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ABSTRACT 

The multi-objective optimization algorithms (MOO) are used to obtain the best compromising 

solutions when two or more objective functions need to be optimized simultaneously. To develop 

new meta-heuristic algorithms and evaluate on the benchmark functions is the most challenging task. 

In this paper, performance of the Hybrid Artificial Bee Colony and NSGAII developed meta-

heuristic algorithms are evaluated on the recently developed CEC 2024 benchmark functions.  

However, the solutions reported in the literature, are either inferior or the constraints are violated. 

The algorithm proposed in this paper is an integration of an Artificial Bee Colony optimization 

algorithm and a Non-Dominated Sorting Genetic Algorithm-II. The effectiveness of the proposed 

algorithm is evaluated with well-defined IEEE CEC 2024 benchmark suite. Therefore, different 

meta-heuristic algorithms are considered which solve the benchmark functions with different 

dimensions. The performance of some basic, advanced meta-heuristics algorithms and the algorithms 

that participated in the CEC2024 competition have been experimentally investigated and many 

observations, recommendations, conclusions have been reached. This study focuses on researching 

two issues. The first is the redesigning and implementation of the Hybrid ABC-NSGAII, which is a 

novel meta-heuristic hybrid algorithm, in order to find better solutions to multi-objective benchmark 

problems. The second is the application of this hybrid multi-objective ABC-NSGA-II algorithm to 

solve the many objective, non-linear problem. As a result of this research, We used CEC 2024 as one 

of the most up-to-date and prestigious benchmark suites in the literature in order to test and verify 

the performance of the ABC-NSGA-II algorithm we had developed. In addition, we used the most 

up-to-date and widely used performance metrics and statistical analysis methods to analyze and 

compare the performance of the ABC-NSGAII and the five competing algorithms. Performance 

metrics and statistical analysis results clearly revealed that the proposed ABC-NSGAII is a 

competitive algorithm for finding PSt (the space of decision variables belonging to the optimization 

problem) and PFt (the space of objective functions), which represent optimum solution sets for 

multi-objective problems of different types and characteristics. Using the crowding distance-based 

Pareto archiving process, a significant improvement was achieved in the exploitation and exploration 

performance in the multi-objective search space of the ABC-NSGAII. We investigated the optimum 

PSt and PFt for the MOO problem using the ABC-NSGAII. We compared the results obtained from 

the experimental trials with the studies in the literature and the analysis results showed that we had 

found the best quality solution for the MOO problem. 

Keywords: Constrained multi-objective evolutionary algorithm, constrained multi-objective 

optimization problem, metaheuristic optimization algorithm. 

 

1. Introduction:  

Optimisation is used in engineering, science, operations research, planning, finance, mechanics, etc. 

to achieve goals [1]. Single-objective optimisation problems consider one objective function. In such 

cases, the objective function's optimum value is sought. The literature contains traditional and 

nature-inspired optimisation algorithms for these problems. However, most engineering and other 

practical problems require simultaneous optimisation of many objective functions. Multi-objective 

optimisation problems are difficult to solve because they involve conflicting objectives. In this case, 
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no single solution meets all competing goals. Instead, the decision-maker receives a set of solutions 

that compromise the objectives and are not superior to each other. All such solutions are non-

dominated, or Pareto-optimal. In real-world problems, the Pareto-optimal set may have many non-

dominated solutions and increase with problem size [2]. Traditional algorithms for solving multi-

objective optimisation problems fail to solve problems with discontinuous and/or discrete search 

spaces or provide suboptimal solutions. Because they simultaneously consider multiple solutions, 

evolutionary and swarm intelligence-based optimisation seem suitable for multi-objective 

optimisation problems. This lets the solver find all Pareto optimal set solutions in one algorithm run 

instead of several [3]. A constrained multi-objective optimisation problem in computational science 

is evaluated using an artificial bee colony algorithm and a non-dominated genetic algorithm (ABC-

NSGA-II). Constraint-based multi-objective optimisation problems dominate today's problem-

solving. Multi-objective optimisations offer more solutions than single-objective optimisations, 

which usually find one. People call these solutions Pareto Fronts. A reliable multi-objective 

optimisation strategy should consistently produce solutions that span these PFs, ensuring they are 

feasible and optimal for the problems. These strategies are complicated by balancing many goals. 

Metaheuristic (MH) algorithms are typically tested on simple optimisation problems. Engineering 

design has unique and varied requirements, unlike other search problems. Effective optimisation 

requires tailoring and refining these algorithms to engineering tasks' complex requirements. 

This study focuses on researching two issues. The first is the redesigning and implementation of the 

Hybrid ABC-NSGAII, which is a novel meta-heuristic hybrid algorithm, in order to find better 

solutions to multi-objective benchmark problems. The second is the application of this hybrid multi-

objective ABC-NSGA-II algorithm to solve the many objective, non-linear problem. As a result of 

this research, We used CEC 2024 as one of the most up-to-date and prestigious benchmark suites in 

the literature in order to test and verify the performance of the ABC-NSGA-II algorithm we had 

developed. In this suite, 24 different multimodal-type optimization problems having different 

features are defined. Moreover, to evaluate the superiority of the proposed ABC-NSGA-II algorithm, 

it was compared with the OMNI [8], NSGA [9,10], NSGAIII [11,12], SPEA2 [13], and MOABC 

[14] algorithms found in the literature, which are among the latest and most powerful methods 

developed to solve this type of multiobjective optimization problem. In addition, we used the most 

up-to-date and widely used performance metrics and statistical analysis methods to analyze and 

compare the performance of the ABC-NSGAII and the five competing algorithms. Performance 

metrics and statistical analysis results clearly revealed that the proposed ABC-NSGAII is a 

competitive algorithm for finding PSt (the space of decision variables belonging to the optimization 

problem) and PFt (the space of objective functions), which represent optimum solution sets for 

multi-objective problems of different types and characteristics. Using the crowding distance-based 

Pareto archiving process, a significant improvement was achieved in the exploitation and exploration 

performance in the multi-objective search space of the ABC-NSGAII. We investigated the optimum 

PSt and PFt for the MOO problem using the ABC-NSGAII. We compared the results obtained from 

the experimental trials with the studies in the literature and the analysis results showed that we had 

found the best quality solution for the MOO problem. 

 

2. Literature Review and Research gap/Novelty in presented paper:  

MOO has gained popularity in many fields because it boosts industrial productivity. Traditional 

approaches for MOO problem solving include ε–Constraint, Scalarization, and Pareto. The ε–

Constraint method prioritises one objective while limiting others. Weights for each objective turn 

multi-objective problems into single-objective problems during scalarization. As the best non-scalar 

compromise, the Pareto approach addresses all objectives. Evolutionary algorithms (EAs) and swarm 

intelligence methods followed the Vector-Evaluated Genetic Algorithm (VEGA) in MOO 

optimisation. TLBO, Harmony Search, and Differential Evolution (DE) have been shown to solve 

complex MOO problems. Hybrid methods like Evolutionary Algorithms (EAs) and swarm 
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intelligence have improved solution exploration, exploitation, and convergence. The artificial bee 

colony (ABC) algorithm is popular due to its simplicity, few control parameters, and adaptability. An 

established MOO problem-solving method, Non-dominated Sorting Genetic Algorithm II (NSGA-

II), is combined with the ABC algorithm. The ABC algorithm's bee phases modify solutions, while 

NSGA-II's crossover and mutation operations create offspring. NSGA-II's non-dominated sorting 

finds the Pareto-optimal front, guiding the algorithm to the best solutions. Data clustering and other 

complex optimisation tasks benefit from this hybrid method's exploration-exploitation balance. 

Recent benchmarking studies using IEEE Congress on Evolutionary Computation (CEC) 

competitions have helped evaluate cutting-edge optimisation algorithms. The CEC benchmark suite 

tests single-objective, multi-objective, and large-scale optimisation problems with a variety of 

functions. Including noisy, noiseless, constrained, and unconstrained test environments allows for 

comprehensive algorithm performance evaluation. For validation and algorithm comparison, the 

suite uses statistical methods like the Friedman test and Wilcoxon signed-rank test. CEC 2024 

benchmark test functions are crucial for assessing modern multi-objective optimisation algorithms 

like the hybrid ABC-NSGA-II. Optimisation algorithms face challenges from non-convex and 

complex numerical test functions. Several multi-criteria decision-making methods are used to 

evaluate the hybrid ABC-NSGA-II algorithm and select the best solutions from the non-dominated 

set. Hypervolume indicators and statistical analysis compare the hybrid algorithm to basic NSGA-II 

to assess its efficacy. The CEC competitions and benchmarking frameworks, especially the COCO 

benchmark suite, have shaped meta-heuristic algorithm evaluation and development. Benchmarking 

exercises improve nature-inspired algorithms like ABC and NSGA-II and provide insights into 

algorithm performance. Researchers can better understand hybrid optimisation methods' strengths 

and weaknesses in real-world applications by assessing algorithmic efficiency through performance 

metrics, computation time, and complexity. In conclusion, the hybrid ABC-NSGA-II algorithm is 

promising for multi-objective optimisation. Combining ABC's solution modification and NSGA-II's 

offspring generation powers offers a balanced approach to complex MOO problems. Benchmarking 

the algorithm on CEC 2024 test functions can assess its real-world applicability and effectiveness, 

improving optimisation techniques in various domains.  Research Contributions are as follows; 

• Hybrid ABC-NSGA-II Algorithm Development: Multi-objective optimisation problems can 

be solved using a novel hybrid artificial bee colony (ABC) algorithm and the non-dominated sorting 

genetic algorithm-II (NSGA-II). A hybrid approach efficiently addresses multiple conflicting 

objectives, improving optimisation results. 

• The proposed methodology can be used to solve more complex optimisation problems like 

single-objective computationally expensive numerical optimisation, multi-niche optimisation, 

constrained real-parameter single-objective problems, and constrained/multi-objective optimisation 

problems. 

• Simulation of Real-World Optimisation Challenges: The algorithm simulates real-world 

optimisation problems' difficulty, reflecting practical challenges and ensuring its applicability in 

diverse problem domains. 

• New optimisation algorithms' strengths and weaknesses are examined in the study. The 

hybrid ABC-NSGA-II improves algorithmic performance over previous methods. 

• Statistics for Performance Comparison: Hypervolume, Inverted Generational Distance (IGD), 

and Spread indicators are used to compare the proposed hybrid algorithm to the basic NSGA-II, 

providing a detailed performance assessment. 

• CEC 2024 Benchmark Suite testing: The developed Hybrid ABC-NSGA-II is tested on 15 

CEC 2024 benchmark suite multi-modal, multi-objective optimisation problems. Statistical analysis 

shows the algorithm's performance improvement in difficult optimisation environments. 

• Latest Competitors: The improved Hybrid ABC-NSGA-II is compared to cutting-edge 

algorithms. The hybrid algorithm solves multi-objective optimisation problems competitively 

according to statistical analysis of four performance metrics. 
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• Top-notch MOO solutions: The Hybrid ABC-NSGA-II algorithm solves the multi-objective 

optimisation (MOO) problem with Pareto front (PF) and Pareto set (PS) solutions of higher quality 

than literature solutions, proving its superiority. 

For the sake of convenience, some of the common acronyms used in this paper are summarized in 

Table 1. The remaining part of the paper is organized as follows: Section 2 presents the formulation 

of the Multi-Objective Optimization Problem (MOOP). Section 3 provides the theory of the hybrid 

ABC-NSGA-II algorithm. Section 4 explains the detailed procedure of applying the ABC-NSGA-II 

algorithm to the MOOP problem. The strategy to identify the best compromising solution is given in 

Section 5. The results of three test systems, using the proposed approach, along with comparative 

analysis, are discussed in Section 6. Section 7 includes the statistical analysis and comparison of the 

proposed method with ABC-NSGA-II. Finally, conclusions are drawn in Section 8.  

 

3. Concept of Multi-objective Optimization:  

The multi-objective optimization problem is defined as given in Eq. 1 [31]. 

 
where F (⃗x) is a vector consisting of the i-objective functions and ⃗x is the vector represented by the 

D-dimensional decision variables used in defining the F (⃗x). The boundaries on which decision 

variables are defined in the search space are represented by ld and ud, respectively. The equality and 

inequality constraints that are defined using decision variables and that must be met by the solution 

found for the optimization problem are represented by ∅a(⃗x)and ϕb(⃗x), respectively [31]. Thus, 

conflicting objective functions in Eq. make it difficult to find the best solution. Most meta-heuristic 

search (MHS) algorithms are designed to solve single-objective optimisation problems, so they 

cannot find feasible solutions for conflicting objective functions. Problems with conflicting objective 

functions require Pareto-based solutions. This requires MHS algorithm redesign. This requires 

integrating Pareto-based archiving into MHS algorithms that solve single-objective optimisation 

problems. Most multi-objective optimisation algorithms in the literature are designed this way. 

However, the Pareto approach has drawbacks. This method archives non-dominated solutions. You 

must choose between these solutions. Handling operations are needed when the archive exceeds its 

maximum solution count.  In the Pareto-based approach, archive handling is one of the biggest 

challenges because it's hard to decide which solutions to keep and which to delete. This process can 

use random, sequential, or probabilistic selection. None of these methods are reliable or effective. 

Archive handling is stable and effective using crowding distance. Thus, Pareto-based multi-objective 

optimisation algorithms perform better. Based on these explanations, this study's multi-objective 

ABC-NSGAII algorithm used crowding distance-based archiving, resulting in a stable and effective 

MOO problem optimisation.  

Definitions for the terminology of the Pareto archiving method and crowding distance are presented 

below [14,31–33]: Decision and objective spaces: In optimization problems, all of the values that 

decision variables can take are called decision variables space. This space is defined by the D-

dimensional ⃗x = (x1, x2, x3, . . ., xD), ld ≤ xd ≤ ud in Eq. (1) [31]. The objective space is defined as the 

equivalent of the values of each decision variable vector defined in the space of decision variables in 

the i-dimensional objective functions F(⃗x)= {f1(⃗x), f2(⃗x),f3(⃗x), . . . , fi(⃗x)} in Eq. (1). Pareto 

dominance relationship: The comparison of the dominance of the vectors defined in the i-

dimensional objective space with respect to each other is i > 1 and ∀i ∈ N. According to the 

definitions in Eq. (1), let ⃗x and ⃗y vectors be defined in the D-dimensional space of the decision 
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variables. Let these two vectors be represented by the vectors F(⃗x) and F(⃗y) in the I dimensional 

objective space for the objective functions defined in Eq. (1). According to these definitions, if the 

F(⃗x) vector has a better objective value than the F (⃗y) vector for at least one of the objective 

functions and does not have a worse objective value than the F (⃗y) vector for any of the objective 

functions, then the ⃗x-vector is dominant over the ⃗y-vector (denoted as ⃗x ≺ ⃗y) [31]. 

Pareto-optimal solution: Given a set of solutions, if a solution (⃗x) is not dominated by any other 

solution, then that solution is said to be Pareto-optimal [31]. 

 
Pareto-optimal set (PS): This is a set of solutions that cannot be dominated in the objective space. 

The set of these solutions in the decision space is called the PS [31]. 

 
Pareto-optimal front (PF): The set of values obtained by solution candidates for the objective 

functions in the Pareto-optimal set is called the PF [31]. 

 
 

4. Hybrid Meta-heuristic Algorithm 

4.1: Artificial Bee Colony: 

The ABC algorithm's artificial bee colony has employed, onlooker, and scout bees. An onlooker bee 

waits on the dance area to choose a food source, while an employed bee goes to the food source it 

previously visited. Scouts are bees that randomly search.. The main algorithm steps are below:  The 

ABC algorithm divides each search cycle into three steps: sending the employed bees onto food 

sources and measuring their nectar amounts; selecting food sources by onlookers after sharing the 

information of employed bees and determining nectar amounts; and determining the scout bees and 

sending them onto possible food sources. Bees randomly select food source positions and nectar 

amounts during initialisation. Then, these bees enter the hive and share source nectar information 

with the dance area bees. After sharing the information, every employed bee goes to the food source 

area she visited in the previous cycle since it's in her memory, then chooses a new food source using 

visual information in the neighbourhood. An onlooker chooses a food source based on nectar 

information distributed by employed bees on the dance area at the third stage. 

Each solution (food source) xi (i = 1, 2, . . . , SN) is a D-dimensional vector. Here, D is the number of 

optimization parameters. After initialization, the population of the positions (solutions) is subjected 

to repeated cycles, C = 1, 2, . . . ,Cmax, of the search processes of the employed bees, the onlooker 

bees and scout bees. An artificial employed or onlooker bee probabilistically changes her memory 

position (solution) for finding a new food source and tests its nectar value (fitness value). REAL bees 

produce new food sources by visually comparing food sources in a region. A comparison of food 

source positions is used to create a new position in our model. In the model, artificial bees use no 

comparison data. The bee forgets the old position and remembers the new one if the nectar amount is 

higher. She retains her position otherwise. After finding food sources (solutions), employed bees 

share their position and nectar information with onlooker bees on the dance area.. If its nectar is 

better, the bee remembers the new position and forgets the old one. An onlooker bee chooses a food 

source depending on the probability value associated with that food source, pi, calculated by the 

following expression (2.1): 
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where fiti is the fitness value of the solution i evaluated by its employed bee, which is proportional to 

the nectar amount of the food source in the position i and SN is the number of food sources which is 

equal to the number of employed bees (BN). In this way, the employed bees exchange their 

information with the onlookers. 

In order to produce a candidate food position from the old one, the ABC uses the following 

expression (2.2): 

 
where k ∈ {1, 2, . . . , BN} and j ∈ {1, 2, . . . ,D} are randomly chosen indexes. Although k is 

determined randomly, it has to be different from i. φi,j is a random number between [−1, 1]. It 

controls the production of a neighbour food source position around xi,j and the modification 

represents the comparison of the neighbour food positions visually by the bee. Equation 2.2 shows 

that as the difference between the parameters of the xi,j and xk,j decreases, the perturbation on the 

position xi,j decreases, too. Thus, as the search approaches to the optimum solution in the search 

space, the step length is adaptively reduced. If a parameter from this operation exceeds its limit, it 

can be set to an acceptable value. This work sets the parameter exceeding its limit to its limit. Scouts 

replace the bees' abandoned nectar with a new food source. This is simulated by randomly creating a 

position and replacing the abandoned one in the ABC algorithm. If a position cannot be improved 

after a limit number of cycles, the ABC algorithm abandons that food source. Each candidate source 

position vi,j is produced and evaluated by the artificial bee, then compared to xi,j. The old food is 

remembered if the new one has equal or better nectar.  Otherwise, the old one stays. Thus, greedy 

selection is used to choose between old and new food sources. ABC algorithm uses four selection 

processes: (1) a global selection process used by artificial onlooker bees to discover promising 

regions (2.1), (2) a local selection process carried out in a region by artificial bees and onlookers 

based on local information (in the case of real bees, this includes the colour, shape, and fragrance of 

the flowers) (bees cannot identify the type of nectar). The bee remembers the present one otherwise. 

(4) scout-random selection.  To search robustly, exploration and exploitation must occur 

simultaneously. Scouts control exploration in the ABC algorithm, while onlookers and employed 

bees exploit the search space.  

4.2 Non-dominated Sorting Genetic Algorithm-II 

Deb et al. [32] developed the powerful multi-objective optimisation algorithm Non-dominated 

Sorting Genetic Algorithm II (NSGA-II) in 2002. Kalyanmoy Deb and colleagues developed NSGA-

II, a sophisticated and efficient multiobjective optimisation algorithm. NSGA-II was created to 

improve multiobjective evolutionary algorithms (MOEAs) like the original NSGA. High 

computational complexity, lack of elitism, diversity maintenance dependent on user-defined 

parameters, and inefficient constraint handling were these issues.  

The efficient nondominated sorting procedure of NSGA-II is its core. The algorithm calculates how 

many and which solutions dominate each population solution. This lets solutions be grouped by 

dominance count into fronts. In the first front, no other solutions dominate, in the second front, only 

those in the first front dominate, and so on. This sorting is much faster than the original NSGA, 

reducing computational complexity from O(MN3) to O(MN2), where M is the number of objectives 

and N is the population size.  NSGA-II calculates crowding distance to maintain solution diversity. 

The density of solutions around each front solution is estimated by calculating a crowding distance. 

Sorting solutions by objective and calculating normalised distances between neighbouring solutions 

accomplishes this. An infinite crowding distance protects boundary solutions in the population. This 

method eliminates the need for a predefined sharing parameter, a major drawback of the original 

NSGA. For real-coded solutions, NSGA-II uses simulated binary crossover (SBX) and polynomial 

mutation to maintain genetic diversity.  After creating the offspring population, NSGA-II combines 

the parent and offspring populations into a 2N population. This population is sorted again using 

nondominated sorting to divide solutions into fronts. New generations are formed from the best N 
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solutions. The best solutions are preserved in this selection process, ensuring elitism. If the current 

front does not fit entirely into the new population, the best solutions are chosen by crowding distance 

until the population is filled.   

A NSGA-II algorithm stepI. Initialisation Population Creation: Generate an N-sized random 

population. Every person is a potential solution. Objective Functions: Assess each population 

member's objective function. These values determine how well each solution meets each goal. 

Sorting without dominance: Calculating Dominance: Determine the dominance count and which 

solutions each solution dominates. Formation of Fronts: Divide solutions by dominance counts: First 

Front: Undominated solutions. Second Front: Mostly first-front solutions. Like the previous fronts, 

subsequent fronts are defined. Calculating Crowding Distance: Use a crowding distance to estimate 

the density of solutions around each front solution. This is done by sorting solutions by objective and 

calculating normalised distances between neighbours. Set an infinite crowding distance for boundary 

solutions to preserve them in the population. Selection: Binary Tournament Select solutions with 

better ranks (lower front number) and larger crowding distances within the same front. Gene 

Operators: Create offspring by crossing selected solutions. SBX is used for real-coded NSGA-II 

solutions. Mutation: Randomly alter offspring to maintain genetic diversity. Real-coded solutions 

often use polynomial mutation. Create a new population of offspring by applying crossover and 

mutation operators to the selected solutions. Mix Populations: Parent and Offspring Populations: 

Combine the parent and offspring populations into a 2N population. Nondominated Combined 

Population Sorting: Sort Combined Population: Sort solutions into fronts using nondominated 

sorting. Selecting Next Generation: Elitism: Choose the top N solutions from the population to create 

the next generation: Fill Population: Include all first-front solutions. If the current front does not fit 

entirely into the new population, sort solutions by crowding distance and include the best until the 

population is filled. Handling constraints: Modify dominance to handle constraints: We always 

prioritise feasible solutions over infeasible ones. The infeasible solution with the smallest constraint 

violation is best. Repeat: Iteration: Repeat fitness evaluation and generation selection until a stopping 

criterion is met.This elitist strategy is more robust. SPEA's clustering techniques require careful 

parameter tuning, but NSGA-II's crowding distance mechanism maintains solution diversity without 

a predefined sharing parameter.  The constraint handling mechanism in NSGA-II is simple and 

effective. NSGA-II simplifies constraint-handling without penalty parameters or complex 

computations by prioritising feasible solutions and preferring those with fewer constraint violations. 

It is more robust and easier to implement than the original NSGA and SPEA, which can struggle 

with parameter settings and diversity in constrained environments.  For multiobjective optimisation 

problems, NSGA-II outperforms SPEA and the original NSGA due to its efficient nondominated 

sorting, elitism, parameter-less diversity preservation, and simple constraint handling. Its 

improvements improve convergence to the Pareto-optimal front, maintain a diverse set of solutions, 

and handle constraints, creating a balanced and powerful optimisation tool.  The Hybrid Artificial 

Bee Colony (ABC) and Non-dominated Sorting Genetic Algorithm II (NSGA-II) solves multi-

objective optimisation problems by combining the ABC algorithm's exploration powers with the 

NSGA-II algorithm's exploitation powers. The hybrid ABC-NSGA-II algorithm combines ABC 

exploration phases with NSGA-II genetic operations and non-dominated sorting.  

 

 

 

 

 

4.3 Pseudocode of Hybrid ABC-NSGA-II 

Initialize population P with size N 

Evaluate objective function values for each solution in P 

Repeat until termination criterion is met: 
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    Employed Bee Phase: 

        For each solution i in P: 

            Generate new solution i' using employed bee formula 

            If i' is better than i, replace i with i' in P and reset trial counter 

            Else, increment trial counter for i 

        Calculate fitness and probability for each solution in P 

        Onlooker Bee Phase: 

        For each solution i in P: 

            Select a solution j based on probability 

            Generate new solution i' using onlooker bee formula 

            If i' is better than i, replace i with i' in P and reset trial counter 

            Else, increment trial counter for i 

        Scout Bee Phase: 

        For each solution i in P: 

            If trial counter exceeds limit: 

                Replace i with a new random solution and reset trial counter 

NSGA-II Phase: 

        Crossover and Mutation: 

            Perform crossover and mutation to generate offspring population Q 

        Combine P and Q 

        Perform non-dominated sorting on combined population 

        Calculate crowding distance for each solution 

        Select top N solutions based on rank and crowding distance to form new P 

Output the non-dominated solutions in P 

The Hybrid Artificial Bee Colony (ABC) and Non-dominated Sorting Genetic Algorithm II (NSGA-

II) solve multi-objective optimisation problems by combining the ABC algorithm's exploration and 

exploitation powers. ABC exploration phases are combined with NSGA-II genetic operations and 

non-dominated sorting in the hybrid algorithm. Important hybrid approach choices: Traditional ABC 

algorithms use a separate archive for non-dominated solutions, but the hybrid algorithm uses a single 

integrated population for all solutions, promoting diversity from the start. The modified onlooker bee 

phase balances solution modification by determining neighbour selection probability based on 

dominance and fitness. Constrained Handling: Before non-dominated sorting, feasible and infeasible 

solutions are ordered by constraint violation severity. Every solution's fitness and selection 

probability are calculated using dominance count and crowding distance.  

4.4 Hybrid ABC-NSGA-II Algorithm 

The Hybrid Artificial Bee Colony (ABC) and Non-dominated Sorting Genetic Algorithm II (NSGA-

II) algorithm combines the ABC algorithm's exploratory search mechanism with NSGA-II's robust 

sorting and crowding distance mechanisms. This hybrid approach improves diversity and 

convergence efficiency, making it ideal for complex multi-objective optimisation problems. Hybrid 

ABC-NSGA-II Algorithm Unified Population Management Highlights: Traditional ABC algorithms 

use a separate archive for non-dominated solutions, but the hybrid algorithm uses one population. 

This approach promotes diversity from the start by allowing all population solutions to mate and 

contribute to the next generation. In the enhanced onlooker bee phase, solutions are selected based 

on their dominance probability, calculated using non-dominated sorting and crowding distance. This 

maintains population diversity and balanced solution modification. Constrained Problems: Before 

non-dominated sorting, the algorithm separates feasible and infeasible solutions. The rank and 

crowding distance of feasible solutions determine their ranking, while constraint violation severity 

ranks infeasible solutions. The dominance count and crowding distance values are used to calculate 

each solution's fitness and selection probability. This method ensures fair and balanced selection, 

improving algorithm performance.  Even for ten-objective problems, computational experiments 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 53, Issue 12, No.3, December : 2024 
 

UGC CARE Group-1                                                                                                                       105 

show that NSGA-III does not always outperform NSGA-II. Comparison results depend more on test 

problem type than objective number. Since its proposal, NSGA-II has been one of the most popular 

evolutionary multiobjective optimisation (EMO) algorithms, despite its limitations with many-

objective problems. Performance evaluation of new EMO algorithms usually involves NSGA-II. 

NSGA-III performed better on frequently-used DTLZ1-4 test problems than maximisation ones. 

NSGA-II solved many-objective knapsack problems better. These findings suggest that test problem 

type affects performance comparison results more than objective number. In conclusion, NSGA-III is 

a useful benchmark for new many-objective algorithms, but NSGA-II remains a crucial reference 

point in evolutionary multiobjective optimisation due to its track record and availability. 

Optimisation algorithm performance evaluation must take test problem type into account.  

 

5. Performance metrics 

Performance indicators compare algorithm solutions. Optimisation studies with conflicting objective 

functions seek the true Pareto sets (PFt and PSt) of the best solutions that cannot dominate each 

other. These PFt and PSt vectors represent the solution candidates' objective function values and 

decision variables. These explain the four main metrics used to evaluate multi-objective optimisation 

studies: HV [34–36], PSP [37], IGDX [32], and IGDF [32]. HV and IGDF metrics measure 

algorithms' Pareto-front coverage. These metrics measure the overlap ratio of the estimated PFe 

vector and the true PFt vector. HV volume and IGDF distance calculations are used. PSP and IGDX 

evaluate algorithm Pareto-set performance. Both metrics assess estimated PSe and true PSt vector 

coverage. This is done over the overlap ratio and IGDX for the PSP metric, and distance calculation 

for IGDX. Metrics are defined below: 1/HV hypervolume: Zitzler and Thiele proposed this PFe set 

formation performance metric [31,36]. An s-vector representing the objective space's worst point is 

used in HV metric calculations. The volume calculation between the s-vector and the z-vector 

representing PFe in w-space is given in Eq. (21). 

 
where w ∈ R is for all z ∈ s z≺w in this space and λD is the D-dimensional Lebesgue measure. 

Inverted generational distances (IGDF and IGDX): These metrics evaluate algorithm convergence in 

the decision variable and objective spaces [31]. Both methods are remote. Both metrics are 

calculated using Eq. (22) according to these explanations. 

 
In Eq. (22), when calculating the IGDF metric, PFt is used as the P∗ vector and PFe is used as the P-

vector. Similarly, when calculating the IGDX metric, PSt is used as the P∗ vector and PSe as the P-

vector. 

Pareto sets proximity (1/PSP): The PSP metric is calculated in three steps by referencing the PSt and 

PSe vectors defined in the space of decision variables. In first step, using Eq. (20), the overlap ratio 

of these two vectors is calculated [37]. 

 
where m is the dimension of the objective space and the δi is the normalized overlap ratio between 

PFt and PFe for the ith objective function and δi is calculated as given in Eq. (24). 
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Finally, the performances of the algorithms according to the PSP metric in an m-dimensional 

objective space are calculated as in Eq. (25) [37]. 

 
More information on performance metrics can be found in [34–37] reference studies. 

6. CEC 2024 Multiobjective Optimization Benchmark Functions 

MPMOPs with Independent Pareto Optimal Solutions:BF1 to BF6: The difficulty and dimensionality 

of these benchmarks allow for a complete algorithm performance evaluation. MPMOPs with 

Common Pareto Optimal Solutions:1–11: These competitive problems, derived from CEC 2018, 

have common Pareto optimal solutions across scenarios. Each problem is different in complexity and 

goals. The benchmark functions used in CEC 2024 to validate multi-objective optimisation 

algorithms are described here: 

Table 1: Multiparty Multiobjective Optimization Problems (MPMOPs) with Independent 

Pareto Optimal Solutions 

 
1.BF1 to BF6: These benchmark functions encompass various configurations of Pareto optimal front 

shapes, including convex, concave, and mixed forms. They evaluate the capacity of algorithms to 

manage diverse complexities and discontinuities in solution space.  2. MPMOP1 to MPMOP9: These 

functions are intended for multiparty multi-objective optimisation challenges. Each function 

evaluates distinct facets of optimisation algorithms, including their capacity to navigate dynamic and 

intricate solution spaces. These tables offer a detailed summary of the benchmark functions and 

formulations utilised in CEC 2024 for the validation of multi-objective optimisation algorithms.  

5.1 Setting experiments  

In experimental trials to test and verify the ABC-NSGAII, literature standards were used. One of the 

most recent standards for multi-objective optimisation algorithm competition is the CEC 2024 [32]. 

The experimental settings followed these standards to ensure fairness when comparing algorithms 
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and analysis reliability. Settings are listed below:For each benchmark optimisation problem, 

algorithms were run 21 times independently and the best PFe and PSe sets were saved.  The archive 

and group size was 200 * N_ops, where N_ops is the number of PFt/PSt Pareto-optimal optimisation 

solutions.  MaxFEs was the search process termination criterion. All algorithms had maxFEs set to 

10,000 * N_ops.  All statistical comparisons used 5% significance.  Both the NSGA-II and ABC 

algorithms had their parameters optimised to maximise performance. NSGA-II had 200 parent and 

offspring populations and 200 generations, except for the BNH problem, which had 100 generations. 

Fixed error tolerance (δ) of 0.0001 was used for equality constraints. Random float sampling was 

used. Binary tournament selection selected the best of two candidates. Simulation Binary Crossover 

(SIMBX) was used with a distribution index (η) of 15 and a crossover probability (p) of 0.9. 

Polynomial Mutation was used with a distribution index (η) of 20 and a mutation probability (p) of 

0.9. Consider 2 nearest neighbours to control crowding.  

 
However, the ABC algorithm, which models bee foraging, used several controls. The colony size 

was 125, matching the population size in reference [21], and the maximum number of cycles (MCN) 

was the maximum generation. 50% onlookers, 50% employed bees, and one scout bee comprised the 

colony. More scouts encourage exploration, while more onlookers on a food source increase 

exploitation. All experiments were repeated 30 times with different random seeds for reliability. 

Optimising both algorithms' problem-solving performance required these parameter settings. 
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6. Results and analyses 

The Friedman [38,39] and Wilcoxon [40,41] non-parametric test methods were used to analyse 

experimental trial data and compare algorithm performance. Experimental results are in two 

subsections: First subsection: The ABC-NSGAII algorithm's performance on CEC 2024 multi-

objective benchmark problems is detailed. The proposed algorithm's exploitation and exploration 

capabilities were compared to competitors using four performance metrics. The convergence and 

stability of multi-modal algorithms with different geometric shapes are also shown graphically. 

Table 2: Friedman Test ranking obtained by algorithm according to 1/HV IGDX, IGDF, and 1/PSP 

metrics 

Algorithms 1/HV IGDX IGDF 1/PSP Average 

ABC-NSGAII 4.6865 1.9107 2.6131 1.9345 2.7862 

NSGAIII 4.5813 2.4365 3.3214 2.4504 3.1974 

MOPSO 2.6369 4.0002 3.0516 4.1825 3.4682 

DN NSGAII 3.2659 4.2877 4.5794 4.2798 4.1032 

NSGAII 2.6310 5.3095 3.3631 5.3829 4.1716 

SPEA2 4.5119 5.1111 5.2123 5.0536 4.9722 

MOABC 5.6865 4.9425 5.8591 4.7163 5.3011 

 

 

Table 3: Pairwise comparison results between ABC-NSGAII and its competitors by problem types 

using the 1/PSP metric 

Vs. ABC-

NSGAII 

+/=/- 

Convex linear 

(7, 8, 9, 16, 17, 

18) 

Convex nonlinear 

(1, 2, 4, 5, 10, 13, 

19) 

Concave linear 

(11, 12, 20, 22, 23, 

24) 

Concave nonlinear 

(3, 6, 14, 15, 21) 
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NSGAIII 0/4/2 0/4/3 0/0/6 1/0/4 

MOEA/D 2/1/3 1/1/5 0/0/6 0/0/5 

MOPSO 2/1/3 1/1/5 0/0/6 0/0/5 

MOABC 1/0/5 0/1/6 0/0/6 0/0/5 

SPEA2 2/1/3 0/1/6 0/0/6 0/0/5 

NSGAII 2/0/4 0/1/6 0/0/6 0/0/5 

This table provides the pairwise comparison results between ABC-NSGAII and its competitors 

across different problem types using the 1/PSP metric. The comparisons are categorized by convex 

linear, convex nonlinear, concave linear, and concave nonlinear problem types, showcasing the +, =, 

and - results. 

6.1. Performance of the proposed ABC-NSGAII 

ABC-NSGAII performance on benchmark problems and comparisons with competing algorithms are 

examined in this section. Detailed information follows. Benchmark issues: The CEC 2024 

benchmark suite [32] used decision variables and objective functions of various types to fairly 

compare algorithms and show their performance. The CEC 2024 suite includes 15 multimodal multi-

objective optimisation problems with two or more global or local Pareto-optimal sets. Competitors: 

The experimental trials used widely-respected algorithms like MOPSO [8], NSGAIII [9,10], NSGAII 

[11,12], SPEA2 [13], and MOABC [14]. Performance metrics: Statistical test methods and the latest 

performance metrics were used to compare algorithm performance. As described in part 3.1.2. 

(Performance metrics) of the Method section, the four performance metrics were the reciprocal of 

Hypervolume (1/HV) [34–36], Pareto Sets Proximity (1/PSP) [37], and Inverted Generational 

Distance in decision and objective space (IGDX, IGDF) [32]. 

Fig. 2. Performance of algorithms for IGDX, IGDF and 1/PSP metrics. 
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6.1.1. Statistical analysis results 

Based on Section of Experimental Settings, the competing algorithms' PSe and PFe sets for the 24 

benchmark problems were used to analyse their performance. Table 2 shows the Friedman test 

rankings of the six competitor algorithms using 1/HV IGDX, IGDF, and 1/PSP metrics. The NSGAII 

and OMNI algorithms outperformed their competitors in HV metric ranks. IGDX, IGDF, and PSP 

ranks showed that the proposed ABC-NSGAII outperformed all competitors. ABC-NSGAII scores 

for IGDX, PSP, and IGDF metrics indicated good PSe/PSt and PFe/PFt overlap ratios. The ABC-

NSGAII's exploitation and exploration capabilities improved with the Pareto-archiving process's 

crowding distance-based ranking method. 

Fig. 3. Performance of algorithms for IGDX, IGDF and 1/PSP metrics.(cont.) 

 
This is evident when comparing MOMRFO and ABC-NSGAII performance metrics scores. Table 3 

compares ABC-NSGAII performance to competitors. The (+), (=), and (−) signs indicate the number 

of optimisation problems where the competitor algorithm surpassed the ABC-NSGAII, where the 

two algorithms performed similarly, and where the ABC-NSGAII outperformed its competitor. The 

CEC 2024 benchmark suite has four types of benchmark problems based on objective and decision 

space forms: convex linear, concave linear, and concave nonlinear. We compared the ABC-NSGAII 

to its competitors for each problem type. Table 3 shows Wilcoxon statistics. ABC-NSGAII 
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outperformed competitors in all four problem types. In particular, ABC-NSGAII performance 

improved in multi-objective problems with high Convex Nonlinear, Concave Linear, and Concave 

Nonlinear complexity. 

Table 3: 1/HV, 1/PSP, IGDX, IGDF values of competitors for CEC2020 benchmark problems. 

 
The statistical analysis showed that the crowding distance-based ranking method improved ABC-

NSGAII performance in the archiving process. Table 3 shows the ABC-NSGAII and its competitors' 

1/HV, IGDX, IGDF, and 1/PSP metrics for the 15 CEC 2024 benchmark suite problems. The 24 

problems were solved using the algorithms' PFe and PSe sets from 21 independent trials, and the four 

metrics' mean values and standard deviations were calculated. Table 4's dark-coloured cells with 

bold text indicate the algorithms' best values for 60 cases (4 metrics and 15 test functions, 4*15). 

Last row of Table 4 shows algorithm scores for all cases. ABC-NSGAII performed best in 34 of 60 
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cases. The NSGAII outperformed the ABC-NSGAII in 12 of 60 cases. Approximation graphs 

showed algorithm convergence, and box-plot graphs showed all algorithm results' error values. We 

created approximation graphs for 7 of the 15 CEC 2024 benchmark suite problems and box-plot 

graphs for the other 12. Fig. 3 shows that the ABC-NSGAII, MOPSO, and MOEA/D algorithms 

found feasible solutions using Pareto front approximations. In problems with more than two 

objective functions, the ABC-NSGAII had better PFe/PFt overlap than its competitors. No algorithm 

achieved 100% PFe/PFt overlap. 

 
Fig 4: Box Plots of CEC 2024 Benchmark Test Functions 

This Fig shows that multi-objective optimisation algorithms need new exploitation and exploration 

methods. Box-plot graphs show algorithm quality and convergence stability well. Above are 

approximate graphs for 7 of 15 problems. For the other 12 problems with different PF and PS 

geometries, Fig. 4 shows the IGDX, IGDF, and 1/PSP algorithm performances. The box-plot graphs 

in Fig. 4 show that no algorithm outperformed its competitors in all problems. This showed that 

algorithm performance varied by problem. This showed that these seven problems had unique 

algorithms. ABC-NSGAII was more stable and had better convergence performance for IGDX, 

IGDF, and 1/PSP metrics than its competitors in these unique problems. Here we considers 15 

problems, 4 metrics, have score for ABC-NSGAII (29/60), NSGAIII (8/60), MOEA/D(1/60), 

MOABC(0/60), SPEAII(7/60), NSGAII(17/60). 
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6.1.2. Algorithm complexity 

This section discusses algorithm computational complexity. Everything in this process followed CEC 

2024 experimental study standards. In CEC 2024, the F1 problem was used for calculations. Number 

of decision variables (var = 2), local and global Pareto sets (N_ops = 2), convex Pareto front 

geometry, non-linear Pareto set geometry. Trials ended with maximal fitness evaluations (10000 * 

N_ops). Every algorithm was tested 21 times. After these explanations, Table 5 shows the average 

F1 algorithm calculation time in seconds. Table 5 classifies algorithms by computational complexity 

into two groups. MOPSO, NSGAII, MOABC, and NSGAIII are computationally easy. However, 

SPEA2 seems computationally difficult. Clustering makes SPEA2's archive handling algorithm more 

complicated. 

Table 5: Average computation times of various algorithms for problem F1 (in seconds) 

Algorithm MOABC NSGAIII ABC-NSGAII NSGAII MOPSO SPEA2 

Time (s) 7.90 8.57 8.69 13.64 14.95 308.71 

 

7. Conclusions 

This study offers two notable contributions to the domain of multi-dimensional meta-heuristic 

optimisation. The development of the robust ABC-NSGAII algorithm represents a significant 

enhancement in search performance through the utilisation of a crowding distance-based design. This 

algorithm's effectiveness was demonstrated through comprehensive experimental trials on 24 

benchmark problems from the CEC 2024 suite, recognised for its rigour in multi-objective 

optimisation. The findings indicated that ABC-NSGAII surpassed other algorithms, exhibiting 

enhanced convergence on problems characterised by diverse geometries of the Pareto Front (PF) and 

Pareto Set (PS). The performance was validated through statistical analyses using key metrics, 

including Hypervolume (HV), Pareto Set Proximity (PSP), Inverted Generational Distance X 

(IGDX), and Inverted Generational Distance F (IGDF). 
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The evaluation of the ABC-NSGAII algorithm utilised a thorough methodology, applying it to the 

IEEE CEC 2024 benchmark test instances for multi-objective optimisation. The structure of the 

hybrid algorithm, which incorporates an employed bee phase and an onlooker bee phase, improved 

existing solutions, while the following crossover and mutation phases produced new and diverse 

solutions. The algorithm, implemented in MATLAB, effectively minimised multiple objectives 

concurrently, surpassing alternative methods by more effectively satisfying equality and inequality 

constraints with minimal violations. The algorithm demonstrated robustness through its convergence 

stability and ability to manage optimal functions within practical constraints. The ABC-NSGAII 

algorithm demonstrated significant efficacy in multi-objective optimisation research. The solution set 

presented is the most effective in the literature for multi-objective optimisation problems, markedly 

decreasing the total cost across all test cases in comparison to alternative algorithms. This 

enhancement highlights the algorithm's capacity for generating substantial profits and its relevance to 

diverse optimisation problems. 
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