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Abstract 

This study explores the review of machine learning techniques for predicting the carbonation depth of concrete. 

The carbonation depth is a critical parameter in determining the durability of concrete structures, and accurate 

prediction is essential for effective maintenance and repair. In this research, various machine learning 

algorithms, including artificial neural networks, decision trees, and support vector machines, were trained on a 

dataset of concrete samples with known carbonation depths. The models were evaluated for their accuracy and 

generalization performance using cross-validation techniques. The results show that machine learning models 

can effectively predict carbonation depth with high accuracy, and the best-performing model was able to 

achieve. This approach offers a promising alternative to traditional experimental methods for predicting 

carbonation depth and can significantly improve the efficiency and cost-effectiveness of concrete maintenance 

and repair. 

Keywords: Carbonation, Carbonation depth prediction using analytical methods. 

1 Introduction 

1.1 Background 

 
Concrete is the most prominently used construction material that moulds into any desired shape. Though the 

commencement of the steel as a building material and the addition of mineral admixtures into concrete business 

has brought about many changes in construction techniques, the use of cement as a basic binder material has 

not dwindled, mainly because of its excellent water resisting property. 

 

Concrete is a composite material that consists essentially of a binding medium within which are embedded 

particles or fragments of aggregate (ASTM C125) [1]. The binding material being cement, hardened concrete 

too is impervious to water provided the concrete has less porosity. The embedded particles that are commonly 

used are coarse and fine aggregates. The voids of coarse aggregates are filled by fine aggregates. 

 

The fire remains one of the serious potential risks to most of the buildings and structures and for reducing this 

cause few methods are also done[23]. Addition of the admixtures to concrete the strength and durability of the 

concrete increases with various mix proportions are been done[24,25].Replacement of the cement in the 

concrete also changes the strength parameters[26,27]. 

 

 

Cement is a finely grounded material that by itself does not possess any binding property, but on reaction with 

water (hydration) develops strength. Portland cement is most widely used hydraulic cement, produced by 

pulverizing clinkers consisting essentially of hydraulic calcium silicates, and a small amount of one or more 

forms of calcium sulphate as an inter-ground addition (ASTM C150)[2]. The construction business in India 

consumes 400 million tons of concrete per year and will soon reach a billion-ton mark in less than 10 years 
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(Gowda et al. (2011)). . Addition of the alccofine in the concrete gain strength was been observed in the 

concrete[28]. 
 

Concrete despite its high strength and ability to resist the transport of water is susceptible to chemical attacks 

and deterioration. The ability of concrete to withstand the chemical attacks, weathering action, abrasion, or any 

sort of deterioration during its service life under a given set of conditions is called durability. The strength and 

durability of concrete depend on the properties of its ingredients, proportions of design mix, exposure 

conditions, and curing type and duration. The durability of concrete is influenced by both physical reasons and 

chemical reasons. The physical reasons for concrete deterioration can be broadly classified into surface wear 

and cracks. The surface wear is due to abrasion, erosion, and cavitation while the cracking is due to change in 

volume, structural loading, and exposure conditions (Mehta &Gerwick, 1982) [3]. Sesimic behaviour  of the 

concrete can be observed in the concrete and also if need addition of the several material can be done to increase 

its strength and durability[29]. 

 

 

The chemical causes for deterioration of concrete generally, but not necessarily involve, chemical reactions 

between the aggressive agents in the environment and the ingredients of the cement paste. One of the reactions 

that influence the durability of concrete structures predominantly is corrosion of steel reinforcement in the 

concrete, which is mainly caused either because of chloride attack or the carbonation of concrete. Also, the 

porosity and interconnected permeable pores in concrete have a strong influence on its mechanical strength and 

durability (Kumar & Bhattacharjee (2003)) [4]. Experimental analysis was performed on the concrete to observe 

its strength and durability[30]. 

 

Carbonation of concrete is the reaction of calcium (Ca2+) ions present in cement and carbonate (CO3 2-) ions 

from the dissolved carbon dioxide (CO2) to precipitate calcium carbonate (CaCO3). Concrete possesses certain 

porosity when design mix proportion standards are not met. Also, upon prolonged exposure to the atmospheric 

fluids, the surface of concrete gets deteriorated and sometimes through its interconnected capillary pores, the 

deterioration progresses. Addition of the geopolymers with the admixture it was observed the rapid strength and 

durability in the concrete[31]. 

 

Carbonation of concrete is one such phenomenon where the surface of concrete gets exposed to the atmospheric 

carbon dioxide (0.03-0.04%) for a prolonged duration and changes the physicochemical properties of the cement 

hydration products. The carbon dioxide diffuses across the surface due to the difference in concentration 

between 3 atmosphere and concrete pore structure. A thin layer of carbonated concrete is formed initially, and 

the further diffusion of carbon dioxide depends on the permeability of the concrete (Mark, 2003) . And rapidly 

stiffness was observed check its durability and strength[32]. 

 

Carbonation is a process where dissolved carbon dioxide from the atmosphere reacts with calcium ions in 

cement and form calcium carbonate. The solubility of calcium carbonate is less compared to calcium hydroxide, 

which eventually leads to the dissolution of all calcium compounds to calcium carbonate. The end products 

apart from calcite are silica gels and metal hydrates. Because carbon dioxide is abundantly found in the 

atmosphere and the cement used in construction purposes contains calcium hydroxides, the question is not 

whether the process of carbonation takes place, which is evident, but how long will this process take to initiate 

corrosion (Lagerblad, 2005) [5]. Prior to carbonation, the reinforcement in concrete is embedded in oxygenated 

alkaline solution. This deposits a thin layer of insoluble oxide film preventing oxygen from reacting with steel, 

which inhibits corrosion. 

 

Due to the lowering of pH value during carbonation, the passive oxide layer gets destroyed and concrete acts as 

an electrolyte for oxygen and moisture to penetrate. This results in corrosion of reinforcement in reinforced 

concrete. This situation within the concrete has created a problem for the usage of steel as reinforcing medium. 

There is no dearth of cases where the corrosion of reinforcement has occurred even before the carbonation has 

reached the reinforcement as detected by phenolphthalein indicator (Yongsheng et al. 2010) [6]. 
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This poses a question if the phenolphthalein indicator is an accurate measure of carbonation depth. Also, though 

well addressed, the effect of mineral admixtures with various pore sizes on carbonation resistance is seldom 

studied. 

 

1.2 Chemistry of carbonation 

 

The process of carbonation is a surface phenomenon and hence the amount of carbonation depends on the 

exposure duration and the porosity of the concrete. If the surface of the concrete is porous enough, the 

atmospheric carbon dioxide diffuses through the pores of surface concrete and dissolves in the pore solution of 

concrete to form carbonate ions due to the difference in concentration between the atmosphere and concrete 

pore structure. 

 

The gaseous carbon dioxide cannot react with the calcium phases of the cement. Based on the pH of the solution 

in which the carbon dioxide is dissolved, the carbonate ions are formed. When in contact with water at pH 7, 

bicarbonate ions are formed, but as the pH in the cement pore solution is high, the bicarbonates further 

disassociate to form carbonate ions. 

 
Carbonation occurs when 𝐶𝑂2 , as natural gas in the air, penetrates the surface of concrete through the dry 

portions of interconnected pores in concrete microstructures, and reacts with 𝐶𝑎(𝑂𝐻)2 in the moist portions of 

pores to form 𝐶𝑎𝐶𝑂3 and water (𝐻2𝑂). 

 

                                  𝐶𝑂2+ 𝐶𝑎(𝑂𝐻)2  → 𝐶𝑎𝐶𝑂3 +𝐻2𝑂 

 

When 𝐶𝑎(𝑂𝐻)2 from the paste is consumed, the hydration of calcium-silicate-hydrate (C-S-H) releases calcium 

oxide (CaO), which reacts with diffused s. The remaining 𝐶𝑂2 continues to react with C-S-H to form additional 

𝐶𝑎𝐶𝑂3 . The carbonation process requires water because 𝐶𝑂2 dissolves in water to form carbonic acid 𝐻2𝐶𝑂3 

 

The water seeps in through small, interconnected pores, while 𝐶𝑂2 settles in large pores. The interconnected 

pores merge into large pores to supply the water required to form carbonic acid:  

 

                                              𝐶𝑂2 + 𝐻2𝑂→𝐻2𝐶𝑂3 

 

A chemical reaction occurs with H2CO3, which is formed in the pores of the concrete, producing a desirable 

product of cement hydration Ca (OH)2, which strengthens the concrete matrix. This reaction also produces 
CaCO3 and water: 

 

                                         𝐻2𝐶𝑂3+ 𝐶𝑎(𝑂𝐻)2+ → 𝐶𝑎𝐶𝑂3+ 2𝐻2𝑂 

 

This process involves consumption of Ca2+ ions, which leads to the dissolution of predominantly available 

calcium hydroxide (Ca (OH2)) forming new Ca2+ ions. Because the solubility coefficient of dissolution of Ca 

(OH)2 is 9.95 × 10-4 mol/L and solubility coefficient of formation of CaCO3 is 0.99 × 10-8 mol/L, this process 

continues till all the calcium ions are consumed to form CaCO3 (Lager lad, 2005). 

 

2. Overview of Machine learning methods proposed 

 

2.1 Woubishet  ZewduTaffese, EskoSistonen and Jari Puttonen 2015 (DECISION TREES) 

 

Three concrete carbonation depth prediction models based on decision tree method are presented. To 
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develop the models, three different decision trees were adopted. They are regression tree, bagged 

ensemble regression tree and reduced bagged ensemble regression tree. The model's prediction capacity 

was examined based on mean square errors and mean absolute error. 

 

2.1.1 Regression tree 

 

The structure of the regression tree is the same as that of the tree presented in Figure 1. The only 

difference is the leaves which contain real numbers instead of class labels. The regression tree is trained 

over the training dataset. The performance of the developed tree is measured by mean square error 

(MSE) and mean absolute error (MAE) on both training and testing dataset. MSE, the mean square error 

between predicted output (𝑌̂ 𝑖) and target (𝑌𝑖), is the most common measure of accuracy, Eq. . The 

MAE of Eq. is the more intuitive measure and is less sensitive to outliers. 

 

 

   

 

 

 

 

 

 

where 𝑌̂ 𝑖 is the predicted output value, 𝑌𝑖 is the measured target value, and 𝑁 is the number of 

observations. The resulting MSE values for training and test dataset were 0.0416 and 4.3108, 

respectively. Significant difference in MAE of training and testing dataset is also observed. All these 

show that the developed regression tree generalized the test data poorly because it overfitted the training 

data as seen in the regression plot. 
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Regression plot of predicted vs measured carbonation depth on training dataset for 

           regression tree (left) and bagged ensemble regression tree (right). 

 

 

2.1.2 Bagged ensemble regression tree 

 

Bagging is one of the most effective methods that can be used to improve the 

predictive performance of a tree model by reducing the variance associated with 

prediction. This technique draws multiple bootstrap samples from the training dataset and generates 

multiple predictor trees, and then, the results are combined by averaging to obtain the overall 

prediction [21, 22]. 

 

After determining good predictors and an ensemble size from the out-of-bag 

error, a new bagged ensemble regression tree was constructed to enhance its 

performance further. In this case, the optimal number of leaf and trees was chosen as 

5 and 150, respectively. Two parameters, BFS and FA, were reduced out of the total 

15 features since they are unimportant to predict the carbonation depth in this dataset. 

The MSE of training and testing dataset of this model was 0.9536 and 2.2990. Figure 

illustrate the predicted and the measured carbonation depth with the predicted error. 
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                 Out-of-bag mean square error vs number of grown trees (left). 3b: Relative importance 

                  of the input variables of the bagged ensemble regression tree (right). 

 

2.1.3 Reduced bagged ensemble regression tree 

 

 

In order to minimize the prediction error of the bagged ensemble, we compute 

predictions for trees with different leaf sizes on its out-of-bag observations, Figure . 

It can be observed that the out-of-bag error decreases well with the number of grown trees for leaf size 

of five. The relative importance of the input variables of the bagged ensemble regression tree is 

illustrated in Figure . It can be clearly seen that the carbonation period and w/b are the foremost 

influential predictors for this dataset. 

 

Next to these variables, amount and types of cement, plasticizer and the distribution of aggregate play 

considerable role in predicting the carbonation depth for this dataset. This is a useful finding because 

plasticizer and aggregate distribution were overlooked in several existing analytical models. 

 

After determining good predictors and an ensemble size from the out-of-bag 

error, a new bagged ensemble regression tree was constructed to enhance its 

performance further. In this case, the optimal number of leaf and trees was chosen as 5 and 150, 

respectively. Two parameters, BFS and FA, were reduced out of the total 15 features since they are 

unimportant to predict the carbonation depth in this dataset. 

The MSE of training and testing dataset of this model was 0.9536 and 2.2990. Figure illustrate the 

predicted and the measured carbonation depth with the predicted error. 
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          Measured and predicted carbonation depth using bagged ensemble regression tree 

                                                      with the prediction error 

 

 

 

 

         

 

 

 

                     Performance comparison of carbonation depth prediction models. 

 

 

          

      2.2   Daming Luo, DitaoNiu, and Zhenping Dong, 2014 (Neutral network based algorithum)  

1. Since the particle swarm algorithm is an optimization process under the guidance of individual learning 

and social information-sharing principles, and the BP algorithm completes its optimization process in 

accordance with the specified anti-gradient descent trajectory, the routes of the two processes do not 

coincide.  
2. The optimizing of PSO algorithm on BP neural network can greatly shorten the training time and 

improve the prediction accuracy. The factors affecting concrete carbonation depth are complex and 

with interactions among them. This article only focus on the nonlinear relationship among the cement 

content, water–cement ratio, relative humidity, and the length of the partial carbonation zone with 9 < 

pH < 11.5.  
3. Further research work can be performed to get a more comprehensive analysis of various factors and 

improve prediction accuracy. The accumulation of field-measured value and laboratory results is very 

important to the artificial neural networks for the establishing of concrete carbonation depth prediction 

model.  
4. Due to the fact that the sample data is limited, the type of concrete, the strength of concrete, the 

thickness of concrete cover, and other factors are not considered in this article. It is necessary for 

additional work to be undertaken for a further in-depth study. 
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        2.3 Hyungmin Lee a, Han-Seung Lee , Prannoy Suraneni  
 

1. Carbonation of concrete, which can accelerate corrosion, is one of the major deterioration 

mechanisms in reinforced concrete structures. Experimental data has been used to develop 

carbonation prediction models, however, the service life predicted from various models can 

differ significantly. A potential solution is the application of an artificial neural network 

algorithm.  

2. Machine learning can be divided into three categories: supervised learning, unsupervised 

learning, and reinforcement learning.  

3. Deep learning is used, which is a supervised learning technique that uses various training 

data to inform the results. In general, supervised learning is used for regression analysis and 

classification, and unsupervised learning is used to find patterns in data. 

4. The input layer passes the given input data to nodes in the next hidden layer. Each node 

multiplies the value of the input data by the weight of the corresponding node through an 

activation function and transmits the result to the next layer. 

 

2.3.1 Machine learning 

 

A short introduction to machine learning and its various approaches is presented in this sub-

section and the next; readers who are familiar with such concepts may skip these sub-sections. 

Machine learning can be divided into three categories: supervised learning, unsupervised 

learning, and reinforcement learning [7,8]. In this study, deep learning is used, which is a 

supervised learning technique that uses various training data to inform the results. In general, 

supervised learning is used for regression analysis and classification, and unsupervised learning 

is used to find patterns in data. Reinforcement learning is used to train robots that improve their 

behavior according to their relationships with the environment. Typical algorithms that have been 

studied include K-Nearest Neighbours [9], Decision Tree, Support Vector Machine (SVM) [10], 
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Naive Bayes and Neural Networks [11–13]. In general, the performance of machine learning 

increases as the number of input variables increases. Deep learning is defined as a machine 

learning algorithm that generalizes a high-level predictive model through a combination of 

several nonlinear analysis techniques. It utilizes deep neural networks (DNNs) [14], which are 

algorithms that mimic the way the human brain perceives patterns. DNNs consist of input layer, 

hidden layer, and output layer. The input layer passes the given input data to nodes in the next 

hidden layer. Each node multiplies the value of the input data by the weight of the corresponding 

node through an activation function and transmits the result to the next layer. After analyzing the 

errors on the test and validation data at the nodes in the output layer, reverse learning is performed 

to minimize them. This single process is defined as one Epoch. The main technical difference 

between deep learning and machine learning is the self-identification of variables and the 

adjustment of weights. Fig.  shows a schematic diagram of the deep neural network. 

 

 

             2.3.2 Gradient descent method:  

 

Gradient descent method is the most general method to minimize the error function of the input 

and output values. A gradient that represents the differential value of the error function with 

respect to the weight vector x is calculated, and the algorithm proceeds to converge to the 

minimum value. The parameter E is the cost function for the learning weight vector. If the input 

value of the output layer j is xi through the neuron of the hidden layer  the predicted output 

value yj is expressed by Eqs, where r represents the activation function. 

 

𝐸 =
1

2
× ∑  

𝑚

𝑗=1

(𝑦𝑗 − 𝑦̂𝑗)
2

𝑦̂𝑗 = 𝜎 × (∑  

𝑖

𝑤𝑖𝑗 × 𝑥𝑖)

 

 

𝑤(𝑡 + 1) = 𝑤(𝑡) + Δ𝑤(𝑡) 

 

The expression of the gradient descent method is shown in Eq. The aim of the gradient descent 

method is to obtain Δ𝑤(𝑡) in Eq. (6), which is an algorithm that is corrected to Δ𝑤(𝑡) at any 

starting point on the plane and is directed to the minimum point. The weighting vector Δ𝑤(𝑡) 

requires components of direction and magnitude. The direction is expressed by  
∂𝐸

∂𝑤
, since it is a 

gradient of the error function. The magnitude refers to the distance from the current step (t) to 

the next step (t+1). The amount that the weights are updated during training is referred to as the 

step size or the learning rate 𝛼. The learning rate is a configurable parameter used in the training 

of neural networks that has a small positive value, often in the range between 0.0 and 1.0. If the 

learning rate is low, a number of iterations must be repeated until the algorithm converges, and 

if the local minimum occurs within a certain number of repetitions, then learning may be 

stopped by recognizing the local minimum as a global minimum. By contrast, if the learning 

rate is high, it is possible to quickly approach the minimum value, but there is a possibility that 

the global minimum value cannot be found by diverging around the minimum value. Therefore, 

effective learning rate adjustment is needed. In this study, the optimal learning rate is derived to 

minimize the error between the input and output values. Eq.  can be expressed as a function of 
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Δ𝑤(𝑡) using the learning rate. Eq. (4) can be substituted into Eq and then Eq can be expressed 

using the chain rule. 

 

Δ𝑤(𝑡) = −𝛼
∂𝐸

∂𝑤

Δ𝑤𝑖𝑗(𝑡) = −𝛼
∂ ∂2

1 × ∑  𝑚
𝑗=1 (𝑦𝑗 − 𝑦̂𝑗)

2

∂𝑤𝑖𝑗

= 𝛼 × ∑  

𝑚

𝑗=1

(𝑦𝑗 − 𝑦̂𝑗)
∂𝑦̂𝑗

∂𝑤𝑖𝑗

𝑤(𝑡 + 1) = 𝑤(𝑡) + 𝛼 × ∑  

𝑚

𝑗=1

(𝑦𝑗 − 𝑦̂𝑗) × 𝜎′ (∑  

𝑖

𝑤𝑖𝑗 × 𝑥𝑖) × 𝑥𝑖

 

 

 2.3.3 AJJ model : 

 In order to compare the accelerated carbonation experiment results with the existing                    carbonation 

prediction model, the results from the Architectural Institute Japanese model [15], were obtained. While this 

model is commonly used for buildings, work has shown that it can also be used for acceleration carbonation 

experiments [16,17]. Table 1 shows the parameters for the AIJ model 

 

Eqs.  and  show the AIJ carbonation prediction model. 

 

𝐶 = 𝐴√𝑡                         
𝐴 = 𝑘 × 𝛼1 × 𝛼2 × 𝛼3 × 𝛽1 × 𝛽2 × 𝛽3

 

 

where C is carbonation depth (mm), t is time (year), 𝛼1 is the coefficient for concrete type, 𝛼2 is the 

coefficient for cement type,  𝛼3is the w/c coefficient, 𝛽1 is temperature, 𝛽2 is humidity, 𝛽3 is CO2 

concentration, and K is the coefficient of the Kishitani model. 

 

 2.3.4 FEM analysis 

 FEM analysis was carried out to predict the carbonation through the LECCA2 program, a    durability prediction 

program from the Japan Concrete Institute. The concrete input parameters for FEM analysis are shown in Table. 

FEM analysis was performed on the input variables using Eqs.  [18,19]. The determination of the carbonation 

depth in the FEM analysis was based on the assumption of carbonation when the concentration of Ca(OH)2 was 

reduced to 50% of the initial value [20]. 

 

𝐶𝑆0 = 𝑝 × 𝑆
𝑃 = 𝐷CO2

× 𝑆 

 

where Cs0 is concentration of CO2 on concrete surface (%), p is CO2 pressure on concrete surface (Pa),Dco2 

is diffusion coefficient of CO2 (m2/s). 

 

Input variables for applying the FEM analysis. 
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P is air permeability (cm3 (STP) X cm/(cm2 X sec X cmHg)), S is solubility coefficient of CO2 (mol/m3 X 

Pa). Obviously, some variation can be expected in these input variables as a function of w/c, which can 

somewhat affect the results, and such variation can be simulated in the FEM analysis, if desired. As an 

example, different Ca(OH)2 concentration values can be used, depending on the w/c, though these are not 

expected to significantly change for w/c 0.55 and 0.65. 

 

Conclusion 

1. The bagged ensemble regression tree identified important variables that influenced the carbonation 

rate which was not considered in the existing analytical models. The models have potential to be part 

of a service life management system. 

2. The model developed using the former method has superior performance with relatively better 

generalization capability. 

3. Models developed using bagged ensemble with and without features extraction predict the 

carbonation depth with reasonably low error. 

4. Carbonation depth values of FEM and AJJ model are similar to the expected experimental program. 

5. If the addition of the fly ash is done then the carbonation depth of the concrete increases. 

6. Errors  in FEM analysis and AJJ model are significantly higher at  𝐶𝑂2 concentration 20% and w/c 

0.65 not in case of machine learning. 
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