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ABSTRACT 

We develop a random forest (RF) model for 

rapid earthquake location with an aim to 

assist earthquake early warning (EEW) 

systems in fast decision making. This system 

exploits P-wave arrival times at the first five 

stations recording an earthquake and 

computes their respective arrival time 

differences relative to a reference station (i.e., 

the first recording station). These differential 

P-wave arrival times and station locations are 

classified in the RF model to estimate the 

epicentral location. We train and test the 

proposed algorithm with an earthquake 

catalog from Japan. The RF model predicts 

the earthquake locations with a high 

accuracy, achieving a Mean Absolute Error 

(MAE) of 2.88 km. As importantly, the 

proposed RF model can learn from a limited 

amount of data (i.e., 10% of the dataset) and 

much fewer (i.e., three) recording stations 

and still achieve satisfactory results (MAE<5 

km).The algorithm is accurate, generalizable, 

and rapidly responding, thereby offering a 

powerful new tool for fast and reliable 

source-location prediction in EEW. 

Index Terms—Earthquake Early Warning 

(EEW) system; Machine learning; 

Earthquake Location. 

 

INTRODUCTION 

EARTHQUAKE hypocenter localization is 

essential in the field of seismology and plays 

a critical role in a variety of seismological 

applications such as tomography, source 

characterization, and hazard assessment. This 

underscores the importance of developing 

robust earthquake monitoring systems for 

accurately determining the event origin times 

and hypocenter locations. In addition, the 

rapid and reliable characterization of ongoing 

earthquakes is a crucial, yet challenging, task 

for developing seismic hazard mitigation 

tools like earthquake early warning (EEW) 

systems [1]. While classical methods have 

been widely adopted to design EEW systems, 

challenges remain to pinpoint hypocenter 

locations in real-time largely due to limited 

information in the early stage of earthquakes. 

Among various key aspects of EEW, 

timeliness is a crucial consideration and 

additional efforts are required to further 
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improve the hypocenter location estimates 

with minimum data from 1) the first few 

seconds after the P-wave arrival and 2) the 

first few seismograph stations that are 

triggered by the 

ground shaking. 

The localization problem can be resolved 

using a sequence of detected waves (arrival 

times) and locations of seismograph stations 

that are triggered by ground shaking. Among 

various network architectures, the recurrent 

neural network (RNN) is capable of precisely 

extracting information from a sequence of 

input data, which is ideal for handling a group 

of seismic stations that are triggered 

sequentially following the propa- gation 

paths of seismic waves. This method has 

been inves- tigated to improve the 

performance of real-time earthquake 

detection [2] and classification of source 

characteristics. Other machine learning based 

strategies have also been proposed for 

earthquake monitoring. Comparisons 

between traditional machine learning 

methods, including the nearest neighbor, 

decision tree, and the support vector 

machine, have also been made for the 

earthquake detection problem [3]. However, 

a common issue in the aforementioned 

machine learning based frameworks is that 

the selection of input features often requires 

expert knowledge, which may affect the 

accuracy of these methods. Convolution 

neural networks-based clustering methods 

have been used to regionalize earthquake 

epicenters 

[4] or predict their precise hypocenter 

locations [5]. In the latter case, three-

component waveforms from multiple stations 

are exploited to train the model for swarm 

event localization. In this study, we propose 

a RF-based method to locate earth- quakes 

using the differential P-wave arrival times 

and station locations (Figure 1). The 

proposed algorithm only relies on P- wave 

arrival times detected at the first few stations. 

Its prompt response to earthquake first 

arrivals is critical for rapidly disseminating 

EEW alerts. Our strategy implicitly considers 

the influence of the velocity structures by 

incorporating the source-station locations 

into the RF model. We evaluate the proposed 

algorithm using an extensive seismic catalog 

from Japan. Our test results show that the RF 

model is capable of determining the locations 

of earthquakes accurately with minimal 

information, which sheds new light on 

developing 

efficient machine learning. 

 SYSTEM ARCHITECTURE 
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 METHODOLOGY  

A. Differential travel timebased epicenter 

prediction 

To estimate the epicenters of earthquakes, 

theRF model is trained via a supervised 

learning scheme. Two sets of properties, 

including the differential P-wave arrival 

times and station locations, are utilized as the 

model input, which can be expressed as 

          X = [Ti, Yi, Zi], (1) 

where Ti represents the P-wave travel time 

of the ith station relative to that of a 

reference station, and Yi and Zi are the 

corresponding latitude and longitude of the 

target station. In this study, we set the P-

wave arrival time at the first recording 

station as the reference (i.e., Ti = ti t1) 

and utilize five stations to locate the 

earthquakes. The input parameters consist 

of a total of 14 features that are defined 

as 

Ti = {t2 − t1, t3 − t1 , t4 − t1, t5 − t1}, 

Yi = {y1, y2, y3, y4, y5}, 

Zi = {z1, z2, z3, z4, z5}. 

The combination of these features enables the 

network to determine the relative location 

(i.e., the latitude/longitude difference) 

between the earthquake and the reference 

station. 

B. Random Forest (RF) 

The final output of a RF model is obtained by 

averaging the predictions from K trees as 

H¯ (X) = H̄ (X) = ( 
 1 

) 
Σ 

H(X ; θ  ), 

where O denotes the latitude and longitude 

difference between the event and the 

reference station and N represents the 

number of training earthquakes. We tune 

two hyperparameters, the maximum number 

of trees (mtree) and the maximum depth of 

each tree (mdep), during the training 

process. The training of each tree is 

conducted by randomly drawing M records 

[6] from the training earthquakes, with a 

sampling ratio (MS) that varies between 0 

and 1. Each node in a decision tree (except 

for the leaf node) is split into more branches 

while considering a random subset of 

features, with the number of features 

represented by MF . The training process is 

performed through the following steps: 

A) Growing the number of trees to mtree. 

B) Picking M random records according 

to the MS factor. 

C) Randomly splitting each tree into 

mdep levels. 

D) Randomly selecting the MF at each 

splitting node. 

E) Obtaining the averaging of the mtree 

trees outputs according to Equation. 3. 

F) Obtaining the loss function according 

to Equation. 4. 

G) Repeating steps B-F until the loss 

function converges. 

C. The Architecture of RF 

 The robust performance of the RF model 

relies on well- designed network architecture. 

We tune its parameters by a trial-and-error  

approach. Firstly, we test the number of trees 

(mtree) from 500 to 10000 with an interval of 

500, and the depth of each tree (mdep) from 

10 to 200 with an interval of 5. The optimal 

values of mtree and mdep are 1000 and 100, 
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respectively. Secondly, we increase the MS 

factor from 

0.1 to 1 with an interval of 0.1. A MS factor 

of 1 achieves the optimal result, which 

indicates that all records contribute 

positively to the training process. Finally, we 

test a series of MF , e.g, 2, 3, 5, 7, 8, 9, 11, 

and 13, and the optimal value is determined 

to be 8. The architecture of the proposed 

algorithm is shown in Figure 1. 

   ALGORITHM   

  Decision tree classifier : Decision tree classifiers are 

used successfully in many diverse areas. Their most 

important feature is the capability of capturing 

descriptive decision making knowledge from the 

supplied data. Decision tree can be generated from 

training sets. The procedure for such generation based 

on the set of objects (S), each belonging to one of the 

classes C1, C2, …, Ck is as follows: 

 

Step 1. If all the objects in S belong to the same class, 

for example Ci, the decision tree for S consists of a  

leaf labeled with this class 

Step 2. Otherwise, let T be some test with possible 

outcomes O1, O2,…, On. Each object in S has one 

outcome for T so the test partitions S into subsets S1, 

S2,… Sn where each object in Si has outcome Oi for T. 

T becomes the root of the decision tree and for each 

outcome Oi we build a subsidiary decision tree by 

invoking the same procedure recursively on the set Si. 

 

 

 

 

RESULTS ANALYSIS 

A. Dataset and Model Inputs 

 

 

We apply the proposed network to an 

earthquake detection problem in Japan 

(Figure 2a). catalog reported by the 

National Research Institute for Earth 

Science and Disaster Resilience, the Japan 

Meteorological Agency, and various 

institutions. This large catalog includes 

2,235,159 regional seismic events 

recorded by the Hi-net seismic network 

between January 1st, 2009 and November, 

11th 2020. For each event, we extract the 

source parameters including arrival times, 

magnitudes, depths, latitudes, and 

longitudes, as well as the locations of 

recording stations. We define qualified 

events for further analysis as those 

satisfying the following criteria: A) P-

wave arrivals are detected at a minimum of 

five stations, B) Epicenter distances are 

less 

 

earthquakes while ensuring relatively 

reliable predictions. The final catalog, which 

contains a total of 1,692,787 qualified events, 

is characterized by a broad distribution of 

 
than 1◦ (≈112 km), and C) Magnitudes of the events are 
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source parameters and offers an ideal dataset 

to train and test the proposed algorithm. In 

this catalog, longitude varies between 

121.86◦ and 146.48◦ and the latitude between 

23.42◦ and 46.22◦. Event magnitude ranges 

from 0.10 ML to 7.59 ML, and depths from 0 

to 440.78 km. Note that the intermediate (80-

300km) and deep (300+km) events in the 

training dataset only affect the location 

accuracy marginally according to some tests 

we have performed. To train the network, we 

set the earliest arrival time of  

 

 

 

a group of P waves as the reference time 

(t1), and determine its differential travel times 

relative to later P phases recorded at the other 

stations (Ti). The latitudes (Yi) and the 

longitudes (Zi) of the recording stations are 

also used as input parameters for the RF 

model (Figure 1). Finally, a total of 1,541 

stations from the Hi-net network are included 

in the training process (Figure 2a). 

 B. Training and Testing in the Proposed 

Algorithm 

We randomly split the dataset into 90% for 

training and 10% for testing, which consist of 

1,523,508 and 169,279 events, respectively 

(Figures 2b and 2c). We first train the RF 

network for the optimal architecture and then 

predict the event locations of the test dataset. 

To quantify the accuracy of the predictions, 

we calculate the Mean Absolute Errors 

(MAEs) of the latitude and longitude 

between the reported values from the catalog 

and those estimated by the RF model. We 

achieve MAEs of 0.015◦ ( 1.625 km) and 

0.023◦ ( 2.553 km) for the latitude (Figure 2d) 

and longitude (Figure 2e), respectively, with 

corresponding standard deviations of 0.033◦ 

and 0.052◦. These location errors lead to a 

distance MAE value of 2.879 km (Figure 2f). 

The resulting R2 score reaches 0.9998, which 

suggests highly consistent values between the 

predicted and the catalog locations. We 

define the events with a distance error below 

0.1◦ ( 11.2 km) as true positive (TP), 

otherwise are false positive (FP), and 

calculate the accuracy ( T P ). The resulting 

accuracy rate is 94.39%. We further examine 

spatial variation in the accuracy across the 

study region (Figure 3a).  

 

To better illustrate our location results, we 

select a subset of events in central Japan 

(Figures 3b), where 
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Fig. 2: (a) The distribution of the Japanese 

seismic stations. (b) The distribution of the 

training events. (c) The distribution of the 

testing events. (d) The error distribution 

between the catalog latitude and the 

estimated latitude corresponding to the 

proposed algorithm. (e) The error distribution 

between the catalog longitude and the 

estimated longitude corresponding to the 

proposed algorithm. (f) The error distribution 

between the catalog location and the 

estimated location corresponding to the 

proposed algorithm we observe relatively 

small errors in predicted locations if the first 

recording station is closer to the event. The 

distance errors of the estimated locations for 

all testing events show an overall small 

uncertainty of less than 0.1◦ ( 11.2 km), with 

slightly larger errors observed near the 

coastal regions (Figure 3c). This pattern is 

primarily caused by the varying station 

density and azimuthal station coverage, 

which is relatively sparse in the offshore 

region and limits the accuracy of location 

prediction. In the future, we will investigate 

how azimuthal distribution of stations will 

affect the accuracy of localization. Figure 3d 

shows the spatial distribution of ray density. 

The ray path density of each cell in a 250 250 

grid is calculated by counting the number of 

rays intersecting that cell. Comparing Figures 

3c and 3d, it is clear that the lowest ray-

density area (e.g., around the coast) has the 

largest location-prediction error. For those 

high ray-density areas, e.g., the interior of 

Japan, the prediction errors are generally 

small. 

CONCLUSION 

We can pinpoint the specific site of the quake 

continuously by contrasting the hours of 

appearance of the P-waves with the areas of 

the seismic stations. One potential answer for 

this relapse issue is to utilize random forests 

(RF), with the result being the distinction in 

longitude and scope between the quake and 

the seismic stations. The contextual 

investigation of the Japanese seismic locale 

shows that it functions admirably and might 

be conveyed at this moment. We retrieve all 

occurrences from neighboring seismic 

stations that have a minimum of five P-wave 

arrival periods. After that, in order to build a 

machine learning model, we divided the 

extracted events into two datasets: one for 

training and one for testing. The 

recommended approach is adequately 

versatile to deal with continuous quake 

checking in additional troublesome districts; 

moreover, it can train using only three 

seismic sensors and 10% of the information, 

all while maintaining promising 

performance. Even though many networks 
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are sparsely distributed, making it hard to 

train an efficient model using the random 

forest technique, one might make up for the 

absence of beam pathways in an objective 

district brought about by lacking index and 

station scattering by utilizing a few 

engineered datasets. 
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