

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 317

AUTO CLONE FIX MACHINE LEARNING

DRIVEN CODE REFACTORING

1K.UDAY KIRAN , 2RAVULAPALLI NAVEEN

#1 Assistant Professor, Department of Master of Computer Applications (MCA), QIS College of

Engineering &Technology (Autonomous), Vengamukkapalem (V), Ongole, Prakasam, AP, India

#2 MCA Student, Department of Master of Computer Applications (MCA), QIS College of

Engineering &Technology (Autonomous), Vengamukkapalem (V), Ongole, Prakasam, AP, India

Abstract: To assist developers refactored

code and to enable improvements to software

quality when numbers of clones are found in

software programs, we require an approach to

advice developers on what a clone needs to

refactor and what type of refactoring is

needed. This paper suggests a unique learning

method that automatically extracts features

from the detected code clones and trains

models to advise developers on what type

needs to be refactored. Our approach differs

from others which specify types of refactored

clones as classes and creates a model for

detecting the types of refactored clones and

the clones which are anonymous. We

introduce a new method by which to convert

refactoring clone type outliers into Unknown

clone set to improve classification results. We

present an extensive comparative study and an

evaluation of the efficacy of our suggested

idea by using state-of- the-art classification

models.

INTRODUCTION Code clones are pairs of

code fragments which have a high degree of

similarity or which are identical. Code clones

might cause software maintenance to be more

difficult and a system’s source codes more

difficult to understand. Code cloning is a

popular practice in the software development

process for a number of reasons, such as

reusing code by "copy- and-paste" to

increasing the speed of writing the code.

There are various clone detector techniques

which attempt to find code fragments which

have a high number of similarities in the

system’s source code. Additionally, there have

been various refactoring clone tools developed

which change the structure of detected code

clones without altering code fragment

behavior. The refactoring code clones are a

method by which to minimize the chances of

introducing a bug. Refactoring, or removing, is

utilized for improving software

comprehensibility and maintainability.

Although have shown that clone refactoring

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 318

cannot solve software quality improvements

for two reasons. Firstly, clones often have a

short lifespan. Refactoring is less effective if

there are block branches in a short distance.

Secondly, longer living clones which have been

altered with another element in the same class

are difficult to remove or refactor.

Additionally, it is a bug which can be simply

corrected as the source code can be easily

understood, which allows improvement of

malleability resulting in code extensibility.

Our approach provides different types of

refactoring recommendation to a developer for

preventing to remove the positive side of code

clones and builds a training model after

removing outliers to improve the results. Our

tool can be built and used to minimize bugs in

a system. Our study can improve clone

maintenance by removing duplication code by

identifying refactoring clones. Also, the

possibility of bad design for a system,

difficulty in a system improvement or

modification, introducing a new bug, can be

decreased by identifying and refactoring

clones. In addition, our study can be utilized by

various applications such as source code or

text plagiarism, malware detection, obfuscated

code detection.

Code clones (or duplicated code) present

challenges to software maintenance. They

may require developers to repetitively apply

similar edits to multiple program locations.

When developers fail to consistently update

clones, they may incompletely fix a bug or

introduce new bugs [4], [13], [9], [12]. To

mitigate the problem, programmers

sometimes apply clone removal refactoring’s

(e.g., Extract Method and Form Template

Method [12]) to reduce code duplication and

eliminate repetitive coding effort. However,

as studied by existing work [15], [27], [5],

not all clones need to be refactored. Many

clones are not worthwhile to be refactored or

difficult to be refactored [27], and

programmers often only refactor a small

portion of all clones [5]. Thus, when a clone

detection tool reports lots of clones in a

program, it would be difficult for the

developer to go through the (usually long) list

and locate the clones that should be

refactored. A technique that automatically

recommends only the important clones for

refactoring would be valuable.

 2. LITERATURE SUREVY

2.1 Code Cloning Detection Experience

At Microsoft

Cloning source code is a common practice in

the software development process. In general,

the number of code clones increases in

proportion to the growth of the code base. It

is challenging to proactively keep clones

consistent and remove unnecessary clones

during the entire software development

process of large-scale commercial software.

In this position paper, we briefly share some

typical usage scenarios of code clone

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 319

detection that we collected from Microsoft

engineers. We also discuss our experience on

building XIAO, a code clone detection tool,

and the feedback we have received from

Microsoft engineers on using XIAO in real

development settings.

2.2 AUTOMATIC CLONE RECOMMENDATION

FOR REFACTORING BASED ON THE

PRESENT AND THE PAST

When many clones are detected in software

programs, not all clones are equally important

to developers. To help developers refactor

code and improve software quality, various

tools were built to recommend clone-removal

refactoring based on the past and the present

information, such as the cohesion degree of

individual clones or the co- evolution

relations of clone peers. The existence of

these tools inspired us to build an approach

that considers as many factors as possible to

more accurately recommend clones. This

paper introduces CREC, a learning-based

approach that recommends clones by

extracting features from the current status

and past history of software projects. Given a

set of software repositories, CREC first

automatically extracts the clone groups

historically refactored (R-clones) and those

not refactored (NR-clones) to construct the

training set. CREC extracts 34 features to

characterize the content and evolution

behaviors of individual clones, as well as the

spatial, syntactical, and co-change relations of

clone peers. With these features, CREC trains

a classifier that recommends clones for

refactoring. We designed the largest feature

set thus far for clone recommendation, and

performed an evaluation on six large projects.

The results show that our approach suggested

refactorings with 83% and 76% F-scores in

the within-project and cross-project settings.

CREC significantly outperforms a state-of-

the-art similar approach on our data set, with

the latter one achieving 70% and 50% F-

scores.

2.3 Method-level code clone modification

using refactoring techniques for clone

maintenance.

Researchers focused on activities such as clone

maintenance to assist the programmers.

Refactoring is a well-known process to

improve the maintainability of the software.

Program refactoring is a technique to improve

readability, structure, performance,

abstraction, maintainability or other characteristics

by transforming a program. This paper contributes

to a more unified approach for the phases of

clone maintenance with a focus on clone

modification. This approach uses the

refactoring technique for clone modification.

To detect the clones ‘CloneManager’ tool has

been used. This approach is implemented as an

enhancement to the existing tool CloneManager.

The enhanced tool is tested with the open-

source projects and the results are compared

with the performance of other three existing tools.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 320

3. EXISTING SYSTEM

Several studies are related to code clone

refactoring. Higo et al. [7] suggest a method

that refactors code clones using existing

refactoring patterns such as the Extract and

Pull Up Method. This research performed

fully automated refactoring without developer

intervention. The developer should evaluate

refactoring based on their preference and

indicate any clone which is a probable

candidate for refactoring. Conversely, our

work extracts feature and relies on machine

learning to build our model and classify

clones according to the type of refactored

clone and those which are not refactored.

Next, the developer evaluated the refactoring

clones. Higo et al. [8] suggested a method that

detects refactoring-oriented code clone to

improve the usefulness and applicability of the

software maintenance method. Higo et al. [9]

proposed a refactoring method for merging

software clones. Their technique can detect a

refactoring-oriented code clone in a general

clone detected by token- based or text-based

clone detection tools. We refactor clones

using AST-based and PDG-based clone

detection tools.

DRAWBACK IN EXISTING SYSTEM

Less Accuracy

3.1 PROPOSED SYSTEM

In this paper for the Unknown set

classification, our adopted work model

combines supervised learning classifiers and

outlier detection for unknown classes model.

This paper discusses the common and recent

classification algorithms used for refactoring

code clone classification and an outlier

detection model combined for classifying the

test examples as belonging to known or

unknown class sizes. The improved

performances of our classifier model are

reliant upon its closed set validation. Model

validation in machine learning is the process

where by trained models are evaluated with

testing datasets. The testing dataset in closed

set validation contains examples which

belong to known classes. We ran an outlier

algorithm for datasets to find the data points

which have considerably dissimilarity or

inconsistency with the other given data points.

Then, the data point classes are changed into

unknown classes. After detecting outlier data

points, we build our model for closed-set

classification and perform analysis of their

performance after training. We train and test

our classifier with vectors of datasets.

ADVANTAGES

Increased

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 321

4. IMPLEMENTATION

Python is a general-purpose language. It has

wide range of applications from Web

development (like: Django and Bottle),

scientific and mathematical computing

(Orange, SymPy, NumPy) to desktop

graphical user Interfaces (Pygame, Panda3D).

The syntax of the language is clean and length

of the code is relatively short. It's fun to work

in Python because it allows you to think about

the problem rather than focusing on the

syntax.

History of Python:

Python is a fairly old language created by

Guido Van Rossum. The design began in the

late 1980s and was first released in February

1991.

Why Python was created?

In late 1980s, Guido Van Rossum was

working on the Amoeba distributed operating

system group. He wanted to use an interpreted

language like ABC (ABC has simple easy-to-

understand syntax) that could access the

Amoeba system calls. So, he decided to create

a language that was extensible. This led to

design of a new language which was later

named Python.

Why the name Python?

It wasn't named after a dangerous snake.

Rossum was fan of a comedy series from late

seventies. The name "Python" was adopted

from the same series "Monty Python's Flying

Circus".

A simple language which is easier to learn

Python has a very simple and elegant syntax.

It's much easier to read and write Python

programs compared to other languages like:

C++, Java, C#. Python makes programming

fun and allows you to focus on the solution

rather than syntax.

If you are a newbie, it's a great choice to start

your journey with Python.

Free and open-source

You can freely use and distribute Python,

even for commercial use. Not only can you

use and distribute software's written in it, you

can even make changes to the Python's source

code.

Python has a large community constantly

improving it in each iteration.

Portability

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 322

Free and open-source

You can freely use and distribute Python,

even for commercial use. Not only can you

use and distribute software's written in it, you

can even make changes to the Python's source

code.

Python has a large community constantly

improving it in each iteration.

Portability

You can move Python programs from one

platform to another, and run it without any

changes.

It runs seamlessly on almost all platforms

including Windows, Mac OS X and Linux.

Extensible and Embeddable

Suppose an application requires high

performance. You can easily combine pieces

of C/C++ or other languages with Python

code.

This will give your application high

performance as well as scripting capabilities

which other languages may not provide out of

the box.

A high-level, interpreted language

Unlike C/C++, you don't have to worry about

daunting tasks like memory management,

garbage collection and so on.

Likewise, when you run Python code, it

automatically converts your code to the

language your computer understands. You

don't need to worry about any lower-level

operations.

5. ALGORITHM:

5.1 KNN

recall.clear()

fmeasure.clear()

global X_train, X_test, y_train, y_test

text.delete('1.0', END)

knn KNeighborsClassifier()

knn.fit(X_train, y_train)

predict knn.predict(X_test

acc accuracy_score(y_test.predict) * 100

100

p = precision_score(y_test, predict, average='macro') *

r = recall_score(y_test, predict,average='macro') * 100

f=fl_score(y_test, predict,average='macro')

100

text.insert(END, "KNN Accuracy: "+str(acc)+"\n")

text.insert(END, "KNN Precision: "+str(p)+"\n")

text.insert(END, "KNN Recall: "+str(r)+"\n")

text.insert(END, "KNN FMeasure: "+str(f)+"\n\n")

accuracy.append(acc)

precision.append(p)

recall.append(r)

fmeasure.append(f)

KNN is one of the most basic yet essential

classification algorithms in machine learning.

It belongs to the supervised learning domain

and finds intense application in pattern

recognition, data mining, and intrusion

detection.

It is widely disposable in real-life scenarios

since it is non-parametric, meaning it does not

make any underlying assumptions about the

distribution of data (as opposed to other

algorithms such as GMM, which assume a

Gaussian distribution of the given data). We

are

given some prior data (also called training

data), which classifies coordinates into groups

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 323

identified by an attribute.As an example,

consider the following table of data points

containing two features:

KNN Algorithm working visualization

Now, given another set of data points (also

called testing data), allocate these points to a

group by analyzing the training set. Note that

the unclassified points are marked as ‘White’.

Intuition Behind KNN Algorithm

If we plot these points on a graph, we may be

able to locate some clusters or groups. Now,

given an unclassified point, we can assign it

to a group by observing what group its nearest

neighbors belong to. This means a point

close to a cluster of points classified as ‘Red’

has a higher probability of getting classified as

‘Red’. Intuitively, we can see that the first

point (2.5, 7) should be classified as ‘Green’,

and the second point (5.5, 4.5) should be

classified as ‘Red’.

Why do we need a KNN algorithm?

(K-NN) algorithm is a versatile and widely

used machine learning algorithm that is

primarily used for its simplicity and ease of

implementation. It does not require any

assumptions about the underlying data

distribution. It can also handle both numerical

and categorical data, making it a flexible

choice for various types of datasets in

classification and regression tasks. It is a non-

parametric method that makes predictions

based on the similarity of data points in a

given dataset. K-NN is less sensitive to

outliers compared to other algorithms.

make predictions based on the local structure

of the data.

Distance Metrics Used in KNN Algorithm

As we know that the KNN algorithm helps us

identify the nearest points or the groups for a

query point. But to determine the closest

groups or the nearest points for a query point

we need some metric. For this purpose, we use

below distance metrics:

Euclidean Distance

This is nothing but the cartesian distance

between the two points which are in the

plane/hyperplane. Euclidean distance can also

be visualized as the length of the straight line

that joins the two points which are into

consideration. This metric helps us calculate

the net displacement done between the two

states of an object.

5.2 SVM ALGORITHM

def runSVM():

global X_train, X_test, y_train, y_test

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 324

rf = svm.SVC()

rf.fit(X_train, y_train)

predict = rf.predict(X_test)

acc = accuracy_score(y_test,predict) * 100

p = precision_score(y_test, predict, average='macro') *

100

r = recall_score(y_test, predict, average='macro') * 100

f = fl_score(y_test, predict, average='macro') * 100

text.insert(END, "SVM Accuracy: "+str(acc)+"\n")

text.insert(END, "SVM Precision: "+str(p)+"\n")

text.insert(END, "SVM Recall: "+str(r)+"\n")

 text.insert(END, "SVM FMeasure: "+str(f)+"\n\n")

accuracy.append(acc)

precision.append(p)

recall.append(r)

fmeasure.append(f)

Introduction to SVM

Support vector machines (SVMs) are powerful

yet flexible supervised machine learning

algorithms which are used both for

classification and regression. But generally,

they are used in classification problems. In

1960s, SVMs were first introduced but later

they got refined in 1990. SVMs have their

unique way of implementation as compared to

other machine learning algorithms. Lately,

they are extremely popular because of their

ability to handle multiple continuous and

categorical variables.

Working of SVM

An SVM model is basically a representation of

different classes in a hyperplane in

multidimensional space. The hyperplane will

be generated in an iterative manner by SVM so

that the error can be minimized. The goal of

SVM is to divide the datasets into classes to

find a maximum marginal hyperplane

(MMH).

SVM Kernel

In practice, SVM algorithm is implemented

with kernel that transforms an input data

space into the required form. SVM uses a

technique called the kernel trick in which

kernel takes a low dimensional input space

and transforms it into a higher dimensional

space. In simple words, kernel converts non-

separable problems into separable problems

by adding more dimensions to it. It makes

SVM more powerful, flexible and accurate.

The following are some of the types of

kernels used by SVM.

Linear Kernel

It can be used as a dot product between

any two observations. The formula of linear

kernel is as below

K(x,xi)=sum(x∗xi)K(x,xi)=sum(x∗xi)

From the above formula, we can see that the

product between two vectors say & 𝑥 is the

sum of the multiplication of each pair of input

values.

Polynomial Kernel

It is more generalized form of linear kernel and

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 325

distinguish curved or nonlinear input space.

Following is the formula for polynomial kernel

k(X,Xi)=1+sum(X∗Xi)^dk(X,Xi)=1+sum(X∗Xi)^d

Here d is the degree of polynomial, which we

need to specify manually in the learning

algorithm.

Radial Basis Function (RBF) Kernel

RBF kernel, mostly used in SVM classification,

maps input space in indefinite dimensional

space. Following formula explains it

mathematically

K(x,xi)=exp(−gamma∗sum(x−xi^2))K(x,xi)

=exp(−gamma∗sum(x−xi^2))

RESULTS AND DISCUSSION

Accuracy: The accuracy of a test is its ability

to differentiate the patient and healthy cases

correctly. To estimate the accuracy of a test,

we should calculate the proportion of true

positive and true negative in all evaluated

cases. Mathematically, this can be stated as:

Accuracy = TP + TN TP + TN + FP + FN.

F1-Score: F1 score is a machine learning

evaluation metric that measures a model's

accuracy. It combines the precision and recall

scores of a model. The accuracy metric

computes how many times a model

Here, gamma ranges from 0 to 1. We need to

manually specify it in the learning algorithm.

A good default value of gamma is 0.1.

As we implemented SVM for linearly

separable data, we can implement it in Python

for the data that is not linearly separable. It

can be done by using kernels.

Example

The following is an example for creating an

SVM classifier by using kernels. We will be

using iris dataset from scikit- learn

Precision: Precision evaluates the fraction of

correctly classified instances or samples

among the ones classified as positives. Thus,

the formula to calculate the precision is given

by:

Precision = True positives/ (True positives

+ False positives) = TP/(TP + FP)

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 326

6. COMPARISION GRAPH

7.FINAL OUTPUT

 To click on run button

Fig.1: Display the algorithms

 Fig.2 : Upload code repostory dataset

Fig.3 : Generating Features vector

Fig.4 : To Calculate local outlier factor

 Fig.5 : Refactoring software advisor

CONCLUSION

This paper suggests a learning method which

automatically extracts features from the

detected code clones and trains the models to

advise the developers in regard to what a clone

needs to be refactored and what is its type. We

introduce a new method of converting clone

type outliers into an Unknown clone to

improve classification results. We present an

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 327

extensive comparative study and perform an

evaluation of the efficacy of our suggested

idea by using state-of-the- art classification

models. We present a new machine learning

framework that automatically extracts

features from the detected code clones and

trains models to advise the developers on the

type of refactored clone code and those which

are not refactored. We explore a new method

by which to clone types of outliers into an

Unknown clone from the training categories,

which significantly improves the

classification results. We present an extensive

comparative study and an evaluation of the

efficacy of our suggested idea by using

stateof-the-art classification models. We used

four classification models to obtain their

relative performance. The experimental results

suggest that our approach has high value in

achieving high automated advising refactored

clone accuracy. In future, we would like to

increase the scope of work to achieve

additional improvements, for example, by

using set classification and deep learning.

FUTURE SCOPE

To assist developers refactored code and to

enable improvements to software quality

when numbers of clones are found in

software programs, we require an approach to

advise developers on what a clone needs to

refactor and what type of refactoring is

needed. This paper suggests a unique learning

method that automatically extracts features

from the detected code clones and trains

models to advise developers on what type

needs to be refactored. Our approach differs

from others which specify types of refactored

clones as classes and creates a model for

detecting the types of refactored clones and

the clones which are anonymous. We

introduce a new method by which to convert

refactoring clone type outliers into Unknown

clone set to improve classification results.

We present an extensive comparative study

and an evaluation of the efficacy of our

suggested idea by using state-of-the-art

classification models

MODULES

1. Upload Module: Using this module author

ploading code clone/repository from eclipse,

Net beans etc.

2. Extract Features: Using this module

author applying natural language tool kit

(NLTK) to convert code words in to feature

vector and then normalize feature vector to 0

and 1 by taking average of each word count.

3. Local Outlier Factor (LOF): Using this

algorithm author identifying important

attributes/columns from features vector and

this algorithm return 1 if attribute is anomaly

(not outlier) and -1 if attribute is not important

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 328

or outlier. So using this algorithm we can

extract important attributes from features

vector.

4 Run Machine learning Algorithms: Features

will be converted into train and test records

and then based on similarity between code

modules class label will be assigned as 0 or 1.

If code contains so many similar words then 1

will be assigned other wise 0 will be assigned.

Using this module various machine learning

algorithms will be applied such as SVM,

KNN, Bagging classifier and Random Forest,

5.Code Advisor: After building machine

learning trained model we can predict code

which require refactoring and then developer

will analyse predicted code to refactor.

 REFERENCES

[1]Y. Dang, S. Ge, R. Huang, and D. Zhang,

"Code clone detection experience at

microsoft," in Proc. 5th Int. Workshop Softw.

Clones, 2011, pp. 63- 64.

R. Yue, Z. Gao, N. Meng, Y. Xiong. X. Wang,

and J. D. Morgenthaler, "Automatic clone

recommendation for refactoring based on the

present and the past," in Proc. IEEE Int. Conf.

Softw Maintenance Evol. (ICSME), Sep.

2018, pp. 115-126.

[3]S. Kodhai and S. Kanmani, "Method-level

code clone modification using refactoring

techniques for clone maintenance," Adv.

Comput. Int. J., vol. 4, no. 2, pp. 7-26, Mar.

2013.

[4] M. Kim, V. Sazawal, D. Notkin, and G.

Murphy, "An empirical study of code clone

genealogies," ACM SIGSOFT Softw. Eng.

Notes, vol 30, no. 5, 2005, pp. 187-196.

N. Göde and R. Koschke, "Frequency and

risks of changes to clones," in Proc. 33rd Int.

Conf. Softw. Eng., 2011, pp. 311-320.

[5] W. Wang and M. W. Godfrey,

"Recommending clones for refactoring using

design, context, and history," in Proc. IEEE

Int. Conf. Softw. Maintenance Evol, Sep.

2014, pp. 331- 340.

[6] Y. Higo, T. Kamiya, S. Kusumoto, and K.

Inoue, "Refactoring support based on code

clone analysis," in Proc. 135Int. Conf. Product

Focused Softw. Process Improvement. Cham,

Switzerland:

[7] Springer, 2004, pp. 220-233. [8] Y.

Higo, T. Kamiya, S. Kusumoto, K. Inoue, and

K. Words, "ARIES: Refactoring support

environment based on code clone analysis," in

Proc. IASTED Conf. Softw. Eng. Appl, 2004,

pp. 222-229.

[8] Y. Higo, S. Kusumoto, and K. Inoue, "A

metric-based approach to identifying

refactoring opportunities for merging code

clones in a java software system," J. Softw.

Maintenance Evol. Res. Pract., vol. 20, no. 6,

pp. 435-461, Νον. 2008.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 8, August : 2024

UGC CARE Group-1 329

[9] M F. Zibran and C. K. Roy, "A constraint

programming approach to conflict-aware

optimal scheduling of prioritized code clone

refactoring," in Proc. IEEE 11th Int. Work.

Conf. Source Code Anal. Manipulation, Sep.

2011, pp. 105-114.

conflict-aware optimal scheduling of

prioritized code clone refactoring," in Proc.

IEEE 11th Int. Work. Conf. Source Code

Anal. Manipulation, Sep. 2011, pp. 105-114.

[10] K. Hotta, Y. Higo, and S. Kusumoto,

"Identifying, tailoring, and suggesting form

template method refactoring opportunities

with program dependence graph," in Proc.

16th Eur. Conf. Softw. Maintenance Reeng..

Mar. 2012, pp. 53-62.

[11] R. Tairas and J. Gray, "Increasing clone

maintenance support by unifying clone

detection and refactoring activities," Inf.

Softw. Technol., vol. 54, no. 12, pp. 1297-

1307, Dec. 2012.

[12] N. Tsantalis, D. Mazinanian, and G.

P. Krishnan, "Assessing the refactorability of

software clones," IEEE Trans. Softw. Eng.,

vol. 41, no. 11, pp. 1055-1090, Nov. 2015,

[13] M. Mondal, C. K. Roy, and K. A.

Schneider, "SPCP-miner: A tool for mining

code clones that are important for refactoring

or tracking," in Proc. IEEE 22nd Int. Conf.

Softw. Anal., Evol., Reeng. (SANER), Mar.

2015, pp. 484-488,

