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Abstract 

In a graph G, an ordered set W ⊆ V(G) is a resolving set of G if every vertex in the set G can be 

uniquely determined by its vector of distances to the vertex in W.  The cardinality of resolving set 

with the least number of vertices is the metric dimension (dim(G)). If for the resolving set W , W|{w} 

is also a resolving set where w belongs to W then W is fault tolerant, and its metric dimension is fault 

tolerant metric dimension. Herein, we find the fault tolerant metric dimension of helm graph. 
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Introduction 

Slater [17] in the year 1975 and Harary and Melter [7] in the year 1976 originally came up 

with the term “metric dimension”. The distance between two vertices x,y in a graph G is the length of 

the shortest path in G. Consider Z = {z1, z2, . . ., zm} to be an ordered subset of Y and let y ∈ Y. Then 

we can associate with y an ordered m-tuple that will give the distance from z to all the vertices in Z, 

denoted by 𝑑(𝑦, 𝑍) = (𝑑(𝑦, 𝑧1), 𝑑(𝑦, 𝑧2), . . . , 𝑑(𝑦, 𝑧𝑘)). The set Z is a resolving set of G if for all two 

vertices x,y ∈ Y, we have 𝑑(𝑥, 𝑍) ≠ 𝑑(𝑦, 𝑍). The cardinality of resolving set with the least number of 

vertices is the metric dimension (𝑑𝑖𝑚(𝐺)). The application of fault tolerant metric dimension can be 

seen in a wide range of systems and networks, including communication networks, power grids, 

transportation systems, and more. In each case, the goal is to design a system that is resilient to faults 

or failures, ensuring that critical functions can still be performed even when one or more components 

of the system fail. One example of the application of fault tolerant metric dimension is in the design 

and deployment of wireless sensor networks. This idea is being used in fields like mastermind games 

[5], pharmaceutical chemistry [3], network discovery and verification [2], combinatorial 

optimization, [16], robot navigation [12]. 

Hernando et al. [9] in the year 2008 introduced fault tolerance in resolvability. A resolving 

set Z is fault tolerant if Z|{z} is also a resolving set for all z ∈ Z. The minimum cardinality of this 

resolving set is the fault tolerant metric dimension denoted by β′(G). Javaid et al. also c.ontributed to 

the study of fault-tolerance in resolvability [4,11]. It has also been found that the upper bound is 

β′(G) ≤ dim(G) (1 + 2.5β(G)−1) and lower bound as β′(G) ≥ dim(G) + 1 [9] 

Saha et al. [15] found the fault tolerant metric dimension of circulant graphs. Fault tolerant 

metric dimension of some families of ladder networks [10], fault tolerant metric structure for some 

crystal structures [13], fault-tolerant metric dimension of 𝑃(𝑛, 2)ʘ𝐾1 graph[1], fault-tolerant metric 

dimension of interconnection networks [8], fault-tolerant metric dimension of cube of paths[14], 

fault-tolerant resolvability in some classes of subdivision graphs[6], are some of the researches done 

till date 

 

x3 
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 Consider a cycle C4 as shown in Fig.1. Suppose 𝑍 = {𝑥0, 𝑥1} then 𝑟(𝑥0|𝑍) =
(0,1), 𝑟(𝑥1|𝑍) =  (1,0), 𝑟(𝑥2|𝑍) = (2,1), 𝑟(𝑥3|𝑍) = (1,2). Hence 𝑍 =  {𝑥0, 𝑥1} is also a resolving 

set. It is not possible to get a resolving set with just one element in Z. Hence 𝑍 =  {𝑥0, 𝑥1} is the 

minimum resolving set, thus 𝑑𝑖𝑚(𝐶4) = 2. 
Suppose 𝑊 = {𝑥0,  𝑥1,  𝑥2}. 

𝑍1 = 𝑍|{𝑥2} then  𝑟(𝑥0|𝑍1) = (0,1), 𝑟(𝑥1|𝑍1) = (1,0), 𝑟(𝑥2|𝑍1) = (2,1), 𝑟(𝑥3|𝑍1) = (1,2) 

𝑍2 = 𝑍|{𝑥1} then  𝑟(𝑥0|𝑍2) = (0,2), 𝑟(𝑥1|𝑍2) = (1,1), 𝑟(𝑥2|𝑍2) = (2,0), 𝑟(𝑥3|𝑍2) = (1,1) 

𝑍3 = 𝑍|{𝑥0} then  𝑟(𝑥0|𝑍3) = (1,2), 𝑟(𝑥1|𝑍3) = (0,1), 𝑟(𝑥2|𝑍3) = (2,0), 𝑟(𝑥3|𝑍3) = (2,1) 

In 𝑍2, 𝑟(𝑥1|𝑍2) = (1,1), 𝑟(𝑥3|𝑍2) = (1,1).  Hence, Z cannot be a fault tolerant resolving set. Thus 

𝛽′(𝐶4 ) ≠ 3. 

The fault tolerant metric dimension  𝛽′(𝐶4) = 4, where 𝑍 = {𝑥0, 𝑥1,  𝑥2,  𝑥3}. 
If 𝑍1 = 𝑍|{𝑥3} then 𝑟(𝑥0|𝑍1) = (0,1,2), 𝑟(𝑥1|𝑍1) = (1,0,1), 𝑟(𝑥2|𝑍1) = (2,1,0),  
𝑟(𝑥3|𝑍1) = (1,2,1). 

If 𝑍2 = 𝑍|{𝑥2} then 𝑟(𝑥0|𝑍2) = (0,1,1), 𝑟(𝑥1|𝑍2) = (1,0,2), 𝑟(𝑥2|𝑍2) = (2,1,1),   
𝑟(𝑥3|𝑍2) = (1,2,0). 

If 𝑍3 = 𝑍|{𝑥1} then  𝑟(𝑥0|𝑍3) = (0,2,1), 𝑟(𝑥1|𝑍3) = (1,1,2), 𝑟(𝑥2|𝑍3) = (2,0,1),  
 𝑟(𝑥3|𝑍3) = (1,1,0). 

If 𝑍4 = 𝑍|{𝑥0} then 𝑟(𝑥0|𝑍4) = (1,2,1), 𝑟(𝑥1|𝑍4) = (0,1,2), (𝑥2|𝑍4) = (1,0,1),  
  𝑟(𝑥3|𝑍4) = (2,1,0). 

 

MAIN RESULTS 

Helm graph: 

The helm graph Hn  (Fig.3.) is obtained from a wheel graph Wn  (Fig.2.)by adjoining a pendant edge 

at each terminal vertices. 

 
        Fig.2. Wheel graph W3.                                                                                          Fig.3. Helm graph H3. 

 

LEMMA 1: 

 𝑑𝑖𝑚(𝐻𝑛)  = {

 3 , 𝑛 = 3,6,7,8

 
𝑛−1

2
, 𝑛 ≥ 9 and  𝑛 is odd,

 
(𝑛−2)

2
, 𝑛 ≥ 10 and 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,   

 

 

 Since the lower bound of fault tolerant metric dimension is 𝛽′(𝐺)  ≥  𝑑𝑖𝑚(𝐺)  +  1 , the following 

lemma is true. 
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LEMMA 2 : For 𝑛 ≥ 6    𝛽′(Hn)  ≥  {

𝑛+1

2
, 𝑛 𝑖𝑠 𝑜𝑑𝑑

 
𝑛

2
, 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 

 

 
Fig.4. Helm graph Hn. 

 

For a helm graph Hn , let the vertex at the center be x0. The vertices adjacent with the center x0 be 

x1,x2,x3,…,xn in anticlockwise direction.The pendent vertices adjacent to the terminal vertices 

x1,x2,x3,…,xn be y1,y2,y3,…,yn in anticlockwise direction. The generalized helm graph Hn is shown in 

Fig.4. 

 

LEMMA 3: For  3 ≤ 𝑛 ≤ 5 , 𝛽′(𝐻𝑛) = 4 

Proof: Consider the helm graph H3. Let 𝑍 = {𝑥0, 𝑦1, 𝑦2, 𝑦3}. The representation of each vertex of 𝐻3 

is shown in the Fig.5.  

 

 

 

 

 

 

 

 

Fig.5.  Helm graph H3 with representation. 

 

For 𝑥 ∈ 𝑍, 𝑍|{𝑥} is a resolving set for 𝐻3. Thus 𝛽′(𝐻3) = 4.  

Consider the helm graph H4. Let 𝑍 = {𝑦1, 𝑦2, 𝑦3, 𝑦4}. The representation of each vertex of 𝐻4 

is given below 

 𝑟(𝑥0|𝑍) = (2,2,2,2), 𝑟(𝑥1|𝑍) = (1,2,3,2), 𝑟(𝑥2|𝑍) = (2,1,2,3),  
𝑟(𝑥3|𝑍) = (3,2,1,2), 𝑟(𝑥4|𝑍) = (2,3,2,1), 𝑟(𝑦1|𝑍) = (0,3,4,3),  
𝑟(𝑦2|𝑍) = (3,0,3,4), 𝑟(𝑦3|𝑍) = (4,3,0,3), 𝑟(𝑦4|𝑍) = (3,4,3,0). 

For 𝑥 ∈ 𝑍, 𝑍|{𝑥} is a resolving set for 𝐻4. Thus 𝛽′(𝐻4) = 4.  

 

 

 

 

𝒚𝟏 (2,0,3,3) 

. 
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Consider the helm graph H5. Let 𝑍 = {𝑦1, 𝑦2, 𝑦3, 𝑦4}. The representation of each vertex of 𝐻5 

is given below 

𝑟(𝑥0|𝑍) = (2,2,2,2), 𝑟(𝑥1|𝑍) = (1,2,3,3), 𝑟(𝑥2|𝑍) = (2,1,2,3),  
𝑟(𝑥3|𝑍) = (3,2,1,2), 𝑟(𝑥4|𝑍) = (3,3,2,1), 𝑟(𝑥5|𝑍) =  (2,3,3,2),  
𝑟(𝑦1|𝑍) = (0,3,4,4), 𝑟(𝑦2|𝑍) = (3,0,3,4), 𝑟(𝑦3|𝑍) = (4,3,0,3), 

𝑟(𝑦4|𝑍)  = (4,4,3,0), 𝑟(𝑦5|𝑍) = (3,4,4,3). 

For 𝑥 ∈ 𝑍, 𝑍|{𝑥} is a resolving set for 𝐻5. Thus 𝛽′(𝐻5) = 4.  

 

THEOREM 1:   For  n ≥ 7,  β′(𝐻𝑛) =
(n+1 )

2
 , for odd cases. 

Proof: Let Hn , 𝑛 ≥ 7  be a helm graph for odd cases. Let 𝑊 = {𝑦1, 𝑦3, 𝑦5, … , 𝑦𝑛−4, 𝑦𝑛−2, 𝑦𝑛} be the 

set of bases to resove the graph Hn.Then the representation of the vertices of Hn is given as follows 

𝑟(𝑥0|𝑍) = (2,2,2, … ,2,2,2), 𝑟(𝑥1|𝑍) = (1,3,3, . . . ,3,3,2), 𝑟(𝑥𝑛|𝑍) = (2,3,3, … ,3,3,1), 
𝑟(𝑦1|𝑍) = (0,4,4, … ,4,4,3), 𝑟(𝑦𝑛|𝑍) =  (3,4,4, … ,4,4,0). 

For  1 ≤ 𝑖 ≤
(𝑛 − 1)

2
𝑖𝑡ℎ place is 2, 𝑖 + 1𝑡ℎ  place is 2, and the remaining places 3 of 𝑥2𝑖 

 𝑟(𝑥2|𝑍) = (2,2,3, … ,3,3,3), 𝑟(𝑥4|𝑍) = (3,2,2, … ,3,3,3), 𝑟(𝑥6|𝑍) =  (3,3,2, … ,3,3,3), … , 
 𝑟(𝑥2𝑖|𝑍) =  (3,3,3, … ,3,2,2). 

For  2 ≤ 𝑖 ≤
(𝑛−1)

2
𝑖𝑡ℎ  place is 1, and the remaining places 3 in the representation of  𝑥2𝑖−1 

 𝑟(𝑥3|𝑍) = (3,1,3,3, … ,3,3), 𝑟(𝑥5|𝑍) = (3,3,1,3, … ,3,3), 𝑟(𝑥7|𝑍) = (3,3,3,1, … ,3,3), … , 
 𝑟(𝑥2𝑖−1|𝑍) = (3,3,3,3 … ,3,1). 

For  1 ≤ 𝑖 ≤
𝑛 − 1

2
𝑖𝑡ℎ place is 3, 𝑖 + 1𝑡ℎ  place is 3 and the remaining places 4 in the  

representation of 𝑦2𝑖  

𝑟(𝑦2|𝑍) = (3,3,4, … ,4,4,4), 𝑟(𝑦4|𝑍) = (4,3,3, … ,4,4,4), 𝑟(𝑦6|𝑍) = (4,4,3, … ,4,4,4), …, 
 𝑟(𝑦2𝑖|𝑍) = (4,4,4, … ,4,3,3). 

For  2 ≤ 𝑖 ≤
𝑛 − 1

2
𝑖𝑡ℎ place is 0, and the remaining places 4 in the representation of 𝑦2𝑖−1   

𝑟(𝑦3|𝑍) = (4,0,4, … ,4,4,4), 𝑟(𝑦5|𝑍) = (4,0,4, … ,4,4,4), 𝑟(𝑦7|𝑍) = (4,4,0, … ,4,4,4), … , 
 𝑟(𝑦2𝑖−1|𝑍) = (4,4,4, … ,4,4,0). 

For 𝑥 ∈ 𝑍, 𝑍|{𝑥} is a resolving set for 𝐻𝑛. Thus for  n ≥ 7,  β′(𝐻𝑛) =
(n+1 )

2
. 

 

THEOREM 2: For  𝑛 ≥ 6 , 𝛽′(𝐻𝑛) =
𝑛

2
, for even cases. 

Proof:  

Let Hn be a Helm Graph ∀ 𝑛 ≥ 6  in even cases. Let 𝑍 = {𝑦1, 𝑦3, 𝑦5, … , 𝑦𝑛−3, 𝑦𝑛−1} be the set of 

bases to resove the graph Hn.Then the representation of the vertices is given as follows 

 𝑟(𝑥0|𝑍) = (2,2,2, … ,2,2,2).  

For  1 ≤ 𝑖 ≤
𝑛

2
𝑖𝑡ℎ place is 2, 𝑖 + 1𝑡ℎ place is 2 and the remaining places 3 in the  

representation of 𝑢2𝑖  
 𝑟(𝑥2|𝑍) = (2,2,3, … ,3,3,3), 𝑟(𝑥4|𝑍) = (3,2,2, … ,3,3,3), 𝑟(𝑥6|𝑍) = (3,3,2, … ,3,3,3), … , 
 𝑟(𝑥2𝑖|𝑍) = (3,3,3, … ,3,2,2), 𝑟(𝑥2𝑖|𝑍) = (2,3,3, … ,3,3,2). 

For  1 ≤ 𝑖 ≤
𝑛

2
 𝑖𝑡ℎ place is 1, and the remaining places 3 in the representation of 𝑥2𝑖−1  

𝑟(𝑥1|𝑍) = (1,3,3, … ,3,3,3), 𝑟(𝑥3|𝑍) = (3,1,3, … ,3,3,3), 𝑟(𝑥5|𝑍) = (3,3,1, … ,3,3,3), …  
𝑟(𝑥2𝑖−1|𝑍) = (3,3,3 … ,3,3,1). 

For 1 ≤ 𝑖 ≤
𝑛

2
𝑖𝑡ℎ place is 3, 𝑖 + 1𝑡ℎ place is 3 and the remaining places 4 in the  
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representation of 𝑦2𝑖 

𝑟(𝑦2|𝑍) = (3,3,4, … ,4,4,4), 𝑟(𝑦4|𝑍) = (4,3,3, … ,4,4,4), 𝑟(𝑦6|𝑍) = (4,4,3, … ,4,4,4), … ,  
𝑟(𝑦2𝑖|𝑍) = (4,4,4, … ,4,3,3), 𝑟(𝑦2𝑖|𝑍) = (3,4,4, … ,4,4,3). 

For  1 ≤ 𝑖 ≤
𝑛

2
𝑖𝑡ℎ 𝑝lace is 0, and the remaining places 4 in the representation of 𝑦2𝑖−1 

𝑟(𝑦1|𝑍) = (0,4,4, … ,4,4,4), 𝑟(𝑦3|𝑍) = (4,0,4, … ,4,4,4), 𝑟(𝑦5|𝑍) = (4,4,0, … ,4,4,4), … , 
𝑟(𝑦2𝑖−1|𝑍) = (4,4,4, … ,4,4,0). 

For 𝑥 ∈ 𝑍, 𝑍|{𝑥} is a resolving set for 𝐻𝑛. Thus for  𝑛 ≥ 6 , 𝛽′(𝐻𝑛) =
𝑛

2
. 

 

Conclusion:  

Graph theory is an exceptionally broad field for programmers, designer and engineers. Graphs can be 

used to solve even very complex prolems. Fault tolerant metric dimension is a complex and 

challenging problem that requires innovative solutions. Fault tolerant metric dimension is an 

important tool for ensuring the reliability and resilience of critical systems and networks. By 

designing systems and networks with redundant paths or components, we can ensure that these 

systems and networks can continue to function effectively even in the presence of faults or failures. 

This approach has the potential to be applied in various domains, such as wireless sensor networks, 

Internet of Things, and social networks.  In this paper, the fault tolerant metric dimension of a helm 

graph Hn , 𝑛 ≥ 6 has been found as 
(𝑛+1 )

2
  if n is odd  and  

𝑛

2
  if n is even.   
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