

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 2, April : 2024

UGC CARE Group-1, 51

A COMPARATIVE STUDY OF MEMCACHE, TAO, AND TAOBENCH END-TO-END

BENCHMARK FOR SOCIAL NETWORK LIKE META

Rajiv Kumar Ranjan, Sankalp Sonu, Ankita Sinha, Assistant Professor, Department of Computer

Science and Engineering, RashtrakaviRamdhari Singh Dinkar College of EngineeringBegusarai,

State – Bihar (India), Pin-851134

Abstract.

 Modern Web services rely extensively upon a tier of in-memory caches to reduce request latencies

and alleviate load on backend servers. Memcached is a well known, simple, in-memory caching

solution. Leveraging Memcached significantly enhanced the memory efficiency of caching the social

graph, enabling scalable and cost-effective solutions. Nevertheless, the implementation complexity

for product engineers in managing data storage and retrieval increased substantially. My paper gives

a comparative study Meta utilizes Memcached as a foundational component to create and expand a

distributed key-value store, facilitating the support of the world's largest social network. The

drawbacks associated with its use and the introduction about the new technology TAO (“The

Associations and Objects”). TAO, a geographically dispersed data storage system, offers Meta

efficient and timely access to the social graph through a predefined set of queries, catering to its

high-demand workload. Implemented at Meta, it supplants Memcached for numerous data types

aligned with its framework. The ongoing rise of large-scale social network applications has brought

about a level of data and query volume that pushes the boundaries of existing data storage

capabilities. Than TAOBench, was introduced to emulate the social graph workload found at Meta.

Key words: Memcache, TAO, TAOBench, Social Network

1. Introduction

It is expensive always to fetch data from the source database due to resource constraints. The

infrastructure challenges posed by widely-used and captivating social networking platforms are

substantial. With hundreds of millions of daily users, these networks place demanding

computational, network, and I/O requirements that traditional web architectures find challenging to

meet. The infrastructure of a social network must enable (1) nearly instantaneous communication, (2)

dynamic aggregation of content from various sources; (3) efficient access and updating of highly

popular shared content, and (4) scalability to handle millions of user requests per second Amazon

SimpleDB (2023), Meta – Company Info (2023), Phillipe Ajoux et al. (2015), Audrey Cheng et

al.(2022).

Introducing a "caching layer" typically makes data access times faster and improves the ability for

the underlying database to scale to accommodate consistently higher loads or spikes in data requests

P. Saab. Scaling memcached at Meta(2008), Gregory Chockler et.al (2010). Memcached serves

as a straightforward, exceptionally scalable cache based on keys, storing data and objects in available

dedicated or surplus RAM for rapid access by applications. It is an open-source, distributed memory

caching system designed to tackle today’s web-scale performance and scalability challenges. Many

of the largest and most heavily trafficked web properties on the Internet like Meta, Fotolog,

YouTube, Mixi.jp, Yahoo, and Wikipedia deploy Memcached and MySQL to satisfy the demands of

millions of users and billions of page views every month Amazon SimpleDB (2023), Meta –

Company Info (2023), Memcached (2023), P. Saab. Scaling memcached at Meta(2008).

With over a billion active users engaging in recording relationships, sharing interests, and uploading

diverse content, Meta initially had its web servers directly interact with MySQL for reading or

writing the social graph. Memcache was extensively employed as a lookaside cache. In efforts to

enhance the open-source Memcached, Meta transformed it into a fundamental element, constructing

a distributed key-value store for the world's largest social network. Meta introduced TAO Rajesh

Nishtala et al. (2013), Meta – Company Info (2023) a straightforward data model and API

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 2, April : 2024

UGC CARE Group-1, 52

uniquely designed to serve the social graph. TAO still relies on MySQL for persistent storage but

manages access to the database through its specialized graph-aware cache. Deployed as a solitary

geographically distributed entity at Meta, TAO boasts a streamlined API and prioritizes availability

and machine-level efficiency over strict consistency. Its remarkable feature lies in its scalability,

capable of supporting a billion reads per second on a dynamic dataset spanning many petabytes.

TAOBench provide open-source workload configurations along with a benchmark that utilizes these

request characteristics to faithfully replicate production workloads and simulate emerging application

behaviors. To ensure the reliability of TAOBench's workloads, it is validated against their production

counterparts.

In this paper I have explained the working of Memcached and the problem associated with it, the

new model TAO and TAOBench there after gives the comparison between them.

1.1. Using MySQL with Memcached

Throughout history, data caches have played a vital role in database services. Websites facing

exceptionally high volumes of web requests opt for distributed memory object caching services like

Memcached to ease the burden on their databases and enhance response times.

The advantages of utilizing Memcached encompass various aspects.

• Due to the storage of all information in RAM, the access speed surpasses that of

fetching data from disk every time.

• The absence of data type restrictions in the "value" part of the key-value pair

allows for caching a diverse range of data, including complex structures, documents, images, or a

combination of such elements.

• In the scenario of using the in-memory cache for transient information or as a read-only

cache for data also stored in a database, the failure of a Memcached server is not critical. For

persistent data, an alternative lookup method employing database queries can be employed, reloading

the data into RAM on a different server.

In this architecture, each client is set up to communicate with all servers. When a client initiates a

request to store data, the key used for data referencing undergoes hashing, and the resulting hash is

employed to designate one of the Memcached servers. This server selection occurs within the client

before any interaction with the server, ensuring a streamlined process.

Upon subsequent requests for the same key, the identical algorithm is employed, resulting in the

generation of the same hash and selection of the same Memcached server as the data source. This

method ensures that cached data is evenly distributed across all Memcached servers, allowing access

to cached information from any client. Consequently, a distributed, memory-based cache is

established, facilitating the rapid retrieval of information, especially complex data and structures,

compared to directly querying the database.

Figure 1 Memcached Architecture Overview

The RAM cache consistently draws data from the underlying store, which in this case is a MySQL

database. In the event of a Memcached server failure, data retrieval can be seamlessly executed from

the MySQL database to ensure uninterrupted service.

Databas

e

Client

Client

Client

Memcach

ed

Memcach

ed

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 2, April : 2024

UGC CARE Group-1, 53

1.2. Memcache

Memcache functions as an in-memory data store for key-value pairs. Accessed through App Engine

APIs, it serves as a shared service that is language-agnostic. Implementation varies depending on the

programming language and the specific Memcache APIs utilized Rajesh Nishtala et al. (2013). This

representation can be visualized diagrammatically as follows:

For example it can be implemented in JAVA by using the

followings ways:-

 JCache APIs

 GAE low level Memcache APIs

 Objectify for Datastore

Figure 2 Java Implementation of API

1.3. General Memcache Usage Pattern

Coordinate data read with Datastore Check if Memcache value exists, if it does display/ uses cache

value directly, otherwise Fetch the value from Datastore and write the value to Memcache

Coordinate data write with Datastore Invalidate the Memcache value for this specific entry or entire

Memcache Write the value to Datastore Optionally, Update the Memcache entry.

2. Actual Scenario in the Social Graph like Meta

Meta imposes an exceptionally demanding workload on its data backend. With over a billion active

users accessing Meta via desktop browsers or mobile devices, each user encounter hundreds of

pieces of information sourced from the social graph. This includes News Feed stories, associated

comments, likes, and shares, as well as photos and check-ins from their connections. Due to the

extensive customization of user output and the frequent updates to a user's News Feed, pre-

generating views for users becomes unfeasible. Consequently, the dataset must be dynamically

retrieved and rendered within a few hundred milliseconds to meet user expectations.

The complexity of this challenge is exacerbated by the fact that the dataset is not readily

partitionable, and certain items, like photos of celebrities, often experience substantial spikes in

request rates. When multiplied by the millions of times per second that this highly personalized

dataset must be delivered to users, it creates a continuously evolving workload dominated by reads,

posing significant efficiency challenges Nathan Bronson et al. (2013), Rajesh Nishtala et al.

(2013).

3. Drawback of Using Memcache

The inefficiency of performing operations on lists in Memcached, such as updating the entire list,

coupled with the complexity of clients managing cache and the challenge of providing read-after-

write consistency, posed significant obstacles to Meta's "move fast" development philosophy. This

slowed down the change-debug-release cycle, prompting the development of TAO.

Given Meta's requirement to aggregate and filter hundreds or thousands of items from the social

graph on a single page, the necessity for an efficient, highly available, and scalable graph data store

becomes evident. This is crucial for serving the dynamic, read-heavy workload while ensuring that

each user receives personalized content that undergoes privacy checks.

Key Value

“User001” : “John Deo”

“User002” : “Larry Page”

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 2, April : 2024

UGC CARE Group-1, 54

TAO, despite being a large-scale implementation of the graph approach, continues to rely on MySQL

for persistent disk storage. However, it prioritizes ensuring eventual consistency of data across

multiple data centers; thereby ensuring users receive up-to-date information. The TAO service

operates across a network of server clusters, strategically distributed geographically and structured in

a logical tree formation. Distinct clusters are designated for the persistent storage of objects and

associations, as well as for caching data in both RAM and Flash memory. This division enables

independent scaling of different cluster types and efficient utilization of server hardware resources.

4. TAO data model and API

 The TAO data model is elucidated through a straightforward scenario Nathan Bronson et al.

(2013). In this scenario, Alice performs a check-in at The Red Fort and tags Bob, while Cathy adds a

comment to the check-in and David expresses his appreciation by liking it.

Figure 3 A running example of user’s interaction in Social Media

In this straightforward illustration, we observe a sub graph of objects and associations formed within

TAO following the culmination of all events. Each data entity, such as a user, check-in, or comment,

is depicted as a typed object containing a set of named fields. Relationships between these objects,

like "liked by" or "friend of," are represented by typed edges (associations) organized into

association lists based on their origin. Multiple associations can link the same pair of objects,

provided the types of these associations remain distinct. Collectively, these objects and associations

constitute a labeled directed multigraph.

For each association type, TAO

allows for specification of an

inverse type. When an edge of the

direct type is established or

removed between objects with

unique IDs id1 and id2, TAO

automatically generates or deletes

a corresponding edge of the

inverse type in the opposite

direction (from id2 to id1). This

feature aims to assist application

developers in preserving

referential integrity for

relationships inherently reciprocal,

such as friendships, or where

efficient graph traversal in both

directions is crucial for

performance, as seen in scenarios

like "likes" and "liked by."

Associations are managed as individual edges, created and deleted independently. When an

association type has a defined inverse type, an inverse edge is automatically generated. To leverage

workload locality at creation time, the API mandates that each association includes a dedicated time

attribute, typically used to denote its creation time. TAO utilizes this association time value to

enhance cache performance and boost hit rates by optimizing the working set.

Alice was at The Red Fort With Bob

Cathy Wish we were there! David likes this

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 2, April : 2024

UGC CARE Group-1, 55

TAO partitions the dataset into hundreds of thousands of shards, with each shard persistently storing

all objects and associations in the same MySQL database. These are cached on identical server sets

within each caching cluster. Optionally, individual objects and associations can be allocated to

designated shards upon creation. Managing data collocation has proven crucial for optimizing

performance by minimizing communication overhead and preventing congestion in high-traffic

areas.

T AOBench stands as the inaugural

open-source benchmark crafting

end-to-end transactional request

patterns drawn from a vast social

network, bridging the gap of

representative workloads in a

critical application domain.

Through our benchmark, we render

Meta's social graph workload

accessible to the database

community, offering insight into

the genuine challenges entailed in

accommodating such workloads. TAOBench can faithfully replicate the existing TAO workload

while also offering enough flexibility to assess novel scenarios effectively.

Table 1Parametrize TAO’s workload with this set of features (Source:- [16])

Audrey Cheng et al. (2022)

categorize these parameters into two

sets: those applicable to both OLTP and

graph databases, and those specific to

TAO. A concise selection of

parameters proves ample to

thoroughly define the workload of the

social network.

Utilizing the workload parameters

outlined above, TAOBench utilizes a

workload configuration file containing discrete or piecewise linear probability distributions.

Additionally, TAOBench incorporates various benchmark parameters (such as duration, target load,

and warm-up period) specific to each execution. The benchmark driver, capable of being distributed

across multiple machines, utilizes these parameters to generate requests. Each driver spawns multiple

client threads, which autonomously execute requests through the data store adapter layer. Each

thread monitors throughput and latency, with these metrics being aggregated and reported after each

run. Presently, the benchmark generates steady-state workloads, with future iterations aiming to

capture temporal variations and periodic trends.

5. Conclusions

TAO, a user-friendly and robust distributed data store created at Meta, has emerged as a cornerstone

of the company's infrastructure. Its graph capabilities effectively support the intricate and evolving

social demands placed on Meta's systems. TAOBench introduces a novel benchmarking tool that

generates workloads mirroring those encountered in real-world social networks. TAOBench also

uncovered bugs and highlighted optimization prospects for YugabyteDB. TAOBench's focus centers

on Meta's social graph, making these workloads accessible to the broader research community.

Notably, TAOBench model can be effortlessly adapted to accommodate other systems. TAOBench

aspires to serve as a comprehensive platform for social network evaluation, and invite other social

networks to contribute their workloads to this open-source framework.

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 2, April : 2024

UGC CARE Group-1, 56

References

[1] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, et al.

“TAO: Meta’s Distributed Data Store for the Social Graph”. In: Proceedings of the 2013 USENIX

Annual Technical Conference. San Jose, California USA, 2013, pp. 49–60

[2] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, et al.

“Scaling Memcache at Meta”. In: Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation (NSDI). Lombard, IL, 2013, pp. 385–398

[3] 2023. Amazon SimpleDB. http://aws.amazon.com/simpledb/.

[4] 2023. Meta – Company Info. http://newsroom.fb.com.

[5] 2023. Memcached - Project Homepage. http://memcached.org/ .

[6] 2008. P. Saab. Scaling memcached at Meta. http://www.Meta.com/note.php? note_id=

39391378919.

[7] 2022. TAOBench. https://github.com/audreyccheng/taobench

[8] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, Kaushik Veeraraghavan

Challenges to Adopting Stronger Consistency at Scale. University of Southern California, 15th

workshop on hot topics in operating systems, May 18-20, 2015

[9] Gregory Chockler, Guy Laden, Ymir Vigfusson, Data Caching as a Cloud Service, LADIS '10:

Proceedings of the 4th International Workshop on Large Scale Distributed Systems and

MiddlewareJuly 2010 Pages 18–21 https://doi.org/10.1145/1859184.1859190

[10] Pankaj Deep Kaur, Gitanjali Sharma, “Architectures for Scalable Databases in Cloud – And

Application Specifications”. Procedia Computer Science 58 (2015) 622 – 634

[11] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li,

Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung,

Venkateshwaran Venkataramani “Scaling Memcache at Facebook”, 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’13)

[12] Matthew Burke, Audrey Cheng, and Wyatt Lloyd. 2020. Gryf: Unifying Consensus and Shared

Registers. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI

’20). 591–617.

[13] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. 2020. Characterizing, Modeling,

and Benchmarking RocksDB Key-Value Workloads at Meta. In 18th USENIX Conference on File

and Storage Technologies (FAST ’20). 209–223

[14] Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton, Shilpa Lawande, Nathan

Bronson, Peter Bailis, Natacha Crooks, and Ion Stoica. 2021. RAMP-TAO: Layering Atomic

Transactions on Meta’s Online TAO Data Store. Proceedings of the VLDB Endowment 14, 12

(2021), 3014–3027

[15] Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han, Dmitri Petrov, Jim Carrig, John Hugg, and

Nathan Bronson. 2020. FlightTracker: Consistency across ReadOptimized Online Stores at Meta. In

14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX

Association, 407–423.

[16] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer, Jason Chan,

Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, Nathan Bronson, Natacha Crooks, Ion

Stoica. TAOBench: An End-to-End Benchmark for Social Network Workloads. PVLDB, 15(9):

1965-1977, 2022.

