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ABSTRACT 

People with disabilities—especially those with hearing or speech impairments—often face 

significant challenges when it comes to communication, participating in social settings, or navigating 

daily life independently. These difficulties are further compounded by repetitive behaviors or 

societal misconceptions, making it harder for them to interact freely in the outside world. However, 

isolating or limiting their freedom should never be the solution. Instead, we need smart, supportive 

systems that empower and protect them while enabling more inclusive communication. 

Sign language recognition is one such promising field. It focuses on interpreting visual language that 

relies on hand gestures, body movements, and facial expressions to convey meaning. With 

advancements in computer vision and machine learning, modern systems can now accurately analyze 

and translate these gestures into text or spoken words. This technology holds tremendous potential—

not only for enhancing communication for individuals with hearing and speech impairments—but 

also for bridging language gaps between people of different linguistic backgrounds. By enabling 

real-time gesture recognition and translation, such systems can lead us toward a more connected, 

accessible, and inclusive world. 

Keywords: Sign Language Recognition, Machine Learning, Deaf Communication, Gesture 
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I. Introduction 

 Communication is a centenarian part of mortal life, enabling people to express feelings, share ideas, 

and make connections. While spoken and written language are extensively used, subscribe language 

is the primary means of communication for millions of deaf and hard- of- hail individuality. still, a 

lack of wide understanding of sign language frequently creates communication walls between signers 

and non-signers. Recent advancements in technology — including computer vision, machine 

literacy, and artificial intelligence — offer promising results to this problem. subscribe language 

recognition systems can interpret hand gestures from videotape input and convert them into textbook 

or speech in real time, perfecting communication in everyday settings similar as seminaries, 

hospitals, and public services. This design focuses on developing a real- time sign language 

recognition system using Python, Media Pipe, Open CV, and machine literacy models. The system 

captures videotape from a webcam, processes each frame, detects hand milestones using MediaPipe, 

and excerpts features for bracket. Convolution Neural Networks( CNNs) are used for feting static 

gestures, while intermittent Neural Networks( RNNs) or Long Short- Term Memory( LSTM) models 

handle dynamic signs. The honored affair is presented as textbook or speech through a stoner-

friendly interface erected with PyQt5. Designed to be low- cost, responsive, and accessible, this 

system aims to make communication more inclusive and help bridge the gap between hail and non-

hearing individuality. 

 

II. Literature 

 Several researchers have contributed significantly to the development of sign language recognition 

systems through various approaches and methodologies. One study proposed the use of an 

eigenvalue-weighted Euclidean distance-based classification method to recognize Indian sign 
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language gestures, focusing on shape and orientation features for improved accuracy [1]. Another 

approach involved using Histograms of Oriented Gradients (HOG) to extract features, showing 

effectiveness in capturing edge and gradient structures for gesture recognition [2]. 

Neural networks have been widely adopted for this task. For instance, artificial neural networks 

(ANN) were applied to classify hand signs based on their spatial patterns [4], while others combined 

ANN with Support Vector Machines (SVM) to improve classification reliability [12][13]. Recurrent 

neural networks (RNNs) and Long Short-Term Memory networks (LSTMs) have also been utilized 

to recognize dynamic sign sequences from video input, allowing for better handling of temporal 

information [15][17]. 

In the realm of hardware-based solutions, several studies explored wearable technologies, such as 

smart gloves and EMG (electromyography) sensors, to capture hand and finger movements. These 

methods offered high precision in tracking complex gestures using sensor data [6][10][11][19]. One 

recent approach combined polymer-based pressure sensors with wearable devices for American Sign 

Language recognition, highlighting the role of emerging materials in gesture detection [11]. 

Efforts were also made to develop systems tailored to specific sign languages, including Indian and 

Arabic sign languages, ensuring cultural and linguistic relevance [5][20]. Some researchers focused 

on deep learning-based translation systems that map sign gestures directly to gloss (meaningful 

words or phrases), enabling more comprehensive communication support [18]. Additionally, 

computer vision techniques like skin segmentation, moment-based feature extraction, and SVM 

classifiers have been employed to enhance hand segmentation and gesture recognition in real-time 

applications [14][16]. 

Open-source implementations and experimental systems, such as those hosted on GitHub, 

demonstrate the growing interest and accessibility of gesture recognition technologies for 

educational and assistive purposes [3]. Furthermore, advances in human-computer interaction have 

led to gesture-based systems that can interface naturally with digital environments, contributing to 

broader applications beyond accessibility [8][9]. 

 

III. Methodology 

The methodology for sign language detection starts by identifying whether the system will recognize 

static or dynamic gestures and choosing the specific sign language to work with. Data is gathered 

from existing sources or recorded manually, then annotated. Preprocessing steps like resizing, 

normalization, augmentation, and landmark extraction (e.g., with MediaPipe) prepare the data. 

Machine learning models are then used—CNNs for static signs and models like LSTMs or 

Transformers for dynamic ones. The system is trained and evaluated using metrics such as accuracy 

and F1-score. For real-time functionality, it's connected to live video via OpenCV and may include a 

user interface built with PyQt5. Deployment uses optimized model formats like TensorFlow Lite and 

integrates with a backend via FastAPI or Django. Future improvements aim to expand the sign 

vocabulary, support sentence-level translation, and enhance robustness across different individuality. 

 

 

 

 

 

 

 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 54, Issue 4, No.3, April : 2025 
 

UGC CARE Group-1                                                                                                                         81 

 
      Fig 3. Flow Chart of Sign Language Recognition 

The image illustrates a comprehensive flowchart for a Sign Language Detection Methodology, 

detailing each stage in the gesture recognition process. It begins with the Camera, which captures 

real-time video input of hand gestures. This input is passed to the Hand Processing module, where 

the system isolates the hand region from the rest of the frame. Next, Preprocessing is applied to 

enhance the input data, possibly involving normalization or filtering to ensure consistent feature 

quality. 

The refined input then enters the Template Matching Algorithm, which compares the gesture with 

stored templates of known signs to find the best match. The result is evaluated using a Sign 

Confidence stage that quantifies how reliably the detected gesture matches a known sign. If the 

confidence is low, the system triggers a Retry Detection mechanism, especially helpful in Letter-

Sign Recognition scenarios where precision is crucial. 

Upon confident recognition, the gesture is passed to a Google Translation module, which can 

translate the detected word into multiple languages. The final output is a translated version of the 

recognized sign, making the system accessible and multilingual—ideal for real-world applications in 

communication and education. 

 

IV.RESULT AND DISCUSSION 

The developed sign language detection system using Media Pipe and a Random Forest classifier 

successfully achieved real-time recognition of static ASL gestures with an accuracy of 93.2%. Media 

Pipe's efficient hand landmark detection enabled accurate feature extraction, and the Random Forest 

model provided fast, resource-efficient classification at 25–30 FPS, making the system suitable for 

low-power devices like Raspberry Pi. 

User testing showed the system to be intuitive and interactive, offering real-time feedback that 

supported learning and self-correction. However, limitations include the inability to recognize 

dynamic gestures (e.g., "J" and "Z"), and reduced accuracy under poor lighting or obstructed hand 

views. Confusion also occurred with similar signs such as "M", "N", and "T". 



 

Industrial Engineering Journal 

ISSN: 0970-2555   

Volume : 54, Issue 4, No.3, April : 2025 
 

UGC CARE Group-1                                                                                                                         82 

Future improvements may involve using temporal models (e.g., LSTM, 3D CNNs), adaptive 

preprocessing, and expanding the dataset for better generalization. Overall, the system proves to be a 

lightweight and inclusive solution for enhancing communication through real-time ASL recognition. 

 
Screenshot1 Result of Project 

The image depicts a real-time ASL (American Sign Language) detection system using MediaPipe 

and template matching. The system's GUI, titled “ASL Template Matching With Word Formation”, 

displays a live camera feed capturing hand gestures. It detects the letter "E" with a confidence of 

0.99, adding it to the word formation of "EELEVEE". 

The interface features controls like SPACE to complete the word, with options to delete a letter, 

complete the word, or speak it using text-to-speech. There's also a Translation section for converting 

words into different languages, with speech output available. 

A Templates Status panel shows loaded letter templates (e.g., E, H, L, O, V), and users can collect 

new templates for each letter. The platform is modular, allowing extensibility and retraining, making 

it an interactive tool for ASL communication, word formation, language translation, and audio 

output. 

 

V.Conclusion 

The advanced sign language discovery system effectively recognizes static ASL gestures in real- 

time using Media Pipe for hand  corner discovery and a Random Forest classifier for gesture bracket. 

Achieving over 93  delicacy, the system stands out for its  effectiveness and  felicity for low- spec  

tackle, enabling implicit deployment on  bias like smartphones and jeer Pi.   Media Pipe's precise  

corner tracking  excluded the need for complex image processing, and the system  handed an 

intuitive  stoner experience during testing, proving useful for ASL learners and  preceptors. still, it  

presently supports only  stationary signs, with reduced  delicacy in poor lighting, occlusion, or non-

ideal angles. Dynamic gesture recognition remains a  unborn  improvement  thing.  
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