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ABSTRACT

Stroke prediction plays a critical role in
preemptive healthcare strategies aimed at
reducing the incidence and severity of strokes. In
this study, we propose an innovative approach to
enhance stroke prediction by integrating deep
transfer learning techniques. Leveraging pre-
trained neural network models on large-scale
medical imaging datasets, our framework aims to
extract and transfer relevant features from diverse
imaging modalities to improve the accuracy and
robustness of stroke prediction models. By fine-
tuning these pre-trained models on task-specific
stroke prediction datasets, we harness the
transferability of learned representations to adapt
them to the nuances of stroke pathology. Through
rigorous experimentation and evaluation on
comprehensive stroke datasets, we demonstrate
the effectiveness of our approach in achieving
superior predictive performance compared to
methods.

traditional machine learning
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Ultimately, this research contributes to advancing
stroke prediction methodologies and paves the
way for more accurate and personalized stroke

risk assessment in clinical settings.

Index : stroke, predicition, healthcare, machine

learning, methods
INTRODUCTION

Stroke remains a significant public health
concern worldwide, contributing to high
morbidity, mortality, and healthcare costs. Early
and accurate prediction of stroke risk is crucial
for timely interventions and prevention
strategies. Traditional stroke prediction models
often rely on clinical risk factors and
demographic information, which may have
limited predictive power. In recent years, there
has been growing interest in leveraging medical

imaging data, such as MRI and CT scans, to
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enhance stroke prediction accuracy. However,
effectively harnessing the rich information
contained in medical images poses several
challenges, including feature extraction and
model generalization. In this context, integrating
deep transfer learning techniques presents a
promising approach to improve stroke prediction
by leveraging pre-trained neural network models

and transfer learning principles.

Stroke is a leading cause of death and
disability globally, emphasizing the importance
of accurate prediction and early intervention.
Predicting stroke risk enables healthcare
professionals to identify high-risk individuals and
implement preventive measures, such as lifestyle
modifications and medication management.
Additionally, early detection of stroke risk factors
allows for timely clinical interventions, such as
anticoagulation therapy or surgical procedures, to
mitigate the risk of stroke occurrence or
recurrence. However, existing stroke prediction
models Integrating Deep Transfer Learning for
Enhanced Stroke Prediction often rely on
conventional risk factors and may not fully
capture the complexity of stroke pathology.
Integrating advanced techniques, such as deep
transfer learning, has the potential to enhance
prediction accuracy and facilitate personalized
risk assessment, thereby improving clinical
outcomes and reducing the burden of stroke-
related morbidity and mortality.
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A. Generative Instance Transfer using External

Stroke Data

Intuitively, the hospitals of higher rank or those
located closer to densely-populated districts tend to

own more electronichealth records (EHR) on
strokes. However, due to the strictdata protection
policy in health-care domain for preserving
patients’ privacy, the invaluable stroke data cannot
be casilyshared for training SRP model. To address
this issue, the GITcomponent of HDTL-SRP is
deployed in each hospital; it can exploit the
historical EHR of the stroke instances to train a
GAN [36] model, Then, the knowledge structure
hidden in thestroke data can be transferred to the

target domain via synthetic generative instances.

instance X is real or fake. The parameters 8, and 0,
are optimized by playing a minmax gameaccording to
the objective function:

min max

all "ll

VI(D,G) = Exppps(x) 108 D(X: 0u)] +En ()
log(1 D(G(z:80,):04))]

(1)
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B. Nerwork Weight Transfer using Chronic Disease

Duata

NWT module of HDTL-SRP is designed to
incorporatedata from source domains of other
highly correlated chronicdiseases. such as
hypertension or diabetes, which tend 10 have more
health records. In this work, the SRP model M is
chosen to be an M-layered DNN where hidden
variables in the i-th layer is specified as h, = o
(hY ,W, + b,) where W, and b, represent the
weight matrix and bias vector at i-th hidden layer,
respectively. Here, hy in the first layer is the
vectorized form of X and ¢(-) is a non-linear
activation function which can be chosen as the rect
fied linear function ReLlU/(h) £ min(0, h) or the

hyperbolic tangent function tanh(h) £ (lexp( 2

h))/(1 +exp( 2h)) or the sigmoid function £(h)

£1/(1 + exp( h)) (used in the output layer).

Then, a loss function L is specified as the
cross-entropy between the predicted labels using M
and true labels:

IS]

1 ~ -
L(M) = leyJ log(w;) + (1 w;)log(l 3,
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C. Network Parameters Selection using Bayesia

Optimization

In network weight transfer approach, while
multiple sourcedomains are available, the
parameters such as the number of transferrec
and the transferred sequence of differentsourc
domains are important factors of SRP model
performance. To construct the best SRP mc¢
while n related source domains are available
shown in Fig 3, we need to find the paramet

that make the model performance the
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search space for BO.
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Fig. 3: Network Weight Transfer using multiple

source domains,

A candidate of NWT configuration & = (o, 1) is
specified by both the transferring order o among
multiple source domainsand the number of
transferred layers 1 between a sourcedomain and
its consecutive source domain. Transferring order of

mailrinle canree domaine and the nuamber of

------- JOON s s mAsAREREesN BMEeAs BEew EMARRALIME  Gee

transferred layversare defined as 0 = (0y,00,°- 0,
) and | (ly.l5. <+ 1 ). respectively, where o,
e {1,---,uh L € {1,---, M}.Meanwhile, | <

n indicates at most n source domains are
evaluated, and o, # o, implies each source domain
will beevaluated at most once. When transferring the
network structureamong multiple source domains by
order, o, = k and I, = m indicates the &-th source
domains will be in the i-th place (seeFig. 3) and the
first m-th layers of k-th source domains will be

transferred o its consecutive domain, respectively.

To find the best candidae for specifying a machine
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. ; § So, = et th edictive distributi f o
output of the objective function f(-). Therel 0, wre £a0, gebthe predictive: distribution: of f(e”)

which is anormal distribution with mean and
best parameter can be represented as z
varmance as

c* = argmin [f(c|D,,D,,). () = KsigKs i(e) (5)

ce[0, 1] +inl and

In this work, the objective function f(-) o(e) = Kssv KasKgdKgs:. (6)

modaled by, aGaunsian process which can b To trade off exploration of search space and

specified by its mean function m(-) and kert exploitation of current promising areas, we need to
function #(-. <), f(-) ~ N(m(:). x(-.-)).For make use of acquisition function [51]. We use the
simplicity, we assume the mean function a expected improvement (El) [52] function as our

) isthe kernel function which can be ch acquisition function. The expectation can be

calculated as
Radial Basis Function s(c,¢’) = exp(—|lc

a(c’) e

(26%)). Here, we splitthe candidates in two ag(c) = (u(c’) fle*))® (

evaluated set S = {cy, ¢y, -+ } and unevaluz

() (f'(cW f(e?)

"= {e'y.¢'2,- -+ }. We define the covariance
as Kgg. Kgs, Kgis and Kggr. For |S| x 7

covariance matrix Kgg/, cach element [Kq.

indicates the value of kernel function s(c;, the next point to evaluate, we need tomaximize the

. . expectation as
other three matricesare constructed in the sa pe

sl autarmmien, ik W ol 6 Toncwesclovmtion ¢’ = argmax agj(c). (8)
cefo.a}*+ini

Repeating the above step can achieve the effect of

LUCICIVIG, MIVEIL @ 30t 7 HCTU (U UG ©Vaiuac Equation 3.Given a ¢’ = (("] vee ,(,‘2 -0-|"I)’ we
output its corresponding prediction fg.The | project it to the closest NWT configuration (o’.1")
process can be represented as specifically. For the transferred sequence, ¢ to ¢},
( fs ) N ( ( 0 ) ( Kss | is used to compute the distance with each NWT con
s 0 )"\ Ks's 1 figuration in normalized space. Then the nearest one

is projected to its original space as o’. Then, for ¢},
to ¢}, 1y -compute each ¢ with the value of
transferred layer number in normalized space and
project it to its original space as /..

Finally, we get the NWT configuration (o', 1) and

cvaluate its performance.
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Algorithm 1 Generative Instance Transfer (GIT)
modulein the target domain 75, we still need to Input:
balance the positiveand negative instances in External stroke data S, No. of requested

- v o instances N, batch size [/
stroke data. Thanks to the GITmodule, sufficient oo R

¢ .2 Output:
and abundant generative instances have been

s Y % . Synthetic stroke data 8! ;1 for ecach wrainin
assimilated in a candidate set S.,. It leads to the > o 5

epoch do
question: which instances in S,; should be selected
2: Sample [/ real stroke instances { X, --- . X} from
to T, ? To answer this question, AIT component of S
L2
-S xploits ive ing s )
HDTL-SRP exploits an activeleamning strategy & 3 Update the discriminator by ascending its
select the instances that are the mostinformative stochastic gradient w.r.t
for training the SRP model. Formally, the most '
informative instance X" can be iteratively selected Vou7 S [log D(X,) + log(1  D(G(=)]
according '
w 4 Update the generator by descending its
X" =argmax H(X) 9) stochastic gradient w.rt 6,
XN ESsy 4

1 e
Vo, 7 2_los(1  D(G(=))):
e
s end for until convergence

oo return S/, Generate N instances using 7,
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Algorithm 2 Network Wight Transfer coup
with Active Instance Transfer for SRP model

training (NWT+BO+AIT)
Input:

Hypertension (Diabetes) data S,y (8,4 ). stre
in targetdomain 7, layers of DNN model A
objective function f, No. of instances from «
external source /N, initial design ¢y, No. of

iteration using BO to evaluated 77;
Output:
DNN-based SRP model M;

I: Sy Request NV instances by invoking |

(sece Algo-
rithm 1) in each external hospital;

2: T difference between no. of negative anc

positive instances in 75:

3: foriin {l,--- .t} do

4 Map transferred setting according to ¢

then construct corresponding model A,
5: forjin {1,---.7} do

6: X actively select one generative instance

St
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7 T T ULX, +1);

8: Train and update M, using 7. ;

9 end for

10 5 validate M, using validating set;
11:  Update Gaussian process model;

12: end for

13 for A in {t +1,--- ., 7'} do

14:  Select next parameter Cu=arg max ., jj»+inl
apr{e)is: Map transferred setting according

to ¢y and then

construct corresponding model M6 for

Jin{l,--- .7} do

17; X actively select one gencrative
instance from
Sqt
18: 7 T UX, 41):
19: Train and update M, using 7, ;

200 end for

- .. .. - CEEY

2% Ti vahdate M using vahdaung sct;
22: Update Gaussian process model;
23 end for

24: TetUIN Cpeyy = AIE Moo, o opy S(€)
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TABLE 1V: Performance of n¢

0.26 -

transfer learning versus no transfer (1

stroke data). 0.24 e

-
E
SR Meihiod Accuracy Recall e
SVM (No Transfen) 0,605 1 0,020 0385 L 0,007 1} g
DT (No Transfer) 0.712 4 0,016 04634+ 0.017 0 = 0.22-
RF (No Transfer) 0,676 4 0,012 0.432 -+ 0,024 0 S
DNN (No Transfer) 0.710 4 0.016 0,468 + 0,029 U -]
DNN+Weight=sharing (&) DAaM2 £ 0013 0291 4 0012 ] :
DNN+Welghtssharing (Spy) (LANT 4 0018 0416 4 0017 {
DNN4Pre-train-fine-tuning (Siy ) 0,700 4 0,012 0463 & 0012 ( 0.20 -
DNN4+Pro-train-tine-tuning (Spg) D688 4+ 0018 OAL5 £ 0010 (I

DNN+NWT (Si1) 0,726 4 0,024 DASY + 0.1 L]
DNNANWT (S ) 0.729 + 0.019 0,491 + 0,026 {
0.18 ~

+7IIIIII7'~I<I' () :C: Tll'll
DNNCAIT DINNA ' ' ' ' ' '
pand ! === DNN+SMOTE \/\ 0704 ==== DNN{
e o 8] 5 10 15 20 25
; ] Rt \ - o i Number of evaluntion
5 o7+ CONCLUSION
N mber of trunsferred e ers Nt
(a) Hypertension by conclusion, the integration of deep transfer
learning holds significant promise for enhancing
stroke prediction accuracy and facilitating more
personalized risk assessment in clinical practice.
—————  Through leveraging pre-trained neural network
—— HDTL-SHe 0tad —e— HDOTI
a5 LNNSALT NN R R
- mwwm‘/__,—\ ) oni - onve models and transfer learning techniques,
Bori e ot — 060 e . .
g [e— 3 ,// researchers and clinicians can effectively extract
informative features from medical imaging data
» : "l and clinical metadata, leading to improved
N mber of transforred 1o o N4||| . . R
predictive performance. The advancements in
(c) Diabetes deep transfer learning offer opportunities to

address challenges associated with traditional
TABLE V: Performance  stroke prediction models, such as limited feature

(Balancing stroke data in target representation and generalization ability.

SRP Method Accurncy Recall
SVMASMOTE TOTAT EOL02T 0545 E 01
DT+SMOTE 0.707 + 0.021 0.504 4+ 0.(
RF4+SMOTIE 0.715 4 0,018 0.495 =& 0.(
DNN+Reul-world(Sxy) 0.730 4+ 0,012 0.662 4+ 0.(
DNN4+SMOTE 0.737 £ 0.018 0.530 = 0.(
DNN4GAN(Ss) 0.725 &+ 0,027 0,612 =& 0.
DNN+AIT (Sir) 0.745 4 0.023 0.630 4 0.(
HDTL-SRP (S, Ss1) 0.747 £ 0.032 0.712 & O
HDTL-SRP (SpnSer) 0.757 + 0,032 0.715 -+ 0, FUTURE ENHANCEMENT
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For the Future Scope more machine learning
approach will be used for best analysis of the
heart diseases and for earlier prediction of
diseases so that the rate of the death cases can be

minimized by the awareness about the diseases.
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