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Abstract

The author of this research thought over a battery setup with three individual components labeled A,
B, and C. While both B and C each have one unit, subsystem A has two that are linked in parallel.
Failed, degraded, and good are the possible system states. Unit failure and catastrophic human mistakes
are both potential causes of failure. If a unit failure occurs it is possible to repair but repair is not
possible if a critical human error occurs. The repair rates follow the general distribution. Further
availability and cost function of the system is evaluated in this work.
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. Introduction

Many researchers also concluded their studies based on the assumption that important human
mistakes have a healing rate roughly proportional to the normal distribution. Gupta and Gupta [1]
assume a normal distribution for repair frequencies in electronic repairable redundant systems.
Using a Markov model, Srinath [3] describes how to calculate the availability expression for a
unitary system. Using a two-tier, single-server complicated system as an example, Gupta and
Sharma [2] analyzed the human error effect on availability as well as mean time to failure. S.
Narmada and M. Jacob [4] presented a stochastic model in which human error plays a critical role,
and in which there are two units (one of which is a standby unit).

I1. Notations

Overall, the system is good.

The system’s degraded state.

Both units of subsystem A have failed while subsystem B and C are good.
Subsystem B has failed while subsystem C and A are good.

Subsystem C has failed while subsystem A and B are good.

Unrepairable failed state of the system due to critical human error.

The constant failure rate of a unit of subsystem A.

The constant failure rate of a unit of subsystem B.

The constant failure rate of a unit of subsystem C.

Ao The constant failure rate of the system is due to critical human error when
the system is in a good state.

Ao The constant failure rate of the system is due to critical human error when
the system is in a degraded state.

S (r).¢(r) Probability distributive function and hazard rate for repair time of the
system.

i=F,r=x Repair of the system in failed state F,, repair is completed in elapsed repair
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i=F,r=y Repair of the system in failed state F,, repair is completed in elapsed time y.

i=F,r=z Repair of the system in failed state F,, repair is completed in elapsed time z.
R (t) Probability of the system in state i at time t. where i=G,D,F,F,,F,, F.
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Laplace transform of P, (t)

Davis
formula

s.;tr]=¢>.;(:-3exp{—;[¢wm}

I1l.  System transition diagram
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From the system transition diagram, the difference differential Equations are
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Py (0,1) = 22, P (1) ()
P. (0,t) = 2,P, (t) ®)
P, (0.8) = 4P, (t) + 45Ps (1) ©)
B, (0.1) = APy (1) + AP (1) (10)

Initial conditions
1 i=G
P‘(O):{o i =G (h

V. Solution

To solve for, we use the Laplace transform on equations (1) through (10) as well as initial conditions

(11).

[+ e + 24+ A + 4 ]Po (5) =L+ [ Po (w,5)dy (W)dW+IE;1 (%5) e (X)dx

0

[P 05185, ()8 -+ [P (2:9) (2) (12)
(34 2t g 4t (W) 2y 4y A [P () =0 (13)
(54240, (9 |Pe (x:5) 0 (14)
(54200 [P (1.9)-0 as)
(3+244,(1) P (2.5) -0 (16)
SPr(5) = A4 P (8) + 4 Po (5) (17)
Po(0,5) =24,Ps (s) (18)
P (0,5) = 4,Po (s) (19)
Pr, (0,8) = 4, Po () + 45 Ps (5) (20)
P (0,5) = 4. Po (s) + 4 Ps () 1)

Integrating (13) to (16) and using (17) to (21) we have

Po (W, 8)=24,Pc (5)eXp[—~(s + g + s + A + A )W] exp[—f ¢ (W) dw] (22)
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P (X,8) = 4,Po (s)exp[-sx] exp[—j‘ ¢, (x)dx]
P, (¥,8) =4 |:EG (s)+Po (s)] exp[—sy] exp[—jqﬁFz (y)dy]

P (2:5) = o [Pe (5)-+ Po (5) Jexpl-szlexpl—] g (2) 2]

Making use of (22) to (25) in (12), we have after simplification

[s+ A + 24, + A5 + A |Ps () =1+ 22, Pc () So (S + A + A + A5 + ¢ )+ 4, Po (5) Sk (5)
+25[ Pe (s)+Po (5)|Sr (s)+ 4 [ Pe (5)+Po (s) ]Sk (s)

Now Po(s)= [ Po (x,5)dx

By simplifying (22) we get

1-So (S+ A + Ay + 25 + )
S+ Ap +Ax+ A5 + A

Po (s)=24,Pc(s)

Using (27) in (26), then we get

Here,

A (S)=(5+ A +22, + A4 +ﬂc)—ZﬂA§D(s+ﬂhD+ﬂA+ﬂB+ﬂt)

_2/1/{1—& (S+ Ao + Ay + g +%)}§H (5)- A {1+2&A {1—50 (S+ Mg + Ap + 2 +;LC)H§FZ )

S+ Ap + A+ A5 + A S+ Ap + Ay + A5 + A

L [H% {1—50(54”1nD At A +/1C)H§F3(S)
S+ Ap + A4+ A5 + A

Using (29) in (27) then we get

B A (8)
Po =
)= (s)
Here
A ()= 24, 1-So(S+ Ao + Ay + A5 + 1)

S+ Ap + A4+ A5 + A

Also using (23), (24), (25) and on simplification, we have

Pr (s)= IEH (x,s)dx = 22((2)) A(s)
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Where A (s)=4, {@} (33)
Pe.(5) = jﬁ (v, s)y = 12?23()5) A(s) (34)
Where A, (s)=1, {@} (35)
P (5)= [P (25)02 = 12%3(;) A(s) (36)
Where A (s)= 4 [kiﬂ:l 37)
Using (28) and (30) in (17), we have

Pr (s) = e TA0(S) :h(os’)*Z‘S) (38)

V.  Evaluation of Laplace transforms of up and down state probabilities:

At time t, probabilities of operational availability as well as non-availability, as expressed by their
Laplace transform, are as follows:

Puo (5) = P (s)+ Po (5) = 1?(23()5) (39)

1 A )A(S)+{i+ A (s)A(s)

Edown (S)ZEF1 (S)‘f’EF2 (S)+EF3 (S)+EF (S):— 1 (40)
A(S)] +{1+ A, ()} A () + S + 210, (5))

V1.  Ergodic behaviour of the system

Utilizing Abel’s corollary theorem,

';LT sF(s)= IL'T F(t) = F(say);

The time-independent probability is achieved if and only if the following condition holds:

o s[IeA(s)]
Pp = I;LrpsPup(s)_ I;LTW_O(smce, A(0)=0) (41)
ClimeD e tAo-A(0) 42

Puown = LiM sPaoun (s) TR (42)
VII.  Particular case

Given an exponential distribution for the time required for repairs:

Taking Si(s) :%, where i=D,F,F,,F, in equations (28)-(38) then we get
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(43)
Here
By (S) = (S+ A + 27 + g + A ) - 22uo _ 224 ¢
(S+Ap + A+ g +Ac +85)  (S+Ap +Aa+ 45 + Ac +¢D)(s+¢ﬁ)
_Hats [1+ 22y j—— % b, [1+ 24, J (44)
s+¢5F2 (S+Ap+A,+ Az + A+ ) s+¢Fa (S+Ap+A,+ Az + A+ )
5 (o Bi(s)
Po (S)_ Bl(S) (45}
Where B, (s)= 24 (46)
(S+Ap+ A, + A4z + A +d5)
5 (. B2(8)By(s)
PFI(S)— Bl(S) (47)
A

Wh B = A 48

ere B, (s) G (48)
B _[1+ BZ(S)] B, (s)
ORI )
Where B, (s)=—2 50
B _[1+ BZ(S)] Bs(s)
PFa(S)——Bl(S) (51)
Where B, (s)= (52)

(s+4)
VIlIl. EVALUATION OF INVERSE LAPLACE TRANSFORM OF P,, (s)AND Paoun (s)

Setting ¢, =0.8,¢; =0.7,¢, =0.6,¢, =05, =0.06,4, =0.04, . =0.02, 4, =0.1 4, =0.2in (43) to (52) and
simplifying then we get,

(s+1.24)(s+0.7)(s+0.6)(s+0.5)

5u S)= 53
0 (5) s° +3.2s" +3.7736s° + 2.01068s” + 0.456856s + 0.02856 (53)
Taking inverse Laplace transform of (53), we have
Puw (t)= —0.03078199368e %% 1 0,08674136347e "% 1 0,06079753448g 017289223

+0.02134717620e %1555 4 0,86189591 95 00030084t (54)

Table 1
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Time t Pup(t) Pdown(t)
0 1.000000000 0.000000000
1 0.859448218 0.140551782
2 0.751648199 0.248351801
3 0.666520996 0.333479004
4 0.596531718 0.403468282
5 0.536965476 0.463034524
6 0.485006006 0.514993994
7 0.438954457 0.561045543
8 0.397739187 0.602260813
9 0.360637804 0.639362196
10 0.327125986 0.672874014
Availability vs Time
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Fig. 2: Availability vs Time

AISO Eup (t) + Edown (t) =1

IX.  Cost function analysis

During (0,t] system’s s-expected up time is E(t

O'—.S

In (0,t] the service facility’s s-expected busy period is s (t)=t.
Therefore, function for the anticipated net gain is
Expected total revenue function is defined as G(t) =

0.02542156180e #9127t _ 01184885295 03206505
| —0.09429937510e 0547922 _ . 04142023616€ 5B |t
_8.888860480e—0.09696360084t

jP (tydt—C,t = (55)

Whereas C,is defined as revenue per unit up time while C,is defined as repair cost per unit time.

X.  Numerical computation
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in equation (54), Setting t=0,1,2,.......,10 Table 1 obtained.

Cost analysis
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Availability analysis

Table 2 presents the expected profit in equation (55), Setting C, =1,t=0,1,2,......,10, for

C,=105,0.10,0.05.

Table 2
Time t Expected profit G(t)
c,=1 C,=05 C,=01 C,=0.05
0 0 0 0 0
1 -0.073422023 0.426577976 0.826577976 0.876577976
2 -0.270161408 0.729838592 1.529838592 1.629838592
3 -0.562603261 0.937396739 2.137396739 2.287396739
4 -0.932105631 1.067894369 2.667894369 2.867894369
5 -1.366086219 1.133913781 3.133913781 3.383913781
6 -1.855651091 1.144348909 3.544348909 3.844348909
7 -2.394111592 1.105888408 3.905888408 4.255888408
8 -2.976133804 1.023866196 4.223866196 4.623866196
9 -3.597264035 0.902735965 4.502735965 4.952735965
10 -4.253662927 0.746337073 4.746337073 5.246337073
Expected profit vs Time
6
- —
=
;E: 10 2 g 12
& -3
-4
-5
Time
— =1 C2=05 —8em(I=0] = (C2=005
Fig. 3: Expected Profit vs Time
XI.  Results’ interpretation

System's availability at time t is shown in Fig. 2. Time-availability graph the system's availability
declines with time, and we can also see that it declines extremely slowly over a lengthy period of time.

Therefore, the system is accessible for use for an extended duration.

In Fig. 3 we see the interval profit expectation for a constant value of revenue per time unit. The
expected profit vs time graph shows a precipitous drop in profits at high service costs C,>1and a

sustained rise in profits at low service costs C, <0.1.
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