectory optimization for agile and dexterous 

robotic manipulators. The focus is not only on devising algorithms that can generate optimal paths but 

also on considering real-world constraints and uncertainties that are inherent in complex 

environments. The investigation extends to the integration of perception systems that allow robotic 

manipulators to interpret and adapt to their surroundings dynamically. This involves the utilization of 

advanced sensors, computer vision techniques, and environmental mapping algorithms to provide the 

robotic systems with a comprehensive understanding of their operational context. Furthermore, the 

research explores the interplay between path planning algorithms and the kinematic and dynamic 

models of robotic manipulators. The goal is to develop methodologies that optimize trajectories while 

accounting for the specific capabilities and limitations of the robotic hardware. 

In terms of applications, the research addresses a diverse range of scenarios, including 

industrial automation, healthcare, and disaster response. The intention is to provide insights and 

solutions that are not only theoretically sound but also practically applicable across different domains. 

2. Literature review 

Classical motion planning Hart et al. (1968) developed one of the first search algorithms in the 

context This is the well-known A* algorithm for robot motion planning. This fundamental work was 
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further improved by Lozano-Perez (1987), who converted the configuration-space obstacles of a 

manipulator with n degrees of freedom (DoF) into a collection of slices of (n −1) dimensions. By 

using the A* algorithm, the manipulator was able to plan the route for each slice, so constructing a 

path that was free of collisions. This methodology is computationally demanding and may not be 

useful for planning operations on an industrial scale since it searches the whole search space in order 

to locate the nodes that will result in a route that has the lowest projected cost. A time-efficient form 

of the A* method was presented by Guruji et al. (2016). This variant examines all nodes while 

computing the fitness values only during the collision phase. Thus, incorrect solutions may be 

eliminated from consideration. The aforementioned approaches are computationally inefficient by 

virtue of the sampling-based approach that is used in the modeling and pre-processing of the dual-arm 

procedures. When it comes to dealing with real-world complicated problems that include physical 

limits and environmental impediments, these techniques are challenging to put into effect. 

Randomized heuristics may be used to handle real-world operational issues in a more flexible manner 

and to find (near-) optimal solutions to the large-scale industrial problems (Juan et al., 2013). This is a 

technique that can be implemented to remedy this limitation.  

These approaches are adaptable, allowing for the use of collision detection systems, which helps to 

avoid doing an extensive search of various pathways in order to discover the optimal answer. [Mac et 

al., 2016] found that heuristics are especially helpful in the context of robot motion planning since 

they speed up the planning phase and help discover the shortest route. Elbanhawi and Simic (2014) 

have recently acknowledged the efficacy of randomized motion planning approaches in resolving 

intractable issues. This has led to the methods' recent acknowledgment. A good example of a 

randomized motion planning approach is the PRM (Kavraki et al., 1996), as well as the RRT 

(LaValle, 1998). A graph-based search technique known as the PRM method discretizes continuous 

spaces and uses a heuristic to discover the (near-) optimum route (Boor et al., 1999). This approach 

was developed by the PRM method. Through the use of PRM-based methods for the motion planning 

of single-arm robots, a number of research were inspired by this important work. The Lazy 

Probabilistic Road Map (LPRM; Bohlin&Kavraki, 2000) makes it possible to decrease the amount of 

time spent planning by removing random nodes and edges from the roadmap in the event that they 

collide with an obstacle. This helps to limit the number of collision checks and streamline the 

planning process. Instead of connecting a predetermined number of nodes, the enhanced PRM that 

Karaman and Frazzoli (2011) created continuously raises the number of connection tries as the 

roadmap evolves. This allows for the possibility of obtaining a route that converges to the optimum 

path. An expanded PRM was created by Rodríguez et al. (2014). This PRM is capable of classifying 

detachable items by taking into account the obstacles that they can possibly collide with. Additionally, 

it looks for new pathways by detecting the barriers that need to be eliminated in order to make the 

path legitimate. Methods that are based on PRM take samples from a very small number of random 

nodes, which is sufficient to cover a significant portion of the space that is possible for establishing 

the optimal route in problems of minimal size. Therefore, if inadequate sample nodes are taken into 

consideration or if their distribution is inappropriate, the chance of finding the optimum route in the 

complicated and large-scale operational settings drops.  

RRT (LaValle, 1998) is a structured method that operates based on the incremental expansion of a 

random tree from the sample nodes with a bias towards the mainly unknown portions of the search 

space. It is a notable alternative to PRMs for motion planning. The RRT was developed by LaValle in 

1998. According to Devaurs et al. (2014), Kala (2013), and Noreen et al. (2018), RRTs are more 

successful than PRMs because they are especially well-suited for exploring nonconvex high-

dimensional search spaces and for dealing with difficult issues that are severely restricted. The 

inversion of kinematics (Vahrenkamp et al., 2009), conducted by K.-C. Ying and colleagues, was 

published in Computers & Industrial Engineering 160 (2021) 107603. Early examples of the uses of 
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RRTs include solving plans for three nonholonomic and Kino-dynamic planning issues in 

autonomous robotic motion planning (Elbanhawi&Simic, 2014). For the purpose of enhancing the 

effectiveness of the RRTs, heuristics that use biased sampling have been presented. Depth-First-

Search (DFS) is a concept that is used by the RRTConnect that was established by Kuffner and 

LaValle (2000). This idea extends a node to its closest neighbors in a continuous manner until an 

impediment is overcome. An independent random tree incorporates knowledge from earlier trees to 

boost its development, hence enhancing the quality of the route that is produced as a consequence of 

the Everytime Random Tree, which was proposed by Ferguson and Stentz (2006). Through the 

process of gradually rewiring the connections until the shortest route is established, the enhanced RRT 

that Karaman and Frazzoli (2011) created ensures that the asymptotic optimality is accomplished. By 

splitting the jobs into assembly and regrasping pathways, Kim et al. (2013) created an RRT-based 

planner for the purpose of creating assembly paths. After beginning with a graph search for the 

purpose of initializing a viable route in a low-dimensional space, the A*-RRT, which was created by 

Brunner et al. (2013), is a two-phase technique that continues with the application of the RRT 

algorithm to search in the high-dimensional space. This model is another prominent example. These 

algorithms, which are based on RRT, demonstrated a great track record of search capacity when it 

came to tackling the motion planning challenges that the robot was experiencing.  

 

When compared to the other algorithms that are now available, RRTs are especially successful when 

it comes to planning in high-dimensional and complicated motion patterns. In addition to this, they are 

adaptable and may be modified to correspond with the particular operating circumstances of each 

individual instance. The RRTs that are now in use have a limitation in that they investigate the 

configuration space (also known as C-space) by means of random node sampling. This approach leads 

to sluggish convergence or erroneous pathways. On top of that, these techniques are notoriously 

difficult to generalize and often rely on hand engineering in order to adapt to the new environment. 

We would like to direct readers who are interested in a full study of the classical motion planning 

techniques to the review that was written by Wahab et al. with the year 2020. Biased sampling and the 

curse of dimensionality in the motion planning optimizer continue to be the most significant problems 

(Qureshi et al., 2021). Motion planning methods should be effective and computationally efficient in 

order to bridge the gap between theory and practice and enable robots to take over more complex 

tasks, particularly in labor-intensive activities such as assembly. Other problems include biassed 

sampling and the curse of dimensionality. 2.2. Motion planning that is formed via learning In contrast 

to the relatively recent machine learning applications in this area, the literature on classical motion 

planning has been around for quite some time. In recent years, researchers have been investigating 

contemporary methods such as learning (Berenson et al., 2012) and neural network-based methods 

(Bency et al., 2019; Duguleana&Mogan, 2016; Qureshi & Yip, 2018) with the goal of enhancing the 

efficiency of approximation methods or accelerating the planning process in complex operational 

scenarios. A learning-based strategy that promotes hand-eye synchronization for single-arm robot 

grasping was investigated by Levine et al. (2018), who drew upon the current contemporary motion 

planning literature. In 2017, Yahya and colleagues came up with an innovative method for robotic 

door opening jobs that was based on a distributed policy search.  

For the purpose of dexterous handling of single-arm assembly robots, Popov et al. (2017) suggested a 

deep reinforcement learning algorithm. The use of deep reinforcement learning was further extended 

for the purpose of task planning for single-arm robots operating in three-dimensional settings (Ichter 

et al., 2018). When Ji et al. (2019) were looking for a collision-free route for single-arm robotic 

operations, they devised a different reinforcement learning-based technique that they called Q-

learning. Neural networks were included into the learning-based planner that Qureshi et al. (2021) 
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developed in order to improve the search technique for finding the (near-) optimal route. This planner 

was designed to solve motion planning issues for generic robots. Using a learning-based neural 

planner, Watt and Yoshiyasu (2020) were able to construct paths in two-dimensional settings while 

avoiding obstacles. This occurred more recently. An method for broad robotic tasks that is based on 

soft actor–critic planning was developed by Prianto et al. (2020). There are not many research that are 

relevant to the planning of collision-free trajectories in this context. Path planning of dual-arm 

assembly robots in 3D settings is substantially more complicated and computationally more 

comprehensive than the planning of single-arm operating environments. Our motivation to design a 

computationally efficient deep learning-based optimization technique for the motion planning of dual-

arm assembly robots in both two-dimensional and three-dimensional settings came from the fact that 

this gap, combined with the necessity for real-time planning methods, motivated us the most.  

3. Proposed Mechanism 

This is the well-known A* algorithm, which is used for planning the mobility of robots. Lozano-Perez 

(1987) made a significant advancement in this foundational work by transforming the configuration-

space barriers of a manipulator with n degrees of freedom (DoF) into a collection of slices with 

dimensions of (n −1), so enhancing the overall quality of the work. The A* method allowed the 

manipulator to design the route for each slice, therefore generating a path that was devoid of any 

collisions. This was accomplished by the manipulator. Because it examines the whole search space in 

order to discover the nodes that would result in a route that has the lowest predicted cost, this 

approach is computationally expensive and may not be suitable for planning operations on an 

industrial scale. This is because it explores the entire search universe. The A* approach was provided 

by Guruji et al. (2016) in a version that was more efficient with regard to time. This form only 

computes the fitness values during the collision phase, but it does an examination of all nodes on the 

network. Therefore, it is possible to exclude from consideration any solutions that are erroneous. As a 

result of the sampling-based method that is used in the modeling and pre-processing of the dual-arm 

operations, the techniques that have been discussed so far are computationally inefficient. When it 

comes to dealing with complex issues that occur in the real world, such as those that include physical 

limitations and environmental obstacles, it is difficult to put these strategies into practice. It is possible 

to utilize randomized heuristics to address real-world operational concerns in a more flexible way and 

to discover (near-) optimum solutions to large-scale industrial problems (Juan et al., 2013). 

Randomized heuristics may be used to solve these issues. This is a method that may be used to get the 

desired result of overcoming this barrier.  

 

Fig. 1. Operating and supporting matrix representation of an illustrative example. 

The adaptability of these techniques makes it possible to make use of collision detection 

systems, which helps to prevent the need to conduct a comprehensive search of a variety of paths in 

order to get the best response. The research conducted by Mac et al. (2016) discovered that heuristics 
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are particularly useful in the context of robot motion planning. This is due to the fact that they 

expedite the planning process and assist in finding the shortest path. Recent research conducted by 

Elbanhawi and Simic (2014) has shown that randomized motion planning strategies are effective in 

addressing problems that had been known to be intractable. The methodologies have just recently 

been acknowledged as a result of this. Both the PRM (Kavraki et al., 1996) and the RRT (LaValle, 

1998) are excellent examples of randomized motion planning approaches. Both of these papers were 

published in 1996. According to Boor et al. (1999), the PRM method is a graph-based search 

approach that discretizes continuous spaces and employs a heuristic in order to find the (near-) 

optimal path. Through the use of the PRM technique, this strategy was created. This significant study 

served as a source of inspiration for a number of research projects, which used PRM-based algorithms 

for the motion planning of single-arm robots among other applications. By deleting random nodes and 

edges from the roadmap in the event that they collide with an obstacle, the Lazy Probabilistic Road 

Map (LPRM; Bohlin&Kavraki, 2000) makes it feasible to reduce the amount of time spent planning. 

This is accomplished by removing the nodes and edges from the roadmap. This helps to reduce the 

amount of collision tests that are performed and further streamlines the planning process. The 

upgraded PRM that Karaman and Frazzoli (2011) developed will not link a predefined number of 

nodes; rather, it will continually increase the number of connection attempts as the roadmap develops. 

The prospect of having a path that converges to the best possible path is made possible when this 

occurs. Rodríguez et al. (2014) developed a PRM that was extended via their work. This particular 

PRM is able to identify detachable things by taking into consideration the potential impediments that 

they may come into contact with. Additionally, it searches for new paths by identifying the obstacles 

that must be removed in order to make the path legitimate. This is done in order to find new 

directions. This is sufficient to cover a considerable amount of the space that is available for creating 

the optimum route in problems of minimum size. Methods that are based on PRM take samples from 

a relatively small number of random nodes, which is adequate to cover the space. Therefore, if 

insufficient sample nodes are taken into account or if their distribution is improper, the possibility of 

discovering the best route in the intricate and large-scale operational settings lowers.  

 

 

Fig. 2. The dual-arm motion planning schedule in LSTM-BiRRT. 

The Random Tree Technique (RRT) is a structured approach that works based on the incremental 

development of a random tree from the sample nodes with a bias towards the mostly unknown 

sections of the search space. This method was developed by LaValle in 1998. When it comes to 

motion planning, it comes as a noteworthy alternative to PRMs. It was in the year 1998 when LaValle 

came up with the RRT. This is because RRTs are particularly well-suited for exploring nonconvex 
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high-dimensional search spaces and for dealing with challenging challenges that are highly limited, as 

stated by Devaurs et al. (2014), Kala (2013), and Noreen et al. (2018). This is the reason why RRTs 

are more successful than PRMs. Inversion of kinematics (Vahrenkamp et al., 2009) was a study that 

was carried out by K.-C. Ying and colleagues, and it was published in Computers & Industrial 

Engineering 160 (2021) 107603. According to Elbanhawi and Simic (2014), one of the first instances 

of the applications of RRTs is the resolution of plans for three nonholonomic and Kino-dynamic 

planning difficulties in the context of autonomous robotic motion planning. The presentation of 

heuristics that make use of biased sampling has been made with the intention of improving the 

efficiency of the RRTs. Kuffner and LaValle (2000) developed the RRTConnect, which makes use of 

the Depth-First-Search (DFS) idea. This concept was established by the RRTConnect. Through the 

implementation of this concept, a node is extended to its immediate neighbors in a continual way until 

an obstacle is overcome. Through the process of gradually rewiring the connections until the shortest 

route is established, the enhanced RRT that Karaman and Frazzoli (2011) created ensures that the 

asymptotic optimality is achieved. This is accomplished by incorporating knowledge from earlier 

trees into an independent random tree in order to boost its development. This allows for an 

improvement in the quality of the route that is produced as a result of the Everytime Random Tree, 

which was proposed by Ferguson and Stentz (2006). Kim et al. (2013) developed an RRT-based 

planner for the goal of facilitating the creation of assembly routes. This planner was produced by 

dividing the tasks into assembly and regrasping pathways. After commencing with a graph search for 

the aim of initializing a feasible route in a low-dimensional space, the A*-RRT, which was developed 

by Brunner et al. (2013), is a two-phase approach that continues with the application of the RRT 

algorithm to search in the high-dimensional space. This technique was designed by Brunner et al. A 

further noteworthy example is this particular model. It was proved that these algorithms, which are 

based on RRT, have an excellent track record of search capacity when it comes to addressing the 

motion planning issues that the robot was encountering.  

 

When compared to the other algorithms that are currently available, RRTs seem to be 

particularly effective when it comes to planning in motion patterns that are both high-dimensional and 

complex. Additionally, they are flexible and may be altered to coincide with the specific operational 

conditions of each given occurrence. This is a significant advantage. One of the limitations of the 

RRTs that are now in use is that they examine the configuration space, which is also referred to as C-

space, via the use of random node sampling methodology. It is possible that this strategy will result in 

a slow convergence or incorrect paths. To add insult to injury, these methods are notoriously difficult 

to generalize, and they often depend on hand engineering in order to adjust to the new environment. 

For those readers who are interested in a comprehensive analysis of the traditional motion planning 

methodologies, we would like to point them in the direction of the review that Wahab and his 

colleagues wrote with the year 2020 in mind. According to Qureshi et al.'s research from 2021, the 

most major issues that continue to arise in the motion planning optimizer are biased sampling and the 

curse of dimensionality. In order to bridge the gap between theory and reality and enable robots to 

take over increasingly complicated jobs, especially in labor-intensive activities such as assembly, 

motion planning techniques should be effective and computationally efficient. This will allow robots 

to take over more complex tasks. The curse of dimensionality and biassed sampling are two more 

issues that need to be addressed. Motion planning that is developed via the process of learning While 

the applications of machine learning in this field have only been around for a relatively short period of 

time, the literature on classical motion planning has been around for quite some time. In recent years, 

researchers have been investigating contemporary methods such as learning (Berenson et al., 2012) 

and neural network-based methods (Bency et al., 2019; Duguleana&Mogan, 2016; Qureshi & Yip, 

2018) with the intention of either improving the effectiveness of approximation methods or improving 
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the speed at which the planning process is carried out in complex operational scenarios. An 

investigation on a learning-based technique that encourages hand-eye synchronization for single-arm 

robot grasping was carried out by Levine et al. (2018). They relied upon the modern motion planning 

literature that is currently available within the field. In 2017, Yahya and his colleagues developed a 

novel approach to robotic door opening tasks that was based on a distributed policy search. This 

technique was called the distributed policy search.  

A deep reinforcement learning approach was proposed by Popov et al. (2017) for the goal of 

achieving dexterous handling of single-arm assembly robots to achieve the desired result. Deep 

reinforcement learning was further extended for the aim of task planning for single-arm robots 

working in three-dimensional environments (Ichter et al., 2018). This was done in order to improve 

the efficiency of the robots. When Ji et al. (2019) were seeking for a collision-free path for single-arm 

robotic operations, they came up with a distinct reinforcement learning-based approach that they 

dubbed Q-learning. This technique was developed in order to fulfil their search. In order to enhance 

the search method for locating the (near-) optimum route, Qureshi et al. (2021) built a learning-based 

planner that utilized neural networks. This was done in order to improve the search methodology. This 

planner was developed to address the challenges that generic robots have when it comes to motion 

planning. Watt and Yoshiyasu (2020) were able to design routes in two-dimensional environments 

while avoiding obstacles by using a neural planner that was based on learning. All of this took place 

not too long ago. A approach for wide robotic tasks that is based on soft actor–critic planning was 

created by Prianto et al. (2020). This method was developed by the researchers. Only a small number 

of studies have been conducted that are pertinent to the design of collision-free trajectories in this 

particular scenario. When compared to the planning of single-arm operating environments, the 

process of path planning for dual-arm assembly robots in three-dimensional environments is much 

more involved and computationally more thorough. Our motivation to design a computationally 

efficient deep learning-based optimization technique for the motion planning of dual-arm assembly 

robots in both two-dimensional and three-dimensional settings came from the fact that this gap, in 

conjunction with the requirement for real-time planning methods, was the most likely to motivate us 

to design such a technique.  

The location of the arms should be translated to goal configurations as input to the LSTM-BiRRT 

algorithm for the purpose of generating the overall plan. Provided that there are two target portions in 

the OS matrix, this should be done. When planning the trajectory of the operating arm in the 

configuration space, the algorithm takes into account the trajectory of the supporting arm. This 

involves planning the trajectory of the operating arm from the moment the operating arm begins to 

move until the moment the supporting arm stops moving. Whenever the algorithm has finished 

planning the path that the operating arm will take, it will then return it to the configuration space in 

order to update the knowledge on the obstacles. At this moment, the connection of the operational arm 

has been fixed, and as a result, the supporting arm planner considers it to be an impediment. Figure 2 

illustrates the progression of the LSTMBiRRT technique for the dual-goal planning issue. The 

schedule may be found here. During the planning process, there are two possible outcomes that are 

shown in Figure 3. In the first case, the robotic arms do not reach the overlapping zone, which means 

that they are able to function independently. As a result, the planner finds both trajectories 

concurrently in order to speed up the planning operation. However, in the second case, the objective 

of two robotic arms overlaps, which means that the arms enter the overlapping zone and have the 

potential to crash with one another. In this scenario, one of the arms is considered to be the moving 

obstacle, and the motion of the other arm is planned taking into consideration a trajectory that is free 

of collisions within a dynamic environment that is already known. It is of utmost importance that the 

motion planning algorithm be both efficient and accurate when it comes to dual-goal applications in 

high-dimensional situations. This is because one planning trajectory has to be altered in conjunction 
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with the other trajectory. In order to improve the motion planning process, the algorithm that was 

created for this research makes use of a learning-based mechanism that is embedded inside a 

bidirectional-sampling-based planner. 

4. Result Analysis  

In this part, a numerical analysis is presented to assess the effectiveness of the LSTM-BiRRT in terms 

of its ability to solve motion planning issues in both two-dimensional and three-dimensional contexts. 

When carrying out the trials, two separate sets are taken into consideration: (1) a. The first is a Single 

Environment with Multiple-initial-and-goal Configurations (SEMC), while the second is a Multiple 

Environments with Single-initial-and-goal Configurations (MESC). For the purpose of establishing 

communication between the hardware environment and the motion planning algorithm, the "MoveIt!" 

platform (Chitta, 2016) is used. This allows for the selection of the desired exercise to be performed at 

a certain workspace while taking into consideration the same configuration. Among the methods that 

are regarded to be benchmark algorithms are the LSTMBiRRT, RRT-Connect, RRT*, and 

bidirectional RRT* (Bi-RRT*) algorithms. The results are compared taking into consideration the 

amount of time required for computing and the length of the route that is produced. Taking into 

consideration SEMC instances, the results are summarized. However, with the exception of one of the 

2D SEMC situations in which RRT* records the lowest computational time, LSTM-BiRRT 

outperforms in every other case when both the computational time and the solution quality are taken 

into consideration to evaluate performance.  

As can be seen in, the disparity in performance between the LSTM-BiRRT and the other benchmark 

algorithms becomes considerably more significant in situations involving 3D SEMC. This condition 

may be explained by the fact that three-dimensional settings are more complicated, and the learning 

impact becomes more significant as the dimensionality of the issue increases. Cases involving MESC 

are examined. The LSTM-BiRRT is capable of producing all of the best solutions in both the 2D and 

3D version of the MESC problem. The fact that our newly created method is able to achieve a greater 

solution quality in a shorter amount of computing time in comparison to RRT-Connect, RRT*, and 

Bi-RRT* is one of the aspects that makes this achievement especially noteworthy. The second 

significant discovery is that LSTM-BiRRT maintains a consistent performance when the computing 

time it takes to process MESC and SEMC instances in the same environment is taken into 

consideration. With an average processing time of 19 milliseconds, the LSTM-BiRRT method works 

more efficiently than the Bi-RRT* algorithm, which takes 53 milliseconds, the RRT* technique takes 

56 milliseconds, and the RRT-Connect algorithm takes 67 milliseconds. In addition, the planned 

routes that are provided by LSTMBiRRT are, on average, seven percent shorter than those that are 

provided by Bi-RRT*, which performs better than RRT-Connect and RRT*. It has also been noticed 

that the performance of RRT* and Bi-RRT* is similar, however the performance of RRT-Connect 

was shown to be much less competitive in comparison to the other benchmark algorithms, regardless 

of the size of the challenge. An illustrated example for building a product with three pieces is carried 

out in both simulated and real-world contexts in order to examine whether or not the findings are 

applicable to real-world situations. Taking into consideration the product shown in Figure 1, the 

components were created with the assistance of a 3D printer. demonstrates the simulation model that 

is now operating based on the LSTM-BiRRT planner in order to carry out the described assembly 

operation. All of the components were arranged on a, with an area that overlapped in the center of the 

arrangement. The OS matrix is taken into consideration when the robot takes hold of the components 

that have been allotted to it. With a computational time of less than 0.02 seconds, it is evident that the 

planner was effective in guiding the end-effectors of the dualarm robot to the desired position in order 

to grab the component parts that were given to them without causing any collisions. 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 52, Issue 2, No. 2, February : 2023 
 

UGC CARE Group-1,                                                                                                         763 

 

 After that, the planner carried out its tasks by using the Robot Operating System while 

simultaneously connecting to the control modules of two independent robotic arms. The motion was 

planned by the planner using preset 3D models that simulated a real-world workspace. This was done 

in light of the trajectories that were planned utilizing the LSTM-BiRRT framework. In order to 

communicate with the control modules, the planner used the Robot Operating System as a 

communication bridge and sent the predicted path. As shown in Figure 10(b), the LSTM-BiRRT is 

responsible for navigating the robotic arms in order to grab the components and put together the 

finished product. This method is comprised of the following four stages: (1) The operational arms and 

the supporting arms are responsible for grabbing components A and B, respectively, in order to carry 

out the necessary motion for the assembly process. Secondly, the component A is assembled onto the 

component B by the operating arm. (3) The component C is collected and moved by the working arm, 

while the supporting arm handles the completed section, which is denoted by the letter AB. (4) 

Assembly of component C on AB is performed by the operating arm. provides a representation of the 

amount of time required for the robotic motion planning process in each assembly phase, taking into 

account five replications. 

5. Conclusions 

In this study, a motion planning method that is based on a heuristic and is based on deep learning was 

provided for the purpose of implementation in intelligent manufacturing systems applications. Deep 

learning's capacity to extract high-level features is combined with the exploration power of 

randomized motion planning algorithms in this algorithm, which allows it to solve path planning 

problems in complex environments. In particular, it is useful for planning collision-free trajectories 

for dual-arm robots that are performing assembly tasks. Within the context of assembly activities, 

LSTMBiRRT is useful for tackling issues including dual-goal and high-dimensional planning. During 

the process of evaluating the created method's performance in various planning scenarios in both two-

dimensional and three-dimensional workspaces, it was benchmarked against the most advanced 

algorithms that are currently available in the literature. According to the numerical findings, the 

LSTM-BiRRT runs at a rate that is, on average, four times quicker than the benchmark algorithms. 

Not only that, but the length of the optimal route that was calculated by the LSTM-BiRRT was around 

seven percent lower than the length of the bidirectional RRT* method, which was the approach that 

performed the best. It is important to highlight two of the fundamental reasons why the algorithm that 

was built is better than other algorithms. To begin, the End-to-End design of the LSTMBiRRT 

method, which has input and output of the same format, makes it easier to use the algorithm in a 
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variety of operating situations without necessitating difficult pre-processing of the data. Second, the 

deep learning component of the LSTM-BiRRT algorithm enhances the mechanism for avoiding 

obstacles by anticipating the future location of the route nodes according to the training data that has 

been collected before. When taken as a whole, these characteristics play a key part in enhancing the 

effectiveness of the motion planning algorithms while also guaranteeing collision-free and (near-) 

optimal traverses. 
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