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Abstract 

Weather forecasting has numerous impacts in 

our daily life from cultivation to event planning. 

Previous weather forecasting models used the 

complicated blend of mathematical instruments 

which was insufficient in order to get higher 

classification rate. In contrast, simple analytical 

models are wellsuited for weather forecasting 

tasks. In this work, we focus on the weather 

forecasting by means of classifying different 

weather events such as normal, rain, and fog by 

applying comprehensible C4.5 learning 

algorithm on weather and climate features. The 

C4.5 classifier classifies weather events by 

building the decision tree using information 

entropy from the set of training samples. We 

conducted experiments on LA weather history 

dataset; from evaluation results, it is revealed 

that C4.5 classifier classifies weather events 

with f-score of around 96.1%. This model also 

indicates that climate features such as rainfall, 

visibility, temperature, humidity, and wind 

speed are highly discriminative toward events 

classification. We study specifically the power of 

making predictions via a hybrid approach that 

combines discriminatively trained predictive 

models with a deep neural network that models 

the joint statistics of a set of weather-related 

variables. We show how the base model can be 

enhanced with spatial interpolation that uses 

learned long-range spatial dependencies. 

Keywords: Machine Learning, Graphical Models, 

Weather Forecasting, Weather Events 

I.INTRODUCTION 

The situation of weather plays a crucial role in 

almost every aspects of human life. Note that 

intelligent weather analysis techniques can help 

us to make efficient decisions that can lead us 

to save valuable lives, properties, and time. As a 

consequence, researchers focus on the 

automated analysis of weather and climate data 

such as forecasting rainfall, predicting air 

temperature to understand and to extract 

useful information. As modernization 

continued, prediction of weather events draws 

more attention. From the very beginning of 

civilization, people want to know the pattern of 

weather change. Discovering the weather 

pattern and forecasting weather has been a 

field of interest from the exploration of science 

and technology. Weather forecasting involves 

foreseeing how the current situation with the 

air will change in which present climate 

conditions are taken by ground perceptions 

such as from boats, airplane, radiosondes, 

Doppler radar, and satellites. The collected data 

is then sent to meteorological focuses in which 
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the information are gathered, analyzed, and 

made into an assortment of outlines, maps, and 

charts. Algorithms exchange a huge number of 

perceptions onto surface and upper air maps 

and draw the lines on the maps with assistance 

from meteorologists. Algorithms draw the maps 

as well as anticipate how the maps will look at 

some point later on. 

Making inferences and predictions 

about weather has been an omnipresent 

challenge throughout human history. 

Challenges with accurate meteorological 

modeling brings to the fore difficulties with 

reasoning about the complex dynamics of 

Earth’s atmospheric system. everal challenges 

must be addressed in taking a datacentric 

approach to weather prediction. First, we note 

that the set of weather variables under 

consideration are tightly coupled. For example, 

pressure and temperature follow natural gas 

laws (i.e., the well-known formula, P V = nRT). 

Similarly, there is a tight relationship between 

relative humidity and temperature. 

Consequently, any model that jointly aims to 

predict the set of weather variables should 

leverage knowledge of the tight statistical 

couplings that are based in physics. Secondly, 

dependencies among the variables may have 

long-range influences across space and time. 

For instance, wind vectors across large 

geographic distances may follow isobaric 

contours. As another consideration, the 

weather phenomena may be affected by local 

geography and associated natural processes 

(e.g. isolated thunderstorms), as well as shifts in 

the large-scale structure of atmospheric 

phenomena (e.g. shifting of jet streams). 

 We aim to tackle these challenges via a 

representation that jointly predicts winds, 

temperature, pressure, and dew point across 

space and time. The proposed architecture 

combines a bottom-up predictor for each 

individual variable with a top-down deep belief 

network that models the joint statistical 

relationships. Another key component in the 

framework is a data-driven kernel, based on a 

similarity function that is learned automatically 

from the data. The kernel is used to impose 

long-range dependencies across space and to 

ensure that the inferences respect natural laws. 

Numerical or computational models for 

weather forecasting are the dynamic 

representations of the systems is being used in 

present days. These models discretize regions 

or bodies in a few measurements by separately 

utilizing estimated capacities to portray the 

behavior of the climatic variables of interest [2]. 

Nowadays, numerical or computational models 

are irreplaceable for atmosphere estimation. 

For instance, Bayesian networks [3] with time 

differed scaling features can be used to review 

whether there are factually noteworthy 

patterns in the climate information. In addition, 

Tae-wong [4] demonstrated a space-time model 

that displays the short time and geographical 

conditions of the day by day rain event. 

 Although there are several techniques 

available for weather forecasting, weather 

forecasting is actually a challenging task due to 

the complicated physics behind weather which 

depends on numerous features, and which is 

also boisterous and deterministically confusing 

natural event. Moreover, people produce 

numerous disasters, and change of climate or 

characteristics of climate such as air 

temperature, rainfall, dew point temperature, 

visibility, and humidity displays a strong role on 

the weather. Notice that several automated 
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techniques including Artificial Neural Network 

(ANN), Support Vector Regressor (SVR), Genetic 

Algorithm (GA) were applied to forecast or 

model weather [5] [6] [7] [8], where ANN was 

the most commonly used technique that can 

forecast weather with decent performance rate. 

On the other hand, public services 

usually use the data from fixed sensors. The 

sensors have high quality and potential. 

However, they can be costly to install and 

maintain[9]. So the location data collected for 

weather can also be used to real-time traffic 

updates as well. In this paper, a system has 

been designed that will mainly act as the source 

of weather data along with real-time data for 

traffic condition with the help of mobile 

applications and device integrated with 

Arduino, different sensors and Bluetooth 

module. The data is quantitative continuous 

data which is analyzed to show perfect 

correlation for accurate prediction. 

II. RELATED WORK 

Over the last few decades, researchers 

conducted a number of automated analyses on 

weather and climate data such as dew point 

temperature prediction using several Artificial 

Intelligence (AI) techniques from different sub-

domains of AI including model output statistics, 

fuzzy logic, expert system, machine learning, 

and data mining. For instance, Chevalier et al. 

[11] trained SVR on small, and minimally pre-

processed meteorological dataset to predict air 

temperature. Devi et al. [12] developed ANN 

based temperature forecasting model using 

real-time quantitative data about the current 

state of the atmosphere. Olaiya and Adeyemo 

[13] also investigated the performance of ANN 

and decision trees during the classification of 

maximum, minimum, and mean temperature, 

rainfall, evaporation, and wind speed on 

meteorological data gathered from Nigeria. Lin 

and Chen [8] designed typhoon rainfall 

forecasting model using ANN feeding eight 

typhoon characteristics and spatial rainfall 

information, where they found that excessive 

spatial rainfall information may not increase the 

generalization of the forecasting model. 

Mohammadi et al. [14] predicted the dew point 

temperature on the daily scale on different 

climate conditions applying extreme learning 

machine algorithm on five common climate-

related features such as mean air temperature, 

relative humidity, atmospheric pressure, vapor 

pressure and horizontal global solar radiation. 

 As per our knowledge based on 

literature review, Awan and Awais’s research 

[15] is the only similar study available in the 

literature that also attempted to predict 

weather events. In their research, they aimed to 

predict weather events based on fuzzy RBS 

method for Lahore, Pakistan. They used two 

different datasets of 365 examples with only 4 

features, and 2500 examples with 17 features 

e.g. temperature, dew point, humidity, sea 

level, visibility, wind speed, respectively, for 

experimentation. They mentioned in their 

finding that fuzzy RBS method was sensitive to 

random sampling with replacement technique 

that was applied to produce training and test 

dataset. In contrary, we applied comprehensible 

tree-based machine learning algorithm for 

events classification for Los Angeles, California, 

the USA in which we used 5325 examples with 

19 features extending the feature set to include 

rainfall information to build the weather events 

prediction model. 
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 Despite the success of machine learning 

in a variety of tasks, applications to the problem 

of weather forecasting has been limited. 

Exceptions include the use of Bayesian 

Networks for precipitation forecasts [3] and 

temporal modeling via Restricted Boltzmann 

Machines (RBM) [15]. A separate thread of 

research has also focused on efficient 

representation of relational spatiotemporal 

data in Random Forests for prediction of severe 

surface-level weather processes, such as 

droughts and tornadoes. More recently, large-

scale wind prediction has been presented [9] 

using a Bayesian framework with Gaussian 

Processes. 

 To date, uses of machine learning for 

weather prediction have been limited in several 

ways. First, almost all methods consider only 

one variable at a time and do not explore the 

joint spatiotemporal statistic of multiple 

weather phenomena. Also, to our knowledge, 

long-range spatiotemporal dependencies have 

not been modeled explicitly. We introduce 

methods that address these limitations, via 

introduction of a hybrid representation. With a 

hybrid representation, individual predictors are 

discriminatively trained from historic data and 

local inferences from these models are 

combined with a deep neural network that 

overlays statistical constraints among key 

weather variables. We additionally apply a 

spatial interpolation scheme that respects 

constraints of long-range statistical 

dependencies. The methodology employs 

covariance matrix for Gaussian Process 

regression constructed from a large dataset. 

Here, the covariance matrix, also referred to as 

the kernel, allows us to enforce smoothness 

constraints over the weather variables. By 

ensuring that the kernel captures the dynamics 

of the system as informed by the training data, 

we are able to align estimates according to 

spatial constraints imposed by natural laws. 

III. C4.5 FOR WEATHER EVENTS 

CLASSIFICATION 

C4.5 is a statistical classifier used to 

build a decision tree for classification. The key 

idea beneath C4.5 algorithm is that C4.5 creates 

decision trees using information entropy H from 

set of training samples e.g. S = s1 , s2 , . . . , sn of 

pre-classified samples, where each sample si 

comprises of Ndimensional vector x1,i , . . . , xN 

,i in which xj denotes feature of the sample and 

class in which si falls. At each node of the tree, 

C4.5 selects the feature that most effectively 

splits its set of samples into subsets using 

normalized information gain as splitting gain 

criteria. C4.5 makes a decision using the feature 

with highest information gain where 

information gain IGain is measured as follows. 

 

Where Event denotes weather event 

class, and Feature denotes available weather 

and climate features used in weather prediction 

model. Figure 1 shows a decision tree produced 

from C4.5 classifier on LA weather history 
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dataset. The technical description of the C4.5 

algorithm is given in Algorithm 1. 

 

 

IV. EXPERIMENTS AND RESULTS 

The proposed weather events classification 

model was evaluated on LA weather history 

dataset using J48, an open source 

implementation of C4.5 on data mining and 

machine learning tool, applying cross-fold 

validation e.g. 5 − fold, 10 − fold, 20 − fold, and 

random splitting e.g. 50% − 50%, 60% − 40%, 

70% − 30% strategies. We benchmarked C4.5 

classifier against classic learning algorithm naive 

Bayes, and displayed the comparison in Table I 

and II. Each of the experiments was run for 20 

times with different random seeds, and the 

results were obtained by averaging over 20 

different experimental runs. We produced 

accuracy, precision, recall, and f-score for each 

weather event class to demonstrate the 

performance of the models. The larger values of 

the performance metric accuracy, precision, 

recall, and f-score indicate the higher weather 

events classification performance. Note that, 

we modeled the weather events prediction task 

as classification problem as we aimed to 

estimate the probable weather event using 

weather and climate features. Table I displays 

the performance of C4.5 and naive Bayes 

classifiers for multiple cross-fold validations and 

random splitting strategies, where Table II 

shows the performance of C4.5 and naive Bayes 

classifiers during the classification of three 

weather events e.g. normal, rain, and fog. From 

Table II, it can be indicated that C4.5 classifier 

was better than naive Bayes since C4.5 

classified all three events with higher f-score 

than naive Bayes. More precisely, naive Bayes 

classified fog event with a low precision rate of 

34.5%, and f-score rate of 49.9% that was 

extremely worst than the performance of C4.5 

classifier. Another important point to note is 

that C4.5 basically confused fog and rain events 

with normal, and normal event with rain event, 

while naive Bayes widely confused fog event 

with both normal and rain events, and rain 

event with the normal event. According to the 

experimental results from Table II, we can 

outline that the proposed C4.5 classifier can 

efficiently classify each of the three weather 

events. Hence, C4.5 can be extensively utilized 

for weather event prediction or forecasting. In 

addition, C4.5 is extremely viable weather event 

classifier as the C4.5 classifier is comprehensible 

and interpretable, can deal with the over-fitting 

issue and may take care of persistent features. 

V. HYBRID MODEL 

We seek a prediction model that respects 

spatiotemporal dependencies among weather 

variables induced by atmospheric physics. We 

test the framework with data drawn from a 

continental scale weather corpus composed of 

data captured via balloons. In particular, we 
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consider the IGRA dataset consisting of balloon 

observations made at 60 stations across the 

U.S. These balloons transmit observations about 

wind speed and direction, temperature, 

geopotential height, dew point, and other 

weather variables.  

These observations are released in real time by 

the NOAA and later by the National Climatic 

Data Center following preprocessing. The data 

is eventually integrated into the curated IGRA 

dataset which is updated daily and contains 

historical weather data spanning decades 

compiled from eleven source datasets. Any data 

added to the archive undergoes a cycle of 

quality assurance to resolve potential 

inconsistencies among variables [4, 5]. Formally, 

we consider four weather variables in the 

model: wind velocity, v; pressure, p; 

temperature, t and dew point, d. The wind 

observations are represented as a two-

dimensional vector, v = [v x , vy ] while all other 

weather variables are scalars. We represent 

weather stations (where the balloons are 

released) as SL = {s1,...,sNs } where Ns is the 

total number of weather stations. For each of 

these stations, we have historical weather data 

logged at a frequency of approximately six 

hours over several years. Our approach to 

building the weather model was governed by 

the following guidelines:  

1. Temporal mining: Our model should be able 

to identify and learn from recurring weather 

patterns over time.  

2. Spatial interpolation: The dynamic influence 

of atmospheric laws on weather phenomena 

need to be accounted for in our predictions.  

3. Inter-variable interactions: The local 

interdependencies between weather variables 

should be captured by our model. 

VI. CONCLUSION 

We presented a weather forecasting model that 

makes predictions via considerations of the 

joint influence of key weather variables. We 

introduced a data-centric kernel and showed 

how using GPR with such a kernel can 

effectively interpolate over space, taking into 

account weather phenomena such as 

turbulence. We performed temporal analysis 

using short- and longer-term features within a 

gradient-tree based learner. We augmented the 

system with a deep belief network and tuned 

the parameters to model the dependencies 

among weather variables. A set of experiments 

on real-world data shows that the new 

methodology can provide better results than 

NOAA benchmarks, as well as recent research 

that had demonstrated improvements over the 

benchmarks. 

We also outline relevant and influential weather 

event features e.g. rainfall, visibility, 

temperature, wind speed, dew point computing 

their relative importance scores. In addition, 

feature correlation plot demonstrates that air 

temperature and dew point, dew point and 

humidity, humidity, and temperature, 

temperature, and visibility, humidity and rainfall 

are highly correlated. In our future work, we will 

include an extension of the weather event class 

to more complex events such as rainfog, 

thunderstorm, rain-thunderstorm, tornado, 

rain-tornado, rain-thunderstorm-tornado, and 

fog-rain-thunderstorm. The proposed event 

prediction model on more complex and 
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unbalanced weather dataset with different 

climate conditions. 
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