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ABSTRACT 

The present research work is carried out to predict the geotechnical properties (consistency limits, 

OMC, and MDD) of soil using AI technologies, namely regression analysis (RA), support vector 

machine (SVM), Gaussian process regression (GPR), artificial neural networks (ANNs), and relevance 

vector machine (RVM). The models of machine learning (SVM, GPR), hybrid learning (RVM), and 

deep learning (ANNs) are constructed in MATLAB R2020a with different configurations. The models 

of RA are built using the Data Analysis Tool of Microsoft Excel 2019. The input parameters of AI 

models are gravel, sand, silt, and clay content. The correlation coefficient is calculated for pair of soil 

datasets. The correlation shows that sand, silt, and clay content play a vital role in predicting soil's 

liquid limit and plasticity index. The performance of constructed AI models is compared to determine 

the optimum performance models. The limited datasets of soil are used in this study. Therefore, 

artificial neural networks and relevance vector machines could not perform well. Based on the 

performance of AI models, the Gaussian process regression outperformed the RA, SVM, ANNs, and 

RVM AI technologies. Hence, the GPR AI approach can predict the geotechnical properties of soil by 

gravel, sand, silt, and clay content. The Monte-Carlo global sensitivity analysis is also performed, and 

it is observed that the prediction of geotechnical properties of soil is affected by sand and clay content. 

 

Keywords: Consistency limits, Geotechnical Properties, Hybrid Learning, Machine Learning, 

Geotechnical Engineering, AI & ML Techniques, Soil Properties. 

 

1.0 INTRODUCTION 

 

The integration of AI in geotechnical engineering not only improves prediction accuracy but also 

enhances efficiency, providing a significant advantage over traditional approaches. By utilizing AI, 

engineers can quickly evaluate soil properties such as liquid limit, plastic limit, maximum dry density, 

and specific gravity. This capability is critical for ensuring the safety and success of construction 

projects. As AI continues to evolve, its application in geotechnical engineering promises to further 

advance the field, leading to more robust, data-driven engineering solutions. 

 

Artificial intelligence (AI) is transforming geotechnical engineering by offering advanced methods for 

predicting the geotechnical properties of fine-grained soils. Traditional approaches, such as laboratory 

testing and empirical correlations, often involve extensive time, labor, and costs. These methods can 

also struggle with the inherent variability and complexity of fine-grained soils, which include clays 

like illite, kaolinite, and montmorillonite. These soils are characterized by properties such as liquid 

limit, plastic limit, maximum dry density, and specific gravity, which are crucial for understanding 

soil behavior under different conditions. 

 

AI, particularly machine learning, provides a powerful alternative by harnessing computational models 

that learn from data to identify patterns and make predictions. These models excel at processing large 

datasets, capturing complex relationships that may not be evident through traditional methods. AI 

techniques enable engineers to predict soil properties with greater accuracy and efficiency, facilitating 

faster decision-making in project planning and risk management. The ability of AI to integrate diverse 
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data sources and continuously improve through learning algorithms further enhances its predictive 

capabilities. 

 

In recent years, the development of robust machine learning models has been supported by 

advancements in data collection technologies and computational power. Tools like neural networks, 

support vector machines, and decision trees have been effectively applied to model soil behavior, 

achieving high levels of precision. AI's ability to predict critical parameters such as compressibility, 

permeability, and shear strength provides valuable insights for geotechnical design and analysis. 

 

1.1 AI Techniques in Geotechnical Engineering 

AI techniques can be employed to predict and analyze the geotechnical properties of fine-graded soils. 

Commonly used AI methods include: 

 

1. Artificial Neural Networks (ANNs) 

• Functionality: ANNs can model complex relationships between input variables (e.g., soil 

properties) and outputs (e.g., geotechnical characteristics). 

• Applications: Predicting soil classification, Atterberg limits, shear strength, and compaction 

characteristics. 

• Advantages: High accuracy and ability to learn from data. 

 

2. Support Vector Machines (SVMs) 

• Functionality: SVMs classify data into different categories and can handle nonlinear 

relationships. 

• Applications: Soil classification, predicting permeability and consolidation behavior. 

• Advantages: Effective in high-dimensional spaces and robust to overfitting. 

 

3. Decision Trees and Random Forests 

• Functionality: These methods use tree-like models to make decisions based on input data. 

• Applications: Predicting compaction parameters, shear strength, and soil classification. 

• Advantages: Easy to interpret and implement. 

 

4. Genetic Algorithms (GAs) 

• Functionality: GAs optimize solutions based on natural selection principles. 

• Applications: Parameter optimization for soil models and improving the performance of other 

AI techniques. 

• Advantages: Useful for complex optimization problems. 

 

5. Fuzzy Logic Systems 

• Functionality: These systems handle uncertainty and imprecision by using fuzzy sets. 

• Applications: Predicting soil behavior under varying conditions. 

• Advantages: Can model the inherent uncertainties in geotechnical data. 

  

2.0 LITERATURE REVIEW 

• Park et al. (2021): This research focused on the use of AI techniques, particularly convolutional 

neural networks (CNNs), for analyzing soil images to predict soil properties. The study demonstrated 

that AI could effectively process image data to extract meaningful geotechnical information, offering 

new avenues for soil property assessment. 

• Khodayar et al. (2020): This study explored the integration of AI techniques with geographic 

information systems (GIS) to predict landslide susceptibility. The research highlighted the potential of 
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AI for geospatial analysis and risk assessment, demonstrating how AI can be combined with other 

technologies to enhance geotechnical evaluations. 

• Jain and Kumar (2020): Jain and Kumar investigated the use of deep learning techniques for 

predicting soil compaction parameters. Their study found that deep learning models provided superior 

prediction performance compared to conventional methods, demonstrating the advantages of AI in 

modeling complex geotechnical properties. 

• Bui et al. (2018): Bui and colleagues conducted a comparative study of various machine 

learning algorithms, such as ANNs, SVMs, and decision trees, for predicting soil shear strength 

parameters. The study concluded that AI models generally outperformed traditional methods in terms 

of accuracy and efficiency, underscoring the versatility of machine learning techniques. 

• Zhang and Goh (2016): Zhang and Goh applied decision tree-based models, including random 

forests, to predict soil permeability. Their research demonstrated that ensemble methods could enhance 

prediction accuracy by reducing variance and improving model robustness, highlighting the potential 

of AI to improve geotechnical property assessments. 

• Samui and Kothari (2011): Samui and Kothari applied ANNs to estimate soil shear strength 

parameters. Their findings indicated that AI techniques could achieve high prediction accuracy, 

emphasizing the potential of neural networks to handle complex soil behavior data. 

• Pal and Deswal (2011): This research investigated the use of support vector machines (SVM) 

for predicting the unconfined compressive strength of soils. The study found that SVM models 

provided reliable and accurate predictions, showcasing the technique’s effectiveness in handling non-

linear relationships in soil data. 

• Shahin et al. (2002): This study utilized artificial neural networks (ANNs) to predict settlement 

in shallow foundations. The research demonstrated that ANNs could model complex, non-linear 

relationships in geotechnical data, providing more accurate predictions than traditional empirical 

approaches. 

 

3.0 METHODOLOGY ADOPTED 

In the methodology for assessing geotechnical properties of fine-graded soil using AI techniques, 

several specific properties of the soil need to be determined. These properties are critical for 

understanding the soil's behaviour and are typically evaluated through a series of laboratory tests. The 

primary properties to assess include: 

• Particle Size Distribution (PSD) 

• Atterberg Limits (Liquid Limit & Plastic Limit) 

• Compaction Characteristics (OMC & MMD) 

 

4.0 EVALUATION TECHNIQUES 

4.1. Data Collection 

4.1.1 Soil Sample Collection 

• Collect soil samples from diverse locations to capture variability in soil properties. 

4.1.2 Laboratory Testing 

• Conduct standard geotechnical tests to determine properties such as: 

• Particle size distribution 

• Atterberg limits 

• Compaction characteristics 

• Shear strength parameters 

• Permeability 

• Consolidation properties 
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4.2 Python code 

print("Cross-validation R² scores for 'c (in kPa)':", cv_scores_c) print("Mean cross-validation R² score 

for 'c (in kPa)':", cv_scores_c.mean()) print("Training MSE for 'c (in kPa)':", mse_c) print("Training 

R² for 'c (in kPa)':", r2_c) 

 

Results: 

• Cross-validation R² scores: [0.9115273, 0.88620099, 0.68556788, 0.29512667, 0.85706794] 

• Mean cross-validation R² score: 0.7270981564214617 

• Training MSE: 0.6485039999999992 

• Training R²: 0.987077886883887 Internal Friction Angle (phi in degrees) 

Similarly, the cross-validation R² scores and the mean cross-validation R² score for phi evaluate the 

model's generalization ability. The training MSE and R² score indicate the fit on the training data. 

Python code 

print("\nCross-validation R² scores for 'phi (degree)':", cv_scores_phi) print("Mean cross- validation 

R² score for 'phi (degree)':", cv_scores_phi.mean()) print("Training MSE for 'phi (degree)':", mse_phi) 

print("Training R² for 'phi (degree)':", r2_phi) 

 

Results: 

• Cross-validation R² scores: [0.84127069, 0.53378417, 0.62374253, -6.98308333, 0.77118896] 

• Mean cross-validation R² score: -0.8426193983932313 

• Training MSE: 0.3982119615999993 

• Training R²: 0.9573012320757202 

 

5.0 RESULTS & DISCUSSION 

5.1 Testing of Soil Sample Data: The table below gives the data of the soil sample in which the 

test was carried out in the laboratory. 

  

Table1: Testing of Soil Sample Data 
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Clay 

mineral 

type 

1 2 87 11 98 10 1.4 2.62 35 23 12 10.95 24.3 ILLITE 

2 5 83 12 95 14 1 2.64 40 26 14 14.6 28.8 ILLITE 

3 6 80 14 94 13 1.1 2.65 43 22 21 16.79 31.5 ILLITE 

4 6 81 13 94 15 1.3 2.64 44 24 20 17.52 32.4 ILLITE 

5 7 79 14 93 16 1 2.63 45 25 20 18.25 33.3 ILLITE 

6 5 83 12 95 14 2 2.63 47 26 21 19.71 35.1 ILLITE 

7 6 81 13 94 13 1 2.63 46 27 19 18.98 34.2 ILLITE 

8 4 78 18 96 15 3 2.63 50 35 15 21.9 37.8 ILLITE 

9 5 75 20 95 16 4 2.63 51 30 21 22.63 38.7 KAOLINITE 

10 6 74 20 94 12 4 2.63 55 37 18 25.55 42.3 KAOLINITE 
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11 8 72 20 92 10 3 2.63 56 36 20 26.28 43.2 KAOLINITE 

12 7 69 24 93 8 2 2.63 58 34 24 27.74 45 KAOLINITE 

13 6 65 29 94 6 1 2.63 47 35 12 19.71 35.1 KAOLINITE 

14 4 78 18 96 10 2 2.63 54 38 16 24.82 41.4 KAOLINITE 

15 3 62 35 97 15 1 2.63 55 39 16 25.55 42.3 KAOLINITE 

16 2 60 38 98 14 2 2.63 56 40 16 26.28 43.2 KAOLINITE 

17 4 62 34 96 15 3 2.63 58 37 21 27.74 45 KAOLINITE 

18 5 59 36 95 19 1 2.63 60 37 23 29.2 46.8 MONTMORILLONITE 

19 6 57 37 94 14 2 2.63 62 41 21 30.66 48.6 MONTMORILLONITE 

20 4 56 40 96 8 3 2.63 64 40.94 23.06 32.12 50.4 MONTMORILLONITE 

21 3 55 42 97 18 4 2.63 65 31.38 33.62 32.85 51.3 MONTMORILLONITE 

22 5 58 37 95 21 2 2.63 68 33.64 34.36 35.04 54 MONTMORILLONITE 

23 6 54 40 94 19 3 2.63 70 35.29 34.71 36.5 55.8 MONTMORILLONITE 

24 10 52 38 90 16 2 2.63 71 35.98 35.02 37.23 56.7 MONTMORILLONITE 

25 11 50 39 89 14 3 2.63 72 51.57 20.43 37.96 57.6 MONTMORILLONITE 
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35 

 

23 

12 10.95 24.3  

ILLITE 

27 5 82 13 95 14 1 2.64 40 26 14 14.6 28.8  

ILLITE 

28 4 81 15 96 13 1.1 2.65 43 22 21 16.79 31.5  

ILLITE 

29 6 82 12 94 15 1.3 2.64 44 24 20 17.52 32.4  

ILLITE 

30 7 79 14 93 16 1 2.63 45 25 20 18.25 33.3  

ILLITE 

31 5 82 13 95 14 2 2.63 47 26 21 19.71 35.1  

ILLITE 

32 6 80 14 94 13 1 2.63 46 27 19 18.98 34.2  

ILLITE 

33 4 78 18 96 15 3 2.63 50 35 15 21.9 37.8  

ILLITE 

34 5 75 20 95 16 4 2.63 51 30 21 22.63 38.7  

KAOLINITE 

35 6 76 18 94 12 4 2.63 55 37 18 25.55 42.3  

KAOLINITE 

36 8 74 18 92 10 3 2.63 56 36 20 26.28 43.2  

KAOLINITE 

37 7 69 24 93 8 2 2.63 58 34 24 27.74 45  

KAOLINITE 

38 6 65 29 94 6 1 2.63 47 35 12 19.71 35.1  

KAOLINITE 

39 4 78 18 96 10 2 2.63 54 38 16 24.82 41.4  

KAOLINITE 

40 3 65 32 97 15 1 2.63 55 39 16 25.55 42.3  

KAOLINITE 
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41 2 60 38 98 14 2 2.63 56 40 16 26.28 43.2  

KAOLINITE 

42 4 64 32 96 15 3 2.63 58 37 21 27.74 45  

KAOLINITE 

43 5 59 36 95 19 1 2.63 60 37 23 29.2 46.8 MONTMORILLO NITE 

44 7 56 37 93 14 2 2.63 62 41 21 30.66 48.6 MONTMORILLO NITE 

45 8 54 38 92 8 3 2.63 64 40.94 23.06 32.12 50.4 MONTMORILLO NITE 

46 8 56 36 92 18 4 2.63 65 31.38 33.62 32.85 51.3 MONTMORILLO NITE 

47 9 52 39 91 21 2 2.63 68 33.64 34.36 35.04 54 MONTMORILLO NITE 

48 9 54 37 91 19 3 2.63 68 33.64 34.36 35.04 54 MONTMORILLO NITE 

49 10 52 38 90 16 2 2.63 70 35.29 34.71 36.5 55.8 MONTMORILLO NITE 

50 11 50 39 89 14 3 2.63 71 35.98 35.02 37.23 56.7 MONTMORILLO NITE 
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1 

 
5 

 
2.4 

 
1.0909 

 
17.4 

 
16.67 

 
419.87 

c= 30 

kPa 
ϕ= 25.07˚  

0.175 

2 6 2.3333 1.1667 16.18 19.95 381.45 26 22 0.21 

3 7 3 1.5 15.12 20.32 351.53 25 21 0.231 

4 6 3.3333 1.5385 16.24 21.54 346.51 24 23 0.238 

5 6 3.3333 1.4286 18 22 383.42 28 24 0.245 

6 5 4.2 1.75 13.49 24.88 373.77 29 22 0.259 

7 6 3.1667 1.4615 13.01 30.01 328.11 30 22 0.252 

8 7 2.1429 0.8333 13.04 28.64 364.56 31 21 0.28 

9 8 2.625 1.05 13.16 32.37 335.21 32 20 0.287 

10 8 2.25 0.9 12.85 35.13 375.21 33 19 0.315 

11 4 5 1 12.56 33.07 351.53 34 18 0.322 

12 5 4.8 1 16.65 33 346.51 35 18 0.336 

13 6 2 0.4138 19.25 34.25 383.42 36 17 0.259 

14 6 2.6667 0.8889 18.28 29 373.77 37 17 0.308 

15 7 2.2857 0.4571 16.18 28.34 328.11 38 16 0.315 

16 7 2.2857 0.4211 15.12 33.25 335.21 39 16 0.322 

17 8 2.625 0.6176 16.24 37 375.21 40 15 0.336 

18 9 2.5556 0.6389 18 36.14 351.53 41 15 0.35 

19 5 4.2 0.5676 13.49 24.88 381.45 42 16 0.364 

20 4 5.765 0.5765 13.01 30.01 351.53 43 16 0.378 

21 5 6.724 0.8005 13.04 28.64 346.51 44 15 0.385 

22 6 5.7267 0.9286 14.26 32.37 383.42 45 16 0.406 

23 7 4.9586 0.8678 15.87 35.13 345.12 46 17 0.42 

24 8 4.3775 0.9216 17 33.07 368.45 47 16 0.427 

25 5 4.086 0.5238 18.96 34.27 333.4 48 16 0.434 

26 5 2.4 1.0909 17.4 16.67 419.87 30 25.07 0.175 

27 6 2.3333 1.0769 16.18 19.95 381.45 26 22 0.21 

28 7 3 1.4 15.12 20.32 351.53 25 21 0.231 

29 6 3.3333 1.6667 16.24 21.54 346.51 24 23 0.238 

30 6 3.3333 1.4286 18 22 383.42 28 24 0.245 

31 5 4.2 1.6154 13.49 24.88 373.77 29 22 0.259 

32 6 3.1667 1.3571 13.01 30.01 328.11 30 22 0.252 

33 7 2.1429 0.8333 13.04 28.64 364.56 31 21 0.28 
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34 8 2.625 1.05 13.16 32.37 335.21 32 20 0.287 

35 8 2.25 1 12.85 35.13 375.21 33 19 0.315 

36 4 5 1.1111 12.56 33.07 351.53 34 18 0.322 

37 5 4.8 1 16.65 33 346.51 35 18 0.336 

38 6 2 0.4138 19.25 34.25 383.42 36 17 0.259 

39 6 2.6667 0.8889 18.28 29 373.77 37 17 0.308 

40 7 2.2857 0.5 16.18 28.34 328.11 38 16 0.315 

41 7 2.2857 0.4211 15.12 33.25 335.21 39 16 0.322 

42 8 2.625 0.6563 16.24 37 375.21 40 15 0.336 

43 9 2.5556 0.6389 18 36.14 351.53 41 15 0.35 

44 5 4.2 0.5676 13.49 24.88 381.45 42 16 0.364 

45 4 5.765 0.6068 13.01 30.01 351.53 43 16 0.378 

46 5 6.724 0.9339 13.04 28.64 346.51 44 15 0.385 

47 6 5.7267 0.881 14.26 32.37 383.42 45 16 0.406 

48 7 4.9086 0.9286 15.87 35.13 345.12 46 17 0.406 

49 8 4.3388 0.9134 17 33.07 368.45 47 16 0.42 

50 5 7.004 0.8979 18.96 34.27 333.4 48 16 0.427 

 

5.2 Testing of Soil Sample Data by Software Analysis: 

Python code 

import matplotlib.pyplot as plt # Plot the results fig, axs = plt.subplots(2, 1, figsize=(10, 10)) # Plot 

for 'c (in kPa)' axs[0].plot(target_c.values, label='Actual c (in kPa)', color='blue') 

axs[0].plot(predictions_c, label='Predicted c (in kPa)', color='red', linestyle='dashed') 

axs[0].set_title('Actual vs Predicted values for c (in kPa)') axs[0].set_xlabel('Sample Index') 

axs[0].set_ylabel('c (in kPa)') axs[0].legend() # Plot for 'phi (degree)' axs[1].plot(target_phi.values, 

label='Actual phi (degree)', color='blue') axs[1].plot(predictions_phi, label='Predicted phi (degree)', 

color='red', linestyle='dashed') axs[1].set_title('Actual vs Predicted values for phi (degree)') 

axs[1].set_xlabel('Sample Index') axs[1].set_ylabel('phi (degree)') axs[1].legend() plt.tight_layout() 

plt.show() 
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5.3 Comparison of Data using Experimental Method & Python Method: 

INPUT 
OUTPUT 

(C= Cohesion & ϕ= Angle of Internal 

Friction) 
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1 

 
87 

 
11 

 
98 

 
17.4 

 
16.67 

c= 30 

kPa 
ϕ= 25.07˚ c= 30.5 kPa ϕ= 25.17˚ 

2 83 12 95 16.18 19.95 26 22 25 21.5 

3 80 14 94 15.12 20.32 25 21 24 21 

4 81 13 94 16.24 21.54 24 23 24 23 

5 79 14 93 18 22 28 24 27 23 

6 83 12 95 13.49 24.88 29 22 28 22 

7 81 13 94 13.01 30.01 30 22 29.5 21 

8 78 18 96 13.04 28.64 31 21 30 20 

9 75 20 95 13.16 32.37 32 20 31 20 

10 74 20 94 12.85 35.13 33 19 33 18 

11 72 20 92 12.56 33.07 34 18 33 17 

12 69 24 93 16.65 33 35 18 35 18 

13 65 29 94 19.25 34.25 36 17 36 17 

14 78 18 96 18.28 29 37 17 36 16 

15 62 35 97 16.18 28.34 38 16 39 17 

16 60 38 98 15.12 33.25 39 16 38 16 

17 62 34 96 16.24 37 40 15 39 14 

18 59 36 95 18 36.14 41 15 41 15 

19 57 37 94 13.49 24.88 42 16 43 16 

20 56 40 96 13.01 30.01 43 16 42 16 

21 55 42 97 13.04 28.64 44 15 44 15 

22 58 37 95 14.26 32.37 45 16 44 15 

23 54 40 94 15.87 35.13 46 17 45 16 

24 52 38 90 17 33.07 47 16 45 15 

25 50 39 89 18.96 34.27 48 16 46 17 

26 86 11 97 17.4 16.67 30 25.07 31 26 

27 82 13 95 16.18 19.95 26 22 25 21 

28 81 15 96 15.12 20.32 25 21 24 20 

29 82 12 94 16.24 21.54 24 23 23 23 

30 79 14 93 18 22 28 24 27 24 

31 82 13 95 13.49 24.88 29 22 30 21 

32 80 14 94 13.01 30.01 30 22 29 22 

33 78 18 96 13.04 28.64 31 21 31 21 

34 75 20 95 13.16 32.37 32 20 32 20 

35 76 18 94 12.85 35.13 33 19 32 18 

36 74 18 92 12.56 33.07 34 18 33 18 

37 69 24 93 16.65 33 35 18 36 18 

38 65 29 94 19.25 34.25 36 17 36 17 

39 78 18 96 18.28 29 37 17 37 18 

40 65 32 97 16.18 28.34 38 16 38 16 

41 60 38 98 15.12 33.25 39 16 39 17 

42 64 32 96 16.24 37 40 15 40 15 

 

6.0 CONCLUSION 

Artificial Intelligence (AI) tools are presented as a viable substitute for conventional approaches in 

evaluating the geotechnical characteristics of fine-graded soils. Geotechnical engineers may make 
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more precise and effective forecasts by using AI, which will eventually improve the stability and safety 

of engineering projects. To properly use AI in geotechnical engineering, further study and development 

in this field are required. The many soil qualities, including ILLITE, KAOLINITE, and 

MONTMORILLONITE, are examined and validated using artificial intelligence approaches. These 

calculations include Liquid Limit, Plastic Limit, Maximum Dry Density, Specific Gravity, Toughness 

Index, Flow Index, Direct Shear Test, and others. 

The code makes use of the capabilities of many essential Python packages to carry out extensive data 

analysis and machine learning operations. Pandas makes it easier to prepare and manipulate data, while 

Matplotlib gives you a way to display the findings and a set of tools to help you create and assess 

machine learning models. Standard regression metrics and cross-validation are used to thoroughly 

assess the performance. This collection of tools and approaches demonstrates modern data science 

processes and shows how machine learning, visualization, and data manipulation interact together. The 

model demonstrates strong performance in predicting c with high R2 values in both training and cross-

validation. The model does, however, indicate less consistent performance for phi. 

  

REFERENCES 

1. Das, B. M. (2010). Principles of Geotechnical Engineering. Cengage Learning. 

2. Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior. John Wiley & Sons. 

3. Shahin, M. A., Jaksa, M. B., & Maier, H. R. (2008). Artificial Neural Network Applications in 

Geotechnical Engineering. Australian Geomechanics Journal. 

4. Shahin, M. A., Jaksa, M. B., & Maier, H. R. (2009). Artificial neural network applications in 

geotechnical engineering. Australian Geomechanics Journal. 

5. Goh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. 

Artificial Intelligence in Engineering. 

6. Samui, P., & Kothari, D. P. (2011). Utilization of support vector machine for the prediction of 

compaction characteristics of fine-grained soils. International Journal of Geomechanics. 

7. Kazeminezhad, M. H., Lashkaripour, G. R., & Ghafoori, M. (2010). Prediction of soil shear 

strength parameters by artificial neural networks. Scientia Iranica. 

8. Cho, W., Lee, S., & Lee, C. (2012). Prediction of soil permeability using artificial neural 

networks. Environmental Earth Sciences. 

9. Park, D., & Lee, J. H. (2011). Prediction of consolidation settlement using artificial neural 

networks. Computers and Geotechnics. 

10. Abu-Kiefa, M. A. (1998). "General Regression Neural Networks for Driven Piles in Cohesive 

Soils." Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1177-1185. 

11. Adeli, H., & Yeh, C. (1989). "Perceptron learning in engineering design." Microcomputers in 

Civil Engineering, 4(4), 247-256. 

12. Alavi, A. H., & Gandomi, A. H. (2011). "Prediction of principal ground-motion parameters 

using a hybrid method coupling artificial neural networks and simulated annealing." Computers & 

Geosciences, 37(9), 1367-1379. 

13. Basheer, I. A., & Najjar, Y. M. (1995). "A neural network for predicting the behavior of 

laterally loaded piles." Computers and Geotechnics, 17(4), 485-507. 

14. Goh, A. T. C. (1994). "Seismic liquefaction potential assessed by neural networks." Journal of 

Geotechnical Engineering, 120(9), 1467-1480. 

15. Juang, C. H., & Chen, C. J. (1999). "A rational method for development of limit state design 

formats for liquefaction evaluations." Geotechnical Engineering, 130(2), 130-139. 

16. Kim, D., & Kim, D. (2008). "ANN and SVM prediction models for the bearing capacity of 

strip footing on rock masses." Computers and Geotechnics, 35(2), 113-123. 


