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ABSTRACT 

The emergence of Deep Learning (DL) technologies, coupled with advancements in computing power, 

has significantly benefited the field of medical image diagnosis. DL technologies have helped in many 

fields of medical imaging like segmentation, feature extraction, and classification. These DL 

technologies have been published widely in various medical imaging analyzing methods. In this paper, 

we review deep learning based Medical image harmonization techniques. 
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1. INTRODUCTION 

Present days are very much an era of Artificial intelligence. With the increase and availability of big 

data its subareas machine learning and DL has affected everyone’s life. DL has wide applications in 

many scientific fields such as computer vision, natural language processing, audio & speech 

recognition and bioinformatics(Deng L, 2013). DL has its root in the evolution of theory of Perceptron, 

first generation multi-layer perceptron way back in 1950s and 1960s. However, its widespread 

adoption truly gained momentum following the 2012 large-scale image categorization challenge, 

which conclusively demonstrated the superiority of Convolutional Neural Networks (CNNs) on the 

ImageNet dataset (Krizhevsky et al., 2017). In the last decade, with the advancement of computing 

power and availability of large scale datasets, DL has penetrated its application in many real world 

applications such as advertisements and helped in solving real life problems. One of them is in the 

field of medical diagnosis. With the growth in digitization, a huge amount of medical data is generated.  

Medical applications use imaging modalities like X-ray, ultrasound, computed tomography(CT) scan, 

magnetic resonance imaging (MRI) and few others. DL is primarily based on multiple layers of neural 

networks resembling human brain. Medical imaging has several traits that correlate with the nature of 

DL solutions (S. K. Zhou et al., 2021). DL helps in many important medical imaging techniques like 

classification, segmentation, image reconstruction, image enhancement and dataset augmentation. 

Medical image data is often collected and obtained in non-standardized settings. The absence of 

standardized acquisition protocols leads to variations in equipment and scanning parameters, 

contributing to a phenomenon known as "distribution drift" (S. K. Zhou et al., 2021). This phenomenon 

introduces confounding effects caused by non-biological sources of variability in the data, primarily 

arising from discrepancies in image acquisition hardware and protocols. To facilitate improved 

analysis of these data, harmonization is essential. 

Multicenter data harmonization refers to the application of mathematical and statistical methodologies 

aimed at mitigating undesired variability across multiple research sites called scanner effect or batch 

effect, all the while preserving the essential biological information inherent within the data (Marzi et 

al., 2024). 
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This article provides a survey on different DL harmonization techniques. The article is structured as 

follows: Section 2 provides an overview of deep learning methods. Section 3 provides an overview of 

different harmonization techniques based on DL solutions for MRI images. Section 4 provides 

evaluation of reviewed harmonization techniques. Section 5 provides conclusion and future work. 

 

2. DEEP LEANING 

Deep Learning encompasses a collection of computationally intensive models, which are fully 

connected acyclic multi-layer neural networks. Deep learning methodologies applied within the 

domain of medical imaging exhibit versatile capabilities, encompassing functions ranging from the 

acquisition of medical images to the detection and characterization of pathological conditions depicted 

within these images. More precisely, these methodologies are utilized not solely to augment the fidelity 

of images acquired across diverse modalities but also to facilitate the discernment of pathological 

indicators within such images in a manner that is both effective and resource-efficient. For example, 

convolutional neural networks (CNNs) find utility in the reconstruction of images derived from MRI 

scanners, thereby augmenting image resolution and enabling improved visualization of potential 

pathological features (Zhang & Qie, 2023).  CNNs can also do image classification, wherein discerning 

the presence or absence of particular anatomical or pathological attributes. CNNS can also help in 

image segmentation (Shelhamer et al., 2017), wherein it identifies and outlines specific structures or 

regions within the image. Deep learning methodologies also contribute significantly to image 

enhancement and dataset augmentation (Chen et al., 2022) within the field by generating synthetic 

images. It is achieved with the help of Generative Adversarial Networks (GANs)(Goodfellow et al., 

2020). The quantity of training samples utilized in medical image-based diagnostic and therapeutic 

models is expanding alongside the advancements in deep learning. Notably, Generative Adversarial 

Networks (GANs), renowned for their remarkable image generation capabilities and widespread 

application in data augmentation, have garnered attention within the realm of medical image 

processing. Following subsections briefly describes different deep learning technologies.  

 

2.1 Feed Forward Neural Network. 

It is a multi-layer perceptron. Deep learning approximates a function with the help of some hidden 

layers. Gradient descent is a well-known optimisation method used to train the feed forward neural 

network. For approximating the function, noisy estimates are given in the form of training datasets. 

Neural networks are usually trained by minimising the loss function. 

 

2.2 Convolution Neural Network 

A general model of Convolutional Neural Networks (CNNs) comprises four fundamental processes: 

convolutional layers, pooling layers, fully connected layers, and activation functions. 

Convolutional Layer: Convolutional layer’s primary feature is feature extraction. Each neuron within 

the subsequent layer establishes connections with specific neurons in the preceding layer, defining a 

local correlation known as the receptive field (Neubauer, 1998). Through this mechanism, local 

features inherent in the input image are extracted. 

Pooling Layer: The pooling layer functions to merge semantically akin features into one while 

simultaneously diminishing the dimensionality of the representation (Lecun et al., 2015). The primary 

benefit of employing pooling techniques lies in their notable reduction of trainable parameters while 

also imparting translation invariance (Y. Zhou et al., 2016). Among various pooling methods such as 

average pooling and max-pooling, the latter is widely favored for its substantial reduction in map size 

(Lee et al., 2017). 

Fully Connected Layer: Fully connected layers enable the integration of local features across spatial 

dimensions, thereby facilitating the emergence of global patterns essential for image classification 

within neural networks. These layers are instrumental in executing classification tasks by leveraging 

the features extracted from preceding layers. 
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Activation Function: The activation function typically serves as the final layer in a Convolutional 

Neural Network (CNN) and is primarily employed for classification purposes. 

 

2.3 Recurrent Neural Networks: 

Recurrent Neural Networks (RNNs) represent a class of artificial neural networks adept at sequential 

data processing within the domain of deep learning. In contrast to traditional feed forward neural 

networks, Recurrent Neural Networks (RNNs) possess a notable capacity to maintain internal states, 

thereby preserving contextual information across sequential input processing epochs. This inherent 

memory feature facilitates the retention of learned patterns across successive time steps, empowering 

RNNs to effectively capture temporal dependencies within sequential data streams (Cho et al., 2014). 

 

2.4Auto-encoder 

Auto-encoders were initially conceptualized in (David E. Rumelhart, James L. McClelland, 1986) as 

neural network architectures designed to learn representations of input data through the process of 

reconstruction. Functionally, an auto-encoder endeavors to generate output that closely resembles its 

input, thereby serving as an algorithmic tool for image synthesis. Conceptually, auto-encoders extend 

the principles of Principal Component Analysis (PCA) (Plaut, 2018), facilitating the discovery of latent 

representations underlying input data while minimizing information loss during reconstruction. 

 

2.5 Generative Adversarial Network (GAN): 

With the recent research in Generative Adversarial Networks (GANs), realistic-looking natural image 

generations have become a possibility(Goodfellow et al., 2020). Generative Adversarial Networks 

(GANs) find widespread utility in medical imaging, particularly for tasks such as data augmentation, 

image reconstruction, and image-to-image translation. The training paradigm of GANs is structured as 

a two-agent adversarial game, featuring a generator (G) and a discriminator (D). Within this 

framework, the generator seeks to produce images possessing high fidelity to real counterparts, 

whereas the discriminator endeavors to distinguish genuine images from those synthesized by the 

generator. This adversarial interplay between the generator and discriminator drives the iterative 

refinement of generated images towards enhanced realism, facilitating the attainment of desired 

performance in medical imaging applications. 

 

3. HARMONIZATION METHODS 

In recent years, a diverse array of harmonization methodologies has emerged as potent and adaptable 

mechanisms for mitigating confounding effects attributable to site, scanner, or protocol disparities, 

thereby maintaining the inherent biological information embedded within images. Traditional post-

processing techniques, including global scaling, and functional normalization (J. Fortin et al., 2014), 

have demonstrated efficacy in diminishing the impact of site or scanner-related biases. Nevertheless, 

they have proven inadequate in adequately addressing the spatial heterogeneity inherent in site effects 

(J. P. Fortin et al., 2017). 

Harmonization methods are broadly classified into statistical and deep learning based methods.  In 

Statistical techniques, Intensity normalization is used in White Stripe (Shinohara et al., 2014), which 

systematically standardizes the normal appearing white matter (NAWM) intensity distributions. 

Another work which uses Intensity normalization is used in Multisite image harmonization 

by cumulative distribution function alignment (MICA) (Wrobel et al., 2020).This technique entails 

aligning voxel intensity cumulative distribution functions (CDFs) to achieve harmonization. This 

approach entails the estimation of nonlinear, monotonically increasing transformations applied to 

voxel intensity values within a single scan. These transformations are designed to align the cumulative 

distribution function (CDF) of intensity values precisely with that of a specified reference scan, 

denoted as the "target" scan. In a different statistical methodology for addressing batch effects, 

Removal of Artificial Voxel Effect by Linear Regression (RAVEL) (J. P. Fortin et al., 2016) is 
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introduced as a proposed technique. It estimates the latent factors of unwanted variations common to 

all voxels. In other batch effect adjustment method, Combat (J. P. Fortin et al., 2017) is proposed. It 

identifies batch specific transformation to express all data in common representation. 

 

3.1 Deep Learning based harmonization methods 

In recent years, a plethora of deep learning methodologies have emerged as potent and versatile tools 

for the harmonization of MRI images. These deep learning methodologies are mainly base on different 

version of GAN based architectures, auto-encoders, U-net architectures. A review of few deep learning 

based harmonization methodologies is done in this paper. 

3.1.1 Surface-to-Surface GAN 

The Surface-to-Surface GAN (S2SGAN) (Zhao et al., 2019) is a variant of CycleGAN (Zhu et al., 

2017) that employs spherical U-Net layers instead of conventional convolution layers. This adaptation 

is designed specifically for performing harmonization tasks on subject-wise cortical thicknesses 

projected onto a spherical surface. The Surface-to-Surface GAN (S2SGAN) model operates on the 

task of harmonization from one surface, denoted as X, to another surface, denoted as Y, thereby 

constituting a surface-to-surface translation endeavor. In this context, the primary objective of 

harmonization is to acquire a mapping, GX:X→Y, such that the distribution of GX(X) closely resembles 

that of Y. Given the under-constrained nature of this mapping, an additional goal of harmonization is 

to preserve biological variance. To achieve this, the model employs the inverse mapping  GY:Y→X 

alongside the cycle consistency loss, enforcing GY(GX(X))≈X and vice versa. 

Moreover, to ensure structural consistency between the original surface thickness maps and the 

generated maps, the model incorporates a correlation coefficient loss (Hu, Chen, et al., 2023). 

3.1.2 DeepHarmony 

Deep-Harmony (Dewey et al., 2019) presents a contrast harmonization method utilizing a 

convolutional U-Net architecture aimed at achieving consistent contrast in medical imaging. The 

methodology is designed to harmonize images directly, leveraging multiple contrasts (e.g., T1-

weighted, FLAIR, T2-weighted/proton density) obtained from each subject under differing acquisition 

protocols. Through a "many-to-many" reconstruction strategy, complementary information across 

contrasts is integrated to reconstruct corresponding contrasts under different protocols. 

Key modifications are made to the architecture to optimize harmonization performance compared to 

standard U-Net implementations. Notably, a final concatenation operation is introduced between input 

contrasts and the concluding feature map, guiding the network to enhance input contrasts rather than 

fully reconstructing target contrasts. Strided convolution and deconvolution are also implemented for 

downsampling and upsampling feature maps, respectively, enhancing the network's ability to 

harmonize images across multiple contrasts. 

By prioritizing the transformation of input data to accurately reconstruct desired output, the network 

improves efficiency and effectiveness in harmonization, minimizing the need for complete 

reconstruction of reference contrasts. 

3.1.3 CALAMITI 

The Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration 

(CALAMITI) (Zuo et al., 2021) method represents an unsupervised harmonization approach that 

amalgamates the advantages of both image-to-image translation and unsupervised domain adaptation 

techniques. It is based on a conditional variational auto-encoder model. 

CALAMITI represents an advanced, theoretically grounded, unsupervised harmonization approach 

rooted in information bottleneck (IB) principles. It endeavors to learn a global, disentangled latent 

space encompassing anatomical and contrast information, facilitating seamless adaptation to new 

testing sites solely based on incoming data. Notably, this work addresses four key challenges in 

unsupervised harmonization. 
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Firstly, by leveraging intra-site paired data, CALAMITI tackles unsupervised image-to-image 

translation (IIT) tasks through a supervised approach, obviating the need for additional constraints 

such as cycle-consistency and achieving superior pixel-to-pixel regularization. 

Secondly, it adopts a unified architecture for multi-site harmonization, ensuring that the model size 

remains independent of the number of sites involved. 

Thirdly, CALAMITI fosters a consistent anatomical description across all training data, thereby 

establishing a global latent space that encapsulates anatomical variations. 

Finally, the method exhibits adaptability to new sites without necessitating retraining on the original 

dataset. Additionally, theoretical underpinnings are provided, elucidating the disentangled nature of 

the latent space through IB theory (Zuo et al., 2021). 

3.1.4 Imunity 

ImUnity (Cackowski et al., 2023), a deep learning-based methodology, extends previous techniques 

to offer a swift and flexible harmonization solution. It employs a self-supervised Variational 

AutoEncoder (VAE-GAN) architecture to generate "corrected" magnetic resonance (MR) images 

applicable to varied population imaging studies. To mitigate the requirement for mobile subjects or 

diverse MR sequences in the database, ImUnity utilizes multiple slices from the same individual during 

training, coupled with randomized image contrast transformations. 

Furthermore, it incorporates a mechanism to mitigate center bias through a confusion module linked 

to its bottleneck. Optionally, a biological module is employed to ensure the preservation of clinical 

features within the latent space. Once trained, this architecture enables the harmonization of data from 

new sites or scanners without necessitating fine-tuning. Moreover, it supports estimates for multiple 

target sites, enabling users to select MR image reconstructions tailored to the desired target domain, 

be it a site or a scanner. 

The generator network receives two 2-D structural images in identical orientations as input. The initial 

image (S1) is processed by the first convolutional neural network (CNN), exclusively utilizing 

convolutional filters, to encode the 'anatomical' information. This design choice aims to maintain 

spatial information integrity throughout the encoding process. The second image (S2), distinct from 

the first image (S1), is randomly sampled from a different brain region, providing an initial source of 

'contrast' information. Consequently, S1 and S2 exhibit divergent anatomical characteristics due to their 

disparate locations within the brain, while sharing similar contrast attributes stemming from identical 

scanning protocols. The contrast of the second image, S2, is adjusted using a gamma function (or 

exponential correction). The gamma parameter is randomly sampled from a uniform distribution 

ranging between 0.5 and 1.5 for each new input 2-D slice. The altered Sγ
2 slice serves as the input to a 

secondary convolutional neural network (CNN) tasked with encoding the 'contrast information'. 

Subsequently, a dense layer is employed to diminish spatial information within the encoded 

representation. 

Following encoding, the distinct representations of S1 and Sγ
2 are concatenated to form a latent space 

representation. This latent space representation is then decoded using transposed convolutional filters 

to generate the output Sγ
1. 

In this model, the separation of content information from style is accomplished through a self-

supervised process, eliminating the need for additional imaging contrasts.  Image harmonization is 

accomplished by feeding reference batch slices to the style encoder and source batch slices to the 

content encoder. If unseen batches exhibit sufficient similarity to the training batches, allowing the 

content encoder to effectively embed slices from unseen batches, the model can readily adapt to these 

settings (Hu, Chen, et al., 2023). 

3.1.5 MISPEL 

Multi-scanner Image Harmonization via Structure Preserving Embedding Learning (MISPEL) 

(Torbati et al., 2023) aims to achieve harmonization across multiple batches, where the number of 

batches, denoted as m, can exceed two. This is accomplished by employing a collection of m batch-

specific convolutional autoencoders, trained through a two-step algorithm. Importantly, the encoders 
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are constructed as deep neural networks, while the decoders execute a linear combination of the latent-

space representations. 

In the initial step, MISPEL facilitates the training of each batch-specific encoder to encode slices from 

its respective batch into a unified latent space. Following this, the associated decoder is trained to 

reconstruct slices in the stylistic manner of its batch utilizing these latent-space representations. This 

procedure involves individually training each batch-specific autoencoder in a self-supervised fashion, 

employing a reconstruction loss. Furthermore, MISPEL ensures a shared latent space across all 

autoencoders by integrating a representation similarity loss, which penalizes excessive divergence 

among latent-space representations.  

In the second step, the encoders are held constant, and only the decoders are updated. This ensures that 

all decoders produce harmonized output slices with similar characteristics, while also maintaining 

similarity between the outputs and the input slices. (Hu, Chen, et al., 2023) 

3.1.6 MURD 

The Multi-site Unsupervised Representation Disentangler (MURD) (Liu & Yap, 2024)is a 

harmonization method grounded in deep neural networks, eliminating the dependency on traveling 

human phantom data. This technique operates by disentangling site-specific appearance characteristics 

and site-invariant anatomical features from images acquired across multiple sites. Subsequently, the 

disentangled information is utilized to generate images of each subject for any target site. 

MURD decomposes images into two distinct components: anatomical content, which remains 

consistent across sites, and appearance style, encompassing attributes such as intensity and contrast, 

which vary between sites. Harmonized images are synthesized by integrating the content of an image 

with styles specific to the respective sites. 

This encoding process entails employing two encoders: a content encoder capturing anatomical 

structures shared across sites, and a style encoder capturing site-specific style information. An image 

harmonized for a specific site is produced by a generator that merges the extracted content with the 

style characteristic of the target site. The target style can be specified either through a reference image 

from the target site or by a randomly generated style code from a site-specific style generator. The 

latter method allows for the creation of multiple visual appearances that capture natural variations in 

style across each site. 

MURD is trained with tailored loss functions aimed at promoting comprehensive representation 

disentanglement while maximizing the preservation of structural details within the harmonized images. 

3.1.7 DeepCombat 

DeepCombat (Hu, Lucas, et al., 2023) is a deep learning harmonization approach based on a 

conditional variational autoencoder (CVAE) architecture, integrated with the ComBat harmonization 

model. It aims to learn and eliminate subject-level batch effects by considering the multivariate 

relationships among features, presenting a novel perspective within statistically-motivated deep 

learning harmonization methodologies. DeepCombat offers the capability to address complex, non-

linear, and multivariate batch effects within raw data, minimizing the detectability of such effects 

through highly multivariate techniques. 

The DeepCombat method involves three primary steps: normalization, CVAE training, and 

harmonization. Initially, the normalization step transforms the raw data to facilitate quicker 

convergence during CVAE training. Subsequently, the CVAE endeavors to learn a latent space 

representation of the input data, enriched with subject-specific information while minimizing batch 

effects. In this phase, the CVAE learns to utilize this latent space representation, along with explicit 

batch and biological information, for data reconstruction. 

Following reconstruction, imperfections and residual batch effects are addressed through 

harmonization using ComBat. The CVAE decoder then employs this harmonized latent space, coupled 

with reference batch covariates, to generate harmonized subject-specific means. Finally, harmonized 

residuals are combined with these means to obtain the ultimate harmonized data. 
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In summary, DeepCombat segregates batch effects into three distinct components—the latent space, 

the CVAE decoder, and the reconstruction residuals. Each component undergoes individual 

harmonization before amalgamation to produce the final DeepCombat-harmonized data. 

4. EVALUATION  

Successful harmonization methods in medical imaging must fulfill two primary objectives: (1) 

effectively mitigating undesired variations arising from site-specific factors and disparities in imaging 

protocols, and (2) preserving inherent biological variability among subjects. S2SGAN utilizes mean 

absolute error (MAE) and peak signal-to-noise ratio (PSNR) metrics for performance evaluation, 

demonstrating superior results over Combat in both MAE and PSNR for cortical thickness. 

DeepHarmony employs Mean Structured Similarity Index (SSIM) and MAE, averaged across all four 

contrasts, as validation metrics, showcasing significant enhancement in harmonization across all 

measurements. CALAMITI achieves state-of-the-art harmonization performance visually and in terms 

of SSIM and PSNR. However, limitations exist, such as the necessity of intra-site paired images during 

training, potentially restricting applications like pediatric data acquisition where acquiring multi-

contrast images is impractical. Moreover, experiments solely employ paired T1-w and T2-w images, 

although extending the method to include additional contrast MR images like fluid-attenuated 

inversion recovery (FLAIR) could enhance disentanglement. Thirdly, experiments on multiple 

sclerosis (MS) patients reveal unsatisfactory harmonization results in white matter (WM) lesion areas. 

ImUnity employs SSIM metrics and Support Vector Machine (SVM) classifiers for harmonization 

evaluation, albeit its suitability for small sample size scenarios may be limited. 

MISPEL adopts three evaluation criteria: visual quality, image similarity, and volumetric similarity. 

Image similarity is assessed using the mean structural similarity index measure (SSIM), indicating 

improved similarity across harmonized scans. Volumetric similarity is evaluated through the Dice 

similarity coefficient (DSC), indicating enhanced tissue segmentation similarity. 

MURD assesses harmonization efficacy using mean absolute error (MAE), multi-scale structural 

similarity (MS-SSIM), and peak signal-to-noise ratio (PSNR) on T1-weighted and T2-weighted 

images from the traveling human phantom dataset. MURD effectively harmonizes MR images by 

mitigating non-biological site differences while preserving anatomical details. 

Evaluation of DeepCombat involves qualitative visualization, statistical testing, and machine learning 

experiments.  

 

5. CONCLUSION AND FUTURE WORK 

Recent advancements in deep learning architectures have demonstrated their potential to enhance 

diagnostic precision in medical imaging across various domains including pathology and 

neuroimaging. However, the effective deployment of deep learning models necessitates access to 

substantial volumes of data. To facilitate more robust data analysis, it is imperative to address batch 

or scanner effects through harmonization techniques. 

This review paper systematically examines multiple deep learning-based harmonization 

methodologies within the realm of medical imaging. It elucidates their fundamental architectural 

principles and operational methodologies, while also evaluating their performance metrics and 

identifying inherent limitations. Each method endeavours to mitigate batch or scanner effects through 

distinct approaches. Furthermore, the review discusses a hybrid method that integrates statistical and 

deep learning techniques. 

It is essential for methodologists to strive towards establishing a standardized harmonization approach 

that comprehensively addresses all relevant aspects. Such an endeavour would furnish end-users with 

a reliable tool for data analysis and prediction in medical imaging applications. 
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