

ISSN: 0970-2555

Volume : 53, Issue 8, No.2, August : 2024

SUPER AND INTENSE GEOMAGNETIC STORM IN FOUR YEAR WINDOW SURROUNDING SOLAR CYCLE PEAK

Dr. D. S. Raghuwanshi Department of Physics, Government Polytechnic College Betul, M. P, India <u>dharmsinghr1980@gmail.com</u>

Abstract:

Sunspot cycle (SC) is an approximately-11 year period with increasing and decreasing Sun spot number(SSN). There is relationship between change in Sun spot number (SSN) and geomagnetic storm(GMS), therefore high magnitude geomagnetic storms are found in large numbers around the period of the peak point of the sun spot cycle. In this research paper statistical analyzed intense geomagnetic storm (IGMS) (Dst ranges from -300 to -200 nanoteslas) and supergeomagnetic storm (SGMS) (Dst is-300 nanoteslas or less) for period from 1964 to 2019 that cover the period of solar cycle 20-24, within the four years window starting 1-year prepeak and 3-years postpeakof SC approximately 85.4% of intense geomagnetic storms (IGMSs), approximately 87.5% of super geomagnetic storms (SGMSs), and approximately 85.9% of total geomagnetic storm (TGMS = IGMS+ SGMS) occur. We do the analysis of geomagnetic storms during the four-year window starting 1-year prepeak and 3-years postpeakof different sunspot number cycles, we find that the percentages of total geomagnetic storms (TGMS = IGMS+SGMS) for solar cycles 20, 21, 22, 23, and 24 are 72.7%, 84.6%, 93.3%, 86.9%, and 100% respectively. The above four year window greatly affects function involving magnetic field (FIMF) such as satellite launching, GPS, navigation, magnetic survey, compass use, directional drilling, power system, and radio communication etc. That's why the four year window is very important and sensitive for do the above FIMF.

Keywords-

FIMF, IGMS, SGMS

1. Introduction

When the earth's magnetic field is disturbed by solar released matter a geomagnetic storm occurs, around the peak of the solar cycle the Earth's magnetic field is greatly affected by the solar wind and shock waves emanating from the Sun, leading to high intensity and SGMS. Gonzalez W.D. et al. [2] this study provided connection between solar cycles and intense geomagnetic storm from 1965 to 1985. G. Le et al. [7] analyze solar cycle distribution of great geomagnetic storm after statistical analysis from 1957 to 2005 it was shown that 83% of great geomagnetic storm occur two year before and three year after the solar peak. Echer E. el at. [1] studied intense geomagnetic storm and analyzed their relation with interplanetary parameter for space weather forecasting. Gonzalez et al. [3] examine the distribution of super geomagnetic storm throughout solar cycle, the summary of this paper suggests that super geomagnetic storms occur in all phases of the solar cycle but are more frequent around the solar maximum and during initial descending phase. LeG. et al. [8] statistical analysis of the major geomagnetic storm from 1957 to 2006 the results obtained to show that, 82% of geomagnetic storms occur at Dst≤ - 100 nT level, about 12% are great GMS, and about 6% are SGMS. It was also observed that 27% of geomagnetic storm occur during ascending phases of the SC and 73% of GMS occur during descending phase of the SC. Rodger C.J. et al. [9], this paper gives historical data of super geomagnetic storm of the last 50 years from 1965 to 2015. It is clear that solar cycle disrupt the geomagnetic field here we referred to the solar earth connection when high intensity and super geomagnetic storm occur the magnetic field based systems on the earth are affected. Gupta et al.[5] solar- terrestrial events and solar cycle phases were studied in this paper during 1956 to 1963, these events occur in the ascending and descending phases except at solar peak. Zang et al. [10] study the Solar terrestrial connection and GMSs are influenced by the combined impact of solar wind and IMF

ISSN: 0970-2555

Volume : 53, Issue 8, No.2, August : 2024

parameter. Katus R. M. et al. [6] in this paper investigate effect of geomagnetic storm on space based function.

In present paper we are analyzing high intensity and super geomagnetic storms, data collection has been done from 1964 to 2019. It covers solar cycles 20 to 24. The four-year period around the solar cycle peak is very favorable for high intensity and super geomagnetic storms. In the above period, the number of high intensity and super geomagnetic storms is very high, so this period is very dangerous and sensitive for the function involving magnetic field such as satellite launching, GPS, navigation, magnetic survey, compass use, power system, and radio communication etc. Therefore, the above FIMF should not be performed in this four-year period or should be done with extra caution because there is a full possibility of affecting the results. Here is the purpose of this paper.

2. Data Analysis-

We have analyzed large GMS with Dst values below -200 nanoteslas focusing on the period 1964-2019 that covers SC 20, 21, 22 ,23,and 24.Our research work used Dst values from the WDC at kyoto univ. database and SSN from the SIDC.

Solar cycle 20 (oct.1964-june1976) peak time- nov.1968				
Date of maximum decreases in	Main phase on set date and	Dst Value (nT)		
Dst Value	time (DD/UT)			
25 May 1967	25 (24UT)	-312		
26 May 1967	26 (05UT)	-387		
31 Oct. 1968	31 (19UT)	-224		
01 Nov. 1968	01 (23UT)	-216		
24 Mar.1969	24 (02UT)	-218		
08 Mar.1970	08 (23UT)	-284		
09 Mar.1970	09 (01UT)	-258		
01 Apr.1973	01 (23UT)	-211		
06 Jul.1974	06 (07UT)	-204		
26 Mar.1976	26 (09UT)	-226		
01 Apr.1976	01 (09UT)	-218		
Solar cycle 21 (jun.1976-sep.1986) peak time –dec.1979				
28 Aug.1978	28 (10UT)	-226		
29 Sep.1978	29 (10UT)	-224		
04 Apr.1979	04 (04UT)	-202		
19 Dec.1980	19 (19UT)	-240		
05 Mar.1981	05 (18UT)	-215		
13 Apr.1981	13 (07UT)	-311T-1 Cont.		
25 Jul.1981	25 (21UT)	-226		
02 Mar.1982	02 (06UT)	-211		
14 Jul.1982	14 (02UT)	-325		
06 Sep.1982	06 (12UT)	-289		
22 Sep.1982	22 (08UT)	-210		
10 Jan.1983	10 (10UT)	-203		
09 Feb.1986	09 (01UT)	-307		
Solar cycle 22 (sep.1986-may.1996) peak time –jul.1989				
13 Mar. 1989	13 (24UT)	-472		
14 Mar. 1989	14 (02UT)	-589		
19 Sep.1989	19 (05UT)	-255		
21 Oct.1989	21 (17UT)	-268		

Table –1 The IGMS, SGMS Occurred during 1964-2019 Solar cycle 20 (act 1964-june 1976) neak time- new 1968

ISSN: 0970-2555

Volume : 53, Issue 8, No.2, August : 2024

	0		
17 Nov. 1989	17 (23UT)	-266	
18 Nov.1989	18 (01UT)	-235	
10 Apr. 1990	10 (19UT)	-281	
24 Mar. 1991	24 (24UT)	-281	
25 Mar. 1991	25 (01UT)	-298	
29 Oct. 1991	29 (08UT)	-254	
08 Nov.1991	08 (24UT)	-280	
09 Nov.1991	09 (02UT)	-354	
09 Feb. 1992	09 (09UT)	-201	
10 May.1992	10 (15UT)	-288	
17 Apr.1994	17 (08UT)	-201	
Solar cycle	e 23 (may 1996-dec.2008) peak tin	ne- apr.2000	
04 May 1998	04 (06UT)	-205	
25 Sep. 1998	25 (10UT)	-207	
22 Oct.1999	22 (07UT)	-237	
06 Apr. 2000	06 (23UT)	-287	
07 Apr. 2000	07 (01UT)	-288	
15 Jul. 2000	15 (22UT)	-289	
16 Jul. 2000	16 (01UT)	-301	
12 Aug. 2000	12 (10UT)	-235	
17 Sep. 2000	17 (24UT)	-201	
31 Mar. 2001	31 (09UT)	-387T-1 Cont.	
01 Apr. 2001	01 (01UT)	-228	
11 Apr. 2001	11 (24UT)	-271	
12 Apr. 2001	12 (01UT)	-236	
06 Nov. 2001	06 (07UT)	-292	
24 Nov. 2001	24 (17UT)	-221	
29 Oct. 2003	29 (24UT)	-350	
30 Oct. 2003	30 (23UT)	-383	
31 Oct. 2003	31 (01UT)	-307	
20 Nov. 2003	20 (21UT)	-422	
21 Nov. 2003	21 (01UT)	-309	
08 Nov. 2004	08 (07UT)	-374	
10 Nov. 2004	10 (11UT)	-263	
15 May 2005	15 (09UT)	-247	
Solar cycle 24 (jan.2008-dec.2019) peak time-apr. 2014			
17 Mar. 2015	17 (23UT)	-234	
18 Mar. 2015	18 (01UT)	-200	

Table-2 - The IGMS,SGMS and Total TGMS for4-year window starting 1-year prepeak and 3-years

	postpeakor the SC				
Number ->	For 4-year window starting 1-year pre peak and 3-years post peak	For the whole period 1964- 2019	Ratio		
Storm Intensity Dst≤-300nT (SGMS)	14	16	87.5%		
-300nT <dst≤-200nt (IGMS) UGC CARE Group-1</dst≤-200nt 	41	48	85.4%		

ISSN: 0970-2555

Volume : 53, Issue 8, No.2, August : 2024

55 6	54 85.	.9%
------	--------	-----

Table-3(TGMS=IGMS+SGMS) for different SC 20-24						
Solar	Sunspot	(TGMS=IGMS+SGMS)for	(TGMS=IGMS+SGMS)	Ratio		
Cycle	Number	4-year window starting 1-	For the whole period			
		year pre peak and 3-years				
		post peak				
20	110.6	08	11	72.7%		
21	164.5	11	13	84.6%		
22	158.5	14	15	93.3%		
23	120.4	20	23	86.9%		
24	81.8	02	02	100%		

Table [1] shows IGMSs and SGMSs for the period 1964 - 2019, in which 48 IGMS and 16 SGMS occurred, thus a total of 64 TGMS (IGMS + SGMS) occurred. Table [2] shows IGMS and SGMS for the period one year before and three years after the peak of the solar cycle. 41 IGMS, 14 SGMS and 55 total TGMS (IGMS + SGMS)occurred in 4-year windowstarting 1-year pre peak and 3-years post peak. Table [3]displaysTGMS (IGMS + SGMS) individually for SC from 20 to 24. In this, for the whole period of SC from 20 to 24 the TGMS(IGMS+ SGMS) are 11, 13, 15, 23, and 02 respectively, and for 4-year windowstarting 1-year pre peak and 3-years post peak, TGMS (IGMS+GMS) are 08, 11, 14, 20, and 02 respectively.

Figure [1] –Relative share of SGMS in 4-year window starting 1-year pre peak and 3-years post peak (P4) and for remaining period (Pe) excluding this.

ISSN: 0970-2555

Volume : 53, Issue 8, No.2, August : 2024

Figure [3] –Relative share of TGMS (SGMS+ IGMS)for solar cycle 20,21,22,23,and 24 in 4 year windowstarting 1- year pre peak and 3-years post peak of the sun spot cycle (P4) and excluding this period (Pe).

3. Result and Discussion :

[1]We find during the period of 1964 to 2019 total intense geomagnetic storm ($D_{st}\leq-200nT$) are 48 storm and total super magnetic storm(-300nT< $D_{st}\leq-200nT$) are 14 Storm.

[2] 85.4% of the total intense geomagnetic storms ($D_{st} \leq -200nT$), i.e. 41 out of 48 storms, occurred in the four-year windowstarting 1-year pre peak and 3-years post peak of the sun spot cycle.

[3]87.5% of the total super geomagnetic storms (- $300nT < D_{st} \le -200nT$), i.e. 14 out of 16 storms, occurred in the four-year windowstarting 1-year pre peak and 3-years post peak of the sun spot cycle.

[4]In SC from 20 to 24 TGM(IGMS+SGMS)relative shareare 72%, 84.6%, 93.3%, 86.9% and 100% respectively in the four-year window around the solar cycle peak. It is clear from this that the frequency of above storm is high in solar cycles 21, 22, 23 and 24 but the frequency of above storm is low in solar cycle 20.

[5]Three geomagnetic storms with Dst < -400 nT have been observed from Solar Cycles 20 to 24 ,two of these storms were observed in Solar Cycle 22 and one storm in Solar Cycle 23. The geomagnetic storm on 14 March 1989 is the strongest in which the value of Dst was -589 nT.

4. Conclusion

In present paper,after above statistical analysis, it has been found that approximately 85.4% intense geomagnetic storms (IGMSs), approximately 87.5% super geomagnetic storms (SGMSs), and approximately 85.9% TGMS (IGMS+ SGMS) are obtained in the four year window starting 1- year pre peak and 3-years post peak of the sun spot cycle. In SC from 20 to 24 TGM (IGMS+SGMS) relative share are 72%, 84.6%, 93.3%, 86.9% and 100% respectively in the four year window around the solar peak. It is clear that in the four year window around the solar peak, FIMF such as satellite launching, GPS, navigation, magnetic survey, compass use, power system, and radio communication will be affected, hence extra caution should be taken for FIMF in the above period.

Reference

[1]Eicher,E., Gonzalez,W.D., Tsurutani,B.T.Gonzalez,A.L.C.(2008). Interplanetary conditions causing intense geomagnetic storms (Dst≤-100nT) during solar cycle 23(1996-2006).J. Geophys.Res.113,A05221doi:10.1029/2007JA012744.

[2]Gonzalez, W.D.Gonzalez, A.L.C.Tsurutani, B.T. (1990) Planet. Space Sci. 38, 181.

[3]Gonzalez,W D.,Joselyn,J.A.,Kamide,Y.Kroehl,H.W.,Rostoker,G.,

T., Vasyliunas, V.M. (1994). what is geomagnetic storms? J.Geophys.Res.99,5771.

Tsurutani,B

ISSN: 0970-2555

Volume : 53, Issue 8, No.2, August : 2024

[4]Gonzalez, W.D.,Echer,E.,Gonzalez,A.L.C., et al.(2011). Extreme geomagnetic storms, recent Gleissberg cycles and space era-superintense storms. J. Atmos.Sol.-Terr. Phys. 73, 1447-1453.

[5]Gupta,M.K.D.,Basu,D.(1965) Journal of Atmospheric and Terrestrial Physics, 27,1029.

[6]Katus,R.M. and Liemohn,M.W. (2017): The effects geomagnetic storms on the Earth's magnetosphere J. of Geophys Research:Space Phy. Vol. 122(10), 10,223-10,234. doi: 10.1002/2017JA024555.

[7]Le, G., Cai, Z., Wang, H., Zhu, Y.(2012). Solar cycle distribution of great geomagnetic storms. Astrophys Space Sci.151-156.

[8]Le, G., Cai, Z., Wang, H., Yin, Z., Li, P. (2013). Solar cycle distribution of major geomagnetic storms. Research in Astron. Astrophys.vol. 13 No. 6, 739-748.

[9]Rodger, C. J., et al. (2017). Super geomagnetic storm historical record of last 50 years. Journal of Geophysical Research: Space Physics, 122(1), 931-941. doi: 10.1002/2016JA023665

[10] Zhang, J., et al.(2007). solar and interplanetary sources of major geomagnetic Storms(Dst≤-100nT) during 1996 - 2005. J. Geophys. Result. 112, A10102doi:10.1029/2007JA012321.