

ISSN: 0970-2555

Volume : 52, Issue 12, No. 1, December : 2023 QUOTIENT-4 CORDIAL LABELING OF GENERALIZED PETERSEN GRAPH

S.Kavitha Department of mathematics, St.Thomas College of Arts and Science, Koyambedu, Chennai-600107, India. Email: kavinu76@gmail.com

Dr.P.Sumathi Department of mathematics, C.Kandaswami Naidu College for Men, Annanagar, Chennai-600102, India. Email: <u>sumathipaul@yahoo.co.in</u>

Abstract

Let G(V, E) be a simple graph of order p and size q. Let $\varphi: V(G) \to Z_5 - \{0\}$ be a function. For each edge set E(G) define the labeling $\varphi^*: E(G) \to Z_4$ by $\varphi^*(uv) = \lceil (\frac{\varphi(u)}{\varphi(v)}) \rceil \pmod{4}$ where $\varphi(u) \ge \varphi(v)$. The function φ is called Quotient-4 cordial labeling of G if $|v_{\varphi}(i) - v_{\varphi}(j)| \le 1, 1 \le i, j \le 4$, $i \ne j$ where $v_{\varphi}(x)$ denote the number of vertices labeled with x and $|e_{\varphi}(k) - e_{\varphi}(l)| \le 1, 0 \le k, l \le 3, k \ne l$, where $e_{\varphi}(y)$ denote the number of edges labeled with y. Here some cases of generalized Petersen graphs are quotient-4 cordial labeling.

Keywords:

Generalized Petersen graphs, quotient-4 cordial labeling and quotient-4 cordial graph.

1. INTRODUCTION

Here the graphs considered are finite, simple, undirected and non-trivial. Graph theory has a good development in the graph labeling and has a broad range of applications. Refer Gallian [4] for more information. The cordial labeling concept was first introduced by Cahit [2]. H- and H2 –cordial labeling was introduced by Freeda S and ChellathuraiR.S [3]. Mean Cordial Labeling was introduced by Albert William, Indira Rajasingh, and S Roy [1]. Quotient-4 cordial labeling was introduced by P.Sumathi and S.Kavitha [5]. A graph *G* is said to be quotient-4 cordial graph if it receives quotient-4 cordial labeling .Let $v_{\varphi}(i)$ denotes the number of vertices labeled with *i* and $e_{\varphi}(k)$ denotes the number of edges labeled with $k, 1 \le i \le 4, 0 \le k \le 3$.

2. DEFINITIONS

Definition: 2.1[6] Let G(V, E) be a simple graph of order p and size q. Let $\varphi: V(G) \to Z_5 - \{0\}$ be a function. For each edge set E(G) define the labeling $\varphi^*: E(G) \to Z_4$ by $\varphi^*(uv) = \left[\left(\frac{\varphi(u)}{\varphi(v)}\right)\right] \pmod{4}$ where $\varphi(u) \ge \varphi(v)$. The function φ is called Quotient-4 cordial labeling of G if $|v_{\varphi}(i) - v_{\varphi}(j)| \le 1$, $1 \le i, j \le 4, i \ne j$ where $v_{\varphi}(x)$ denote the number of vertices labeled with x and $|e_{\varphi}(k) - e_{\varphi}(l)| \le 1$, $0 \le k, l \le 3, k \ne l$, where $e_{\varphi}(y)$ denote the number of edges labeled with y.

Definition: 2.2[5] A generalized Petersen graph P(n,m), $n \ge 3, 1 \le m < \frac{n}{2}$ is a 3-regular graph with 2*n* vertices $x_1, x_2 ... x_n, y_1, y_2 ... y_n$ and edges $\{x_i, y_i\}, \{x_i, y_{i+1}\}, \{y_i, y_{i+m}\}$ for all $i \in \{1, 2 ... n\}$ where the subscripts are reduced modulo *n*.

3. MAIN RESULTS

Theorem: 3.1 A generalized Petersen graph P(n, 1) is quotient-4 cordial if $n \ge 3$. **Proof:** Let *G* be a generalized Petersen graph P(n, 1). $V(G) = \{x_t, y_t : 1 \le t \le n\}$. $E(G) = \{(x_ty_t), (x_tx_{t+m}): 1 \le t \le n, 1 \le m < \frac{n}{2}\} \cup \{y_ty_{t+1}: 1 \le t \le n-1\} \cup \{y_1y_n\}$. Where the subscripts are taken modulo *n*. Here |V(G)| = 2n, |E(G)| = 3n. Define $\varphi : V(G) \rightarrow \{1, 2, 3, 4\}$.

UGC CARE Group-1,

ISSN: 0970-2555

Volume : 52, Issue 12, No. 1, December : 2023 The values of x_t and y_t are labeled as follows: Case 1: $n \equiv 0, 7 \pmod{8}$ For $1 \le t \le n$. $\varphi(x_t) = 1$ if $t \equiv 2, 4 \pmod{8}$. $\varphi(x_t) = 2$ if $t \equiv 6, 7 \pmod{8}$. $\varphi(x_t) = 3$ if $t \equiv 0, 1, 3, 5 \pmod{8}$. $\varphi(y_t) = 1$ if $t \equiv 1, 3 \pmod{8}$. $\varphi(y_t) = 2$ if $t \equiv 6, 7 \pmod{8}$. $\varphi(y_t) = 4$ if $t \equiv 0, 2, 4, 5 \pmod{8}$. Case 2: $n \equiv 1 \pmod{8}$. For $1 \le t \le n - 2$, the labeling of x_t and y_t values are same as case 1. $\varphi(x_n) = 3, \varphi(x_{n-1}) = 2.$ $\varphi(y_n) = 4, \varphi(y_{n-1}) = 1.$ Case 3: $n \equiv 2 \pmod{8}$. For $1 \le t \le n-3$, the labeling of x_t values are same as case 1. $\varphi(x_n) = \varphi(x_{n-1}) = 3, \varphi(x_{n-2}) = 2.$ For $1 \le t \le n$, the labeling of y_t values are same as case 1. Case 4: $n \equiv 3 \pmod{8}$ For $1 \le t \le n$, the labeling of x_t values are same as case 1. For $1 \le t \le n - 4$, the labeling of y_t values are same as case 1. $\varphi(y_n) = \varphi(y_{n-2}) = 4, \varphi(y_{n-1}) = 1, \varphi(y_{n-3}) = 2.$ Case 5: $n \equiv 4 \pmod{8}$ For $1 \le t \le n-5$, the labeling of x_t and y_t values are same as case 1. $\varphi(x_n) = 1, \varphi(x_{n-1}) = \varphi(x_{n-2}) = 3, \varphi(x_{n-3}) = 4, \varphi(x_{n-4}) = 2.$ $\varphi(y_n) = \varphi(y_{n-2}) = 4, \varphi(y_{n-1}) = 1, \varphi(y_{n-3}) = 3, \varphi(y_{n-4}) = 2.$ Case 6: $n \equiv 5 \pmod{8}$ For $1 \le t \le n - 3$, the labeling of x_t and y_t values are same as case 1. $\varphi(x_n) = 3, \varphi(x_{n-1}) = 1, \varphi(x_{n-2}) = 4.$ $\varphi(y_n) = \varphi(y_{n-1}) = 2, \varphi(y_{n-2}) = 4.$ Case 7: $n \equiv 6 \pmod{8}$ For $1 \le t \le n - 6$, the labeling of x_t and y_t values are same as case 1. $\varphi(x_n) = \varphi(x_{n-1}) = 3, \varphi(x_{n-2}) = 1, \varphi(x_{n-3}) = 4, \varphi(x_{n-4}) = \varphi(x_{n-5}) = 2.$ $\varphi(y_n) = 3, \varphi(y_{n-1}) = \varphi(y_{n-3}) = 1, \varphi(y_{n-2}) = \varphi(y_{n-4}) = 4, \varphi(y_{n-5}) = 2.$

ISSN: 0970-2555

Volume : 52, Issue 12, No. 1, December : 2023 The following table shows that *n* concurrence is realized with modulo 8.

Nature of n	$v_{\varphi}(1)$	$v_{\varphi}(2)$	$v_{\varphi}(3)$	$v_{\varphi}(4)$
$n\equiv 0,2,4,6$	$\frac{n}{4}$	$\frac{n}{4}$	$\frac{n}{4}$	$\frac{n}{4}$
<i>n</i> ≡ 1,7	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2} - 1$	$\frac{n+1}{2} - 1$
<i>n</i> ≡ 3	$\frac{n+1}{2}$	$\frac{n+1}{2} - 1$	$\frac{n+1}{2}$	$\frac{n+1}{2} - 1$
$n \equiv 5$	$\frac{n+1}{2}$	$\frac{n+1}{2} - 1$	$\frac{n+1}{2} - 1$	$\frac{n+1}{2}$

Table 1: Vertex labeling of P(n, 1) graph The following table shows that *n* concurrence is realized with modulo 8.

Nature of n	$e_{\varphi}(0)$	$e_{\varphi}(1)$	$e_{\varphi}(2)$	$e_{\varphi}(3)$
<i>n</i> ≡ 0,4	$\frac{3n}{4}$	$\frac{3n}{4}$	$\frac{3n}{4}$	$\frac{3n}{4}$
<i>n</i> ≡ 1,5	$\frac{3n+1}{4}$	$\frac{3n+1}{4}$	$\frac{3n+1}{4}$	$\frac{3n+1}{4}-1$
$n \equiv 2$	$\frac{3n+2}{4}$	$\frac{3n+2}{4}$	$\frac{3n+2}{4}-1$	$\frac{3n+2}{4}-1$
$n \equiv 3$	$\frac{3n-1}{4}$	$\frac{3n-1}{4}$	$\frac{3n-1}{4}$	$\frac{3n-1}{4}$
$n \equiv 6$	$\frac{3n+2}{4}$	$\frac{3n+2}{4}$	$\frac{3n+2}{4}$	$\frac{3n+2}{4}-1$
$n \equiv 7$	$\frac{3n-1}{4}$	$\frac{3n-1}{4}$	$\frac{3n-1}{4}$	$\frac{3n-1}{4} + 1$

Table 2: Edge labeling of P(n, 1) graph

The above tables 1 and 2 show that $|v_{\varphi}(i) - v_{\varphi}(j)| \le 1$ and $|e_{\varphi}(k) - e_{\varphi}(l)| \le 1$. Hence the generalized Petersen graph P(n, 1) is quotient-4 cordial labeling.

Theorem: 3.2 If *m* is even and $n \equiv 0 \pmod{8}$, $n \ge 3$ then the generalized Petersen graph P(n, m) is quotient-4 cordial.

Proof: Let G be a generalized Petersen graph P(n, m).

 $V(G) = \{x_t, y_t : 1 \le t \le n\}.$

 $E(G) = \left\{ (x_t y_t), (x_t x_{t+m}): 1 \le t \le n, 1 \le m < \frac{n}{2} \right\} \cup \{y_t y_{t+1}: 1 \le t \le n-1\} \cup \{y_1 y_n\}.$ Where the subscripts are taken modulo *n*.

Here |V(G)| = 2n, |E(G)| = 3n. Define $\varphi : V(G) \to \{1, 2, 3, 4\}$.

UGC CARE Group-1,

ISSN: 0970-2555

Volume : 52, Issue 12, No. 1, December : 2023

The values of x_t and y_t are labeled as follows: When $n \equiv 0 \pmod{8}$ For $1 \leq t \leq n$. Case 1: $m \equiv 0 \pmod{8}$. Sub Case 1.1: When n = md where d is even multiples. For $1 \leq t \leq md$. $\varphi(x_t) = 1$ if $t \equiv 4, 7 \pmod{8}$. $\varphi(x_t) = 2$ if $t \equiv 1, 2 \pmod{8}$. $\varphi(x_t) = 3$ if $t \equiv 5, 6 \pmod{8}$. $\varphi(x_t) = 4$ if $t \equiv 0, 3 \pmod{8}$. For $mk + 1 \le t \le ml$ where $k \equiv 0 \pmod{2}$ and $l \equiv 1 \pmod{2}$. For $0 \le k \le \left\lfloor \frac{n}{m} \right\rfloor - 1$ and $0 \le l \le \left\lfloor \frac{n}{m} \right\rfloor$. $\varphi(y_t) = 1$ if $t \equiv 0, 5 \pmod{8}$. $\varphi(y_t) = 2$ if $t \equiv 1, 2 \pmod{8}$. $\varphi(y_t) = 3$ if $t \equiv 3, 4 \pmod{8}$. $\varphi(y_t) = 4$ if $t \equiv 6, 7 \pmod{8}$. For $mk + 1 \le t \le ml$ where $k \equiv 1 \pmod{2}$ and $l \equiv 0 \pmod{2}$. For $1 \le k \le \left\lfloor \frac{n}{m} \right\rfloor$ and $2 \le l \le \left\lfloor \frac{n}{m} \right\rfloor$. $\varphi(y_t) = 1$ if $t \equiv 3, 6 \pmod{8}$. $\varphi(y_t) = 2$ if $t \equiv 1, 2 \pmod{8}$. $\varphi(y_t) = 3$ if $t \equiv 0, 7 \pmod{8}$. $\varphi(y_t) = 4$ if $t \equiv 4, 5 \pmod{8}$. Sub Case 1.2: When n = md + r where d is even multiples and r is multiples of 8 and less than m. For $1 \le t \le md$, the labeling of x_t values are same as sub case 1.1. For $md + 1 \le t \le md + r$. $\varphi(x_t) = 1$ if $t \equiv 3, 6 \pmod{8}$. $\varphi(x_t) = 2$ if $t \equiv 0, 1 \pmod{8}$. $\varphi(x_t) = 3$ if $t \equiv 4, 5 \pmod{8}$. $\varphi(x_t) = 4$ if $t \equiv 2, 7 \pmod{8}$. For $1 \le t \le md$, the labeling of y_t values are same as sub case 1.1. For $md + 1 \le t \le md + r$. $\varphi(y_t) = 1$ if $t \equiv 4, 7 \pmod{8}$. $\varphi(y_t) = 2$ if $t \equiv 1, 2 \pmod{8}$. $\varphi(y_t) = 3$ if $t \equiv 5, 6 \pmod{8}$. $\varphi(y_t) = 4$ if $t \equiv 0, 3 \pmod{8}$. Sub Case 1.3: When n = md where d is odd multiples. For $1 \le t \le md - m$, the labeling of x_t values are same as sub case 1.1. For $md - m + 1 \le t \le md$. $\varphi(x_t) = 1$ if $t \equiv 3, 6 \pmod{8}$. $\varphi(x_t) = 2$ if $t \equiv 0, 1 \pmod{8}$. $\varphi(x_t) = 3$ if $t \equiv 4, 5 \pmod{8}$. $\varphi(x_t) = 4$ if $t \equiv 2,7 \pmod{8}$. For $1 \le t \le md - m$, the labeling of y_t values are same as sub case 1.1.

ISSN: 0970-2555

Volume : 52, Issue 12, No. 1, December : 2023 For $md - m + 1 \le t \le md$. $\varphi(y_t) = 1$ if $t \equiv 4, 7 \pmod{8}$. $\varphi(y_t) = 2$ if $t \equiv 1, 2 \pmod{8}$. $\varphi(y_t) = 3$ if $t \equiv 5, 6 \pmod{8}$. $\varphi(y_t) = 4$ if $t \equiv 0, 3 \pmod{8}$. Case 2: $m \equiv 2 \pmod{8}$. $\varphi(x_t) = 1$ if $t \equiv 2, 3 \pmod{8}$. $\varphi(x_t) = 2$ if $t \equiv 6,7 \pmod{8}$. $\varphi(x_t) = 3$ if $t \equiv 5 \pmod{8}$. $\varphi(x_t) = 4$ if $t \equiv 0, 1, 4 \pmod{8}$. $\varphi(y_t) = 1$ if $t \equiv 1, 4 \pmod{8}$. $\varphi(y_t) = 2$ if $t \equiv 6, 7 \pmod{8}$. $\varphi(y_t) = 3$ if $t \equiv 2, 3, 5 \pmod{8}$. $\varphi(y_t) = 4$ if $t \equiv 0 \pmod{8}$. Case 3: $m \equiv 4 \pmod{8}$. $\varphi(x_t) = 1$ if $t \equiv 1, 3, 6 \pmod{8}$. $\varphi(x_t) = 2$ if $t \equiv 0, 4 \pmod{8}$. $\varphi(x_t) = 3$ if $t \equiv 2 \pmod{8}$. $\varphi(x_t) = 4$ if $t \equiv 5, 7 \pmod{8}$. $\varphi(y_t) = 1$ if $t \equiv 2 \pmod{8}$. $\varphi(y_t) = 2$ if $t \equiv 4, 5 \pmod{8}$. $\varphi(y_t) = 3$ if $t \equiv 3, 6, 7 \pmod{8}$. $\varphi(y_t) = 4$ if $t \equiv 0, 1 \pmod{8}$. Case 4: $m \equiv 6 \pmod{8}$. $\varphi(x_t) = 1$ if $t \equiv 1, 5 \pmod{8}$. $\varphi(x_t) = 2$ if $t \equiv 0, 6 \pmod{8}$. $\varphi(x_t) = 3$ if $t \equiv 2, 4, 7 \pmod{8}$. $\varphi(x_t) = 4$ if $t \equiv 3 \pmod{8}$. $\varphi(y_t) = 1$ if $t \equiv 2, 4 \pmod{8}$. $\varphi(y_t) = 2$ if $t \equiv 6, 7 \pmod{8}$. $\varphi(y_t) = 3$ if $t \equiv 5 \pmod{8}$. $\varphi(y_t) = 4$ if $t \equiv 0, 1, 3 \pmod{8}$. The following table shows that *n* & *m* concurrence is realized with modulo 8.

Nature of <i>n</i> and <i>m</i>	$v_{\varphi}(1)$	$v_{\varphi}(2)$	$v_{\varphi}(3)$	$v_{\varphi}(4)$
$n \equiv 0$ $m \equiv 0, 2, 4, 6$	$\frac{n}{4}$	$\frac{n}{4}$	$\frac{n}{4}$	$\frac{n}{4}$

ISSN: 0970-2555

Volume : 52, Issue 12, No. 1, December : 2023

Table 3: Vertex labeling of P(n, m) graph with $n \equiv 0 \pmod{8}$ and m is even. The following table shows that n & m concurrence is realized with modulo 8.

Nature of n and m	$e_{\varphi}(0)$	$e_{\varphi}(1)$	$e_{\varphi}(2)$	$e_{\varphi}(3)$
$n \equiv 0$ $m \equiv 0, 2, 4, 6$	$\frac{3n}{4}$	$\frac{3n}{4}$	$\frac{3n}{4}$	$\frac{3n}{4}$

Table 4: Edge labeling of P(n, m) graph with $n \equiv 0 \pmod{8}$ and m is even.

The above tables 3 and 4 show that $|v_{\varphi}(i) - v_{\varphi}(j)| \le 1$ and $|e_{\varphi}(k) - e_{\varphi}(l)| \le 1$. Hence the generalized Petersen graph P(n, m) graph with $n \equiv 0 \pmod{8}$ and m is even is quotient-4 cordial labeling.

Illustration: 3.3 Figure 1 gives the quotient-4 cordial labeling for the graph P(8, 2).

Figure 1.

4. CONCLUSION

In this paper, it is proved that some cases of generalized Petersen graphs which admits quotient-4 cordial. The existence of quotient-4 cordial labeling of different families of graphs will be the future work.

5. ACKNOWLEDGMENT

Sincerely register our thanks for the valuable suggestions and feedback offered by the referees.

REFERENCES

[1]. Albert William, IndraRajasingh and S Roy, Mean Cordial Labeling of Certain graphs, J.Comp.& Math. Sci. Vol.4 (4),274-281 (2013).

[2]. I.Cahit and R. Yilmaz, E3-cordial graphs, ArsCombin., 54 (2000) 119-127.

[3]. S. Freeda and R. S. Chellathurai, H- and H2-cordial labeling of some graphs *Open J. Discrete Math.*, 2 (2012) 149-155.

ISSN: 0970-2555

Volume : 52, Issue 12, No. 1, December : 2023

[4]. Joseph A. Gallian, A Dynamic survey of Graph Labeling , Twenty-first edition, December 21, 2018.

[5]. G. Marimuthu, S.Kavitha and M. Balakrishnan, Super Edge Magic Graceful Labeling of Generalized Petersen Graphs, Electronic Notes in Discrete Mathematics, 48 (2015) 235-241.

[6]. P.Sumathi, S.Kavitha, Quotient-4 cordial labeling for path related graphs, The International Journal of Analytical and Experimental Modal analysis, Volume XII, Issue I, January – 2020, pp. 2983-2991.

[7]. P.Sumathi, S.Kavitha, Quotient-4 Cordial Labeling of Some Ladder Graphs, Journal of Algebraic Statistics, Volume 13, No.2, 2022, p.3243-3264.

[8]. P.Sumathi, S.Kavitha, Quotient-4 cordial labeling of some unicyclic graphs-paper-I, AIP Conference Proceedings, Volume 2718, Issue.1, 24 May 2023, p.020003-1-020003-12.

[9]. P.Sumathi, A.Mahalakshmi and A.Rathi, Quotient-3 cordial Labeling for Star Related Graphs, Global Journal of Pure and Applied Mathematics, Volume 13, Number 7 (2017), pp.3909-3918.