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Abstract 

This paper comprehensively explores the role and importance of uncertainty quantification in finite 

element analysis (FEA). This review paper delves into the various techniques used to quantify 

uncertainty, highlighting the necessity of these methods in ensuring accurate and reliable results in 

FEA. The paper discusses the use of surrogate modeling as an effective tool for uncertainty 

quantification, providing an in-depth analysis of different surrogate types, their functions, and 

validation procedures. It further explores the application of these techniques in various fields, with a 

particular focus on their impact on prediction, sensitivity analysis, and optimization. The limitations 

of deterministic FEA models are also discussed, emphasizing the need for embracing uncertainty in 

FEA computations. The paper concludes with a discussion of recent advances in this field and provides 

practical recommendations for further research. This review serves as a useful resource for researchers 

and students seeking to understand and implement uncertainty quantification techniques in FEA. 
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Introduction 

Finite Element Analysis (FEA) is an effective computational application that allows researchers and 

engineers to simulate the behaviour of physical systems under various conditions. It is a numerical 

technique that is used to solve complex engineering and mathematical physics problems. This method 

involves dividing a complex problem into smaller, simpler parts, known as finite elements. Each of 

these components has a set of equations that explain its behaviour, and they are connected at locations 

known as nodes. The FEM provides an approximate solution to a wide range of engineering problems 

[1] [2]. The beauty of FEM lies in its flexibility. The elements can be assembled in numerous ways, 

enabling them to represent highly complex shapes. This makes FEM an invaluable tool for solving 

problems with intricate geometries. FEA is widely utilized in a variety of applications, including 

structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. It is 

especially beneficial for problems with complex geometries, loadings, and material properties that 

cannot be solved analytically. 

In structural analysis, for example, FEA can be used to predict how a structure will respond to external 

forces such as gravity, wind, or seismic loads. It can also be used to determine the distribution of 

stresses and displacements within the structure [2]. In heat transfer analysis, FEA can be used to 

simulate the distribution of temperature within a body due to heat sources, conduction, convection, 
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and radiation. It can also be used to predict how these temperatures will change over time. In fluid 

flow analysis, FEA can be used to simulate the flow of liquids or gases through pipes or around objects. 

It can also be used to predict pressure drops, velocity profiles, and turbulence effects [2]. 

Despite its many advantages, FEA also has some limitations. For example, it requires a significant 

number of computational resources, especially for large or complex problems [3]. Nevertheless, with 

advancements in computer technology and software development, FEA has become an indispensable 

tool in engineering design and analysis. It continues to evolve with new methods and techniques being 

developed to improve its accuracy and efficiency. 

 
Figure 1: A flowchart of the modeling method [3] 

As computing technology has advanced, numerical methods like FEA have overcome computational 

accuracy and stability challenges. This has led to significant developments and widespread 

applications. In terms of software, there are several commercial finite element software packages 

available for research and design purposes. These include ANSYS, ABAQUS, FLAC, LS-DYNA, 

ADINA, and Marc among others [4]. The fundamental idea behind the FEM is that an effective region 

can be analytically model or estimated by replacing it with a set of discrete elements. [4]. As a result, 

Finite Element Analysis (FEA) has become an indispensable numerical tool for solving complicated 

engineering and mathematical physics issues. 

 

Literature Review 

Uncertainty quantification (UQ) in finite element analysis (FEA) is a rapidly evolving field that aims 

to quantify the impact of uncertainties in model inputs on the outputs. This is crucial in many 

engineering and scientific applications where precise predictions are necessary despite the presence of 

uncertainties. 

Uncertainty in Finite Element Analysis (FEA) is a numerical method for solving problems in 

engineering and mathematical physics. However, uncertainties can arise in FEA from various sources 

such as material properties, boundary conditions, and loading conditions. These uncertainties can 

significantly affect the reliability and accuracy of FEA predictions. 
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Quantification Techniques have been developed for quantifying uncertainty in FEA. These include 

probabilistic methods, interval methods, and fuzzy methods. Probabilistic methods treat uncertainties 

as random variables and use statistical methods to quantify uncertainty. Interval methods represent 

uncertainties as intervals and use interval arithmetic for uncertainty quantification. Fuzzy methods 

represent uncertainties as fuzzy numbers and use fuzzy arithmetic for uncertainty quantification. 

Probabilistic Methods are the most widely used techniques for UQ in FEA. They include Monte 

Carlo simulation, First and Second Order Reliability Methods (FORM/SORM), and stochastic finite 

element methods. These methods provide a probabilistic description of uncertainty, which is 

particularly useful when the statistical properties of the uncertainties are known. 

Interval and Fuzzy Methods are useful when the statistical properties of the uncertainties are not 

known. Interval methods provide a range of possible values for the outputs, while fuzzy methods 

provide a degree of possibility for each output value. 

Challenges and Future Directions Despite the advancements in UQ techniques in FEA, several 

challenges remain. These include the high computational cost of UQ techniques, the difficulty in 

handling multiple types of uncertainties, and the lack of robust UQ techniques for complex FEA 

models. Future research in this field could focus on developing efficient UQ techniques, integrating 

different types of uncertainties, and applying UQ techniques to complex FEA models. Embracing 

uncertainty through quantification techniques in FEA is crucial for making reliable predictions. While 

significant progress has been made in this field, further research is needed to overcome the existing 

challenges and enhance the applicability of UQ techniques in FEA. 

Surrogate Modelling 

Surrogate modeling is a technique used in engineering when a result of interest cannot be readily 

observed or computed, and an approximate numerical model of the outcome is utilized instead. To 

evaluate design objectives and constraints functions as an outcome of the design variables, most 

engineering design challenges necessitate experiments and simulations. [5]. However, for many real-

world difficulties, a single model can take several minutes, hours, or even weeks to complete. Because 

they call for dozens or even millions of simulation evaluations, and common activities it becomes 

difficult to perform design optimization, design space exploration, sensitivity evaluation, and "what-

if" analysis. Building approximation models, often referred to as surrogate models, or meta-models, 

that closely imitate the behavior of the simulation model while being computationally less expensive 

to analyze is one technique to lessen this burden.  

Surrogate modeling is a powerful tool for uncertainty quantification. It provides a way to approximate 

complex systems, analyze different surrogate types, understand their functions, and validate their 

accuracy. This makes surrogate modeling an indispensable tool in various engineering and scientific 

fields. Surrogate models are engineering methods that are used when an important outcome is difficult 

to measure or compute, so a hypothetical mathematical model of the outcome is used instead. They 

are particularly useful in the field of Finite Element Analysis (FEA) computations, where they can 

significantly reduce the computational burden associated with data-intensive tasks. 

 
Figure 2: Procedure of surrogate modeling 
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2.2 Validation Procedures of Surrogate Models 

Validating surrogate models involves assessing their performance and selecting the most suitable 

one from a pool of candidates, often by tuning their hyperparameters. Predict the response at an 

unobserved point. This response is the output of the surrogate model. It could also be the outcome of 

a simulation model, numerical calculation, or another method. Calculate the true analysis at the 

unknown point. The actual reaction is usually the outcome of a computerized model or an actual test. 

Contrast and evaluate the expected and observed responses. The comparison of the two responses will 

reveal how similar they are [6]. 

In terms of comparison, surrogate models like PRS and kriging often require fewer data points to 

construct an accurate model compared to methods like artificial neural networks [6][7]. However, 

methods like artificial neural networks may provide more accurate predictions when large amounts of 

training data are available. The choice of surrogate model often depends on the specific requirements 

of the FEA computation task at hand. Factors such as the complexity of the system being modeled, the 

amount of available data, and computational resources can all influence which type of surrogate model 

is most appropriate. 

Surrogate models play a crucial role in FEA computations by providing an efficient way to 

approximate complex systems. The choice of surrogate model depends on various factors and each 

type has its strengths and weaknesses. As research in this field continues, we can expect to see further 

improvements in surrogate modeling techniques that will enhance their accuracy and efficiency. 

Surrogate models are mathematical constructs that are used to approximate the behavior of complex 

systems, and they play a crucial role in Finite Element Analysis (FEA) computations. They're useful 

for things like anticipating, analysis of sensitivity, unresolved evaluation, and surrogate-assisted 

optimization. 

 
Figure 3: Validation process of the surrogate model and the usage for the fatigue calculation [8] 

2.3 Uncertainty Quantification 

Uncertainty quantification (UQ) in Finite Element Analysis (FEA) is a crucial aspect of engineering 

and technology with significant implications for the interpretation of results and decision-making 

processes. The process of mathematical and physical simulation involves decomposing and refining 

complex systems to reveal underlying principles. Often these complex mathematical models like 

partial differential equations (PDE) lack closed-form solutions. Therefore, numerical simulation 

methods like finite element or finite difference schemes are employed to obtain results. Simulation is 

especially important because it allows parameters in models to be changed to better understand the 
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cause and effect of complex phenomena that would be too expensive or dangerous to investigate using 

traditional experimental methods. These processes, however, introduce a great deal of uncertainty [8].  

The primary causes of experiment uncertainty are monitoring errors and random disturbance of 

specific experimental settings. Due to the complexity of reality, the incompleteness of knowledge, and 

cognitive limitations, mathematical models frequently overlook certain contributing aspects and can 

only represent real behavior to a certain degree of accuracy. This creates contradictions between the 

real system and the mathematical model, introducing uncertainty. 

UQ aims to determine the impact of uncertainty and variability on the response of the model. To 

accurately interpret results, it is necessary to quantify these errors, which includes recognizing the key 

causes of uncertainty, evaluating how uncertainty expands in complicated systems, finding stable 

optimal solutions across a wide variety of inputs, and making better judgments with a known degree 

of confidence. This can help to cut developmental time, model costs, and unexpected failures. It is 

crucial to evaluate the uncertainties related to model predictions since it leads to higher confidence.in 

the predictions and a more accurate estimation of risks associated with particular design choices. This 

improves decision-making support for robust or reliability-based design [8][9][10]. 

 
Figure 4: Process of uncertainty quantification (UQ) in finite element analysis 

Uncertainty quantification in FEA is an essential aspect that needs to be considered carefully It not 

only helps in understanding the system behavior under uncertain conditions but also aids in making 

informed decisions based on a known level of confidence. 

2.4 Uncertainty Quantification Techniques 

Uncertainty quantification (UQ) is a scientific field that focuses on quantifying and estimating 

uncertainties in both mathematical and real-world applications. When some aspects of the system are 

not precisely known, it aims at estimating the probability of certain outcomes [11]. 

There are various causes of unpredictability, including observation error, random disruption of 

experimental settings, the complexity of reality, information inadequacy, and cognitive limitations 

[12]. Uncertainty may enter mathematical frameworks and measuring experiments in a variety of 

circumstances. Consider parametric unpredictability, parametric uncertainty, fundamental uncertainty, 

and algorithms uncertainty when categorizing causes of uncertainty. The source of parameter 

uncertainty is the model factors that are supplied to the computational systems model but whose precise 

values are unknown to experimentalists and cannot be managed in physical tests. Metric uncertainty 

is generated by the variability of the model's input variables [12]. Structural uncertainty, also known 

as model inadequacy, model bias, or model disparities, arises from a lack of knowledge of the 

underlying physics of the situation. Algorithmic uncertainty, also known as mathematical uncertainty 

or discrete uncertainty, is caused by numerical inaccuracies and numerical approximations made 

during computer model implementation. 

Several techniques are used to quantify uncertainty. These consist of the design of the experiment, the 

surrogate model, Bayesian inference, model calibration, sensitivity evaluation, uncertainties 

propagation, and model uncertainty analysis. Sensitivity analysis is used to assess the effects of various 

independent variable values on a specific dependent variable under a specific set of underlying 
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assumptions. Uncertainty propagation involves the process of determining how uncertainty in the 

inputs of a model propagates through the model to affect the outputs [13]. Model calibration is the 

process of refining a model by comparing its outputs with observed data. A statistical inference 

technique known as Bayesian inference uses Bayes' theorem to adjust a hypothesis' probability as new 

data or evidence becomes available. Any information-gathering activity that incorporates variation, 

whether or not the experimenter has complete control over it, is considered to be designed 

experimentally [13A surrogate model is a means of approximating the behavior of a sophisticated 

mathematical model while being considerably simpler and easier to use. Model uncertainty analysis is 

the process of detecting and quantifying uncertainties in the structure and parameters of a model. 

Theoretical frameworks for handling uncertainty that are frequently employed include interval 

analysis, fuzzy set theory, probability theory, evidence theory, info-gap decision theory, and hybrid 

approaches [14]. These theories provide a framework for dealing with uncertainty and making 

informed decisions. Uncertainty quantification is a critical aspect of many scientific and engineering 

fields. It involves understanding the sources of uncertainty, categorizing them, and using various 

techniques to quantify them. The ultimate goal is to make more informed decisions and predictions 

about the system or process being studied. 

2.5 Uncertainty Quantification Methods 

Several UQ methods are used to quantify uncertainty. These consist of experimental design, surrogate 

model, Bayesian inference, model calibration, sensitivity analysis, uncertainty propagation, and model 

uncertainty analysis. 

2.5.1 Sensitivity Analysis 

Sensitivity analysis is used to assess, under a specific set of assumptions, the effects of varying values 

of an independent variable on a given dependent variable. This method is crucial in FEA as it helps 

engineers understand which parameters have the most significant impact on the system’s behavior 

[14]. 

2.5.2 Uncertainty Propagation 

Uncertainty propagation involves determining how uncertainty in the inputs of a model propagates 

through the model to affect the outputs. This method is essential in FEA as it allows engineers to 

estimate the range of possible outcomes given the uncertainties in the input parameters. 

2.5.3 Model Calibration 

Model calibration is the process of refining a model by comparing its outputs with observed data. This 

method is vital in FEA as it helps improve the model's accuracy by adjusting its parameters to match 

observed data. 

2.5.4 Bayesian Inference 

A statistical inference technique known as Bayesian inference uses Bayes' theorem to adjust a 

hypothesis' probability as new data or evidence becomes available. [15]. 

2.5.5 Experimental Design 

Whether or not the experimenter has complete control over the exercise, designing an information-

gathering exercise with variation is known as experimental design. This method is crucial in FEA as it 

helps engineers design experiments that can provide the most information about the system. 

2.5.6 Surrogate Model 

A surrogate model is an approximation method that mimics the behavior of a complex mathematical 

model but is much simpler and easier to use. This method is essential in FEA as it allows engineers to 

make predictions about the system’s behavior without having to solve the complex mathematical 

model. 

2.5.7 Model Uncertainty Analysis 

Model uncertainty analysis involves the process of identifying and quantifying the uncertainties in the 

model’s structure and parameters. This method is crucial in FEA as it helps engineers understand the 

limitations of their models and make more informed decisions [15]. 
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UQ is critical in the assessment and verification of computing design models and simulations because 

it increases trust in the predictive capacity of computational models.. Decision-makers will be able to 

assess the accuracy of a forecast and take proactive steps to save time, distribute resources, and lower 

the possibility of the system performing, being too safe, or being too reliable if the total uncertainty in 

the simulation is quantified [16][17]. UQ methods are essential in ensuring the accuracy and reliability 

of FEA results. They help engineers understand the sources of uncertainty, quantify them, and make 

more informed decisions about the system or process being studied. 

2.6 Recent Advances in Uncertainty Quantification in Finite Element Analysis (FEA) 

Uncertainty quantification (UQ) has been widely used in the last few decades to ensure the robustness 

of engineering designs. The research on uncertainty in deterministic engineering modeling has been 

studied since the early 1980s. UQ has been successfully applied in numerous fields and has played a 

significant role after nearly forty years of development [18]. 

One of the recent advances in UQ methods is the use of meta-modeling methods suitable for 

engineering applications. The two most popular meta-modeling methods are the Polynomial Chaos 

Method and Gaussian Process. An engineering test problem with several uncertainties has been tackled 

using these techniques. The test problem considered here is a supersonic nozzle under operational 

uncertainties [19]. For the deterministic solution, the freely available computational fluid dynamics 

(CFD) solver SU2 is used. To measure uncertainty and sensitivity, the UQ algorithms are developed 

in MATLAB and then linked with SU2. The mean as well as the standard deviation of the output 

quantities are given as the results. 

Another recent breakthrough is the creation of a complete data-driven computational technique for 

studying the UQ and likelihood propagation in gathered tensegrity structures [19]. To manage the 

deformation of the elastic structure, a surrogate optimization model was constructed. 

 

Future Recommendations and Conclusion  

The field of UQ in FEA is vast and continuously evolving. There are several areas where future 

research could be directed. More work could be done on developing and refining meta-modeling 

methods for UQ. While the Polynomial Chaos Method and Gaussian Process are popular, other 

methods may be more suitable for certain types of engineering problems. There is a need for more 

comprehensive testing of UQ methods on a wider range of engineering problems. This would help to 

validate these methods and ensure their robustness. More research could be done on integrating UQ 

methods with different types of solvers. While SU2 was used in the study by Dinesh Kumar et al. [20], 

other solvers could also be explored. There is a need for more research on data-driven approaches to 

UQ. The study by Springer [20] showed promising results, but more work needs to be done to validate 

these approaches and explore their potential applications. While significant advances have been made 

in the field of UQ in FEA, there is still much work to be done. Future research should focus on refining 

existing methods, validating these methods through comprehensive testing, exploring the integration 

with different solvers, and investigating data-driven approaches. 

Uncertainty quantification (UQ) in Finite Element Analysis (FEA) plays a crucial role in ensuring the 

robustness of engineering designs. It provides a systematic framework to understand and manage 

uncertainties in numerical simulations. The importance of UQ in FEA cannot be overstated, as it allows 

engineers to make informed decisions about the safety and reliability of their designs. 

Recent advances in UQ methods, such as the use of meta-modeling methods and data-driven 

approaches, have shown promising results. These methods have been successfully applied to a range 

of engineering problems, demonstrating their versatility and robustness. However, there is still a lot of 

work to be done despite these advancements. Future research should focus on refining existing 

methods, validating these methods through comprehensive testing, exploring the integration with 

different solvers, and investigating data-driven approaches. UQ in FEA is a rapidly evolving field with 

significant potential for future development. The advances made so far are encouraging, but there is 
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still a long way to go. With continued research and development, it is hoped that UQ methods will 

become even more robust and widely used in the field of engineering. 
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