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ABSTRACT 

Various types of knowledge and features have been explored for object segmentation. On the ground, the 

prior knowledge and carefully-designed features perform well to identify the foreground– background 

contrast, which improves the performance of the segmentation method for complicated data. However, 

this is not the case for underwater environments, since the features available on the ground are not suitable 

for challenging underwater environments. Thus, underwater image segmentation currently lags behind 

ground-based segmentation.The proposed methodology is active contour segmentation for object 

boundary detection from underwater images which is a computer vision technique used for object 

boundary detection in images. It involves creating an initial contour near the object's boundary and 

iteratively adjusting its position to fit the edges of the object accurately. The object borders generate a 

parametric curve or contour. This model incorporates image segmentation and edge detection to trace the 

contours of underwater objects, enhancing the precision of detection. Subsequently, this project explores 

recent advancements that integrate active contour models with other computer vision techniques such as 

deep learning, optical flow, and texture analysis. It offers insights into the current state-of-the-art 

techniques, challenges, and future prospects in this evolving domain. 
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INTRODUCTION 

Underwater image segmentation is a critical task in various underwater applications, including marine 

biology, oceanography, and underwater robotics. The challenging underwater environment presents 

unique obstacles such as poor visibility, uneven lighting, and color distortion, making traditional image 

processing techniques less effective. Active contour models, also known as snakes, have emerged as a 

powerful tool for segmenting objects in underwater images. Active contour models are curve evolution 

techniques that aim to find the optimal contour of an object within an image by minimizing an energy 

function. This contour evolves over iterations to align with the object's boundaries based on image 

characteristics such as intensity gradients. In underwater environments, where the quality of images is 

often degraded, active contour models offer an effective means of extracting objects of interest from the 

background. 

The segmentation process using active contour models typically begins with the initialization of a contour 

close to the object's boundary. The contour then evolves towards the object's boundary by iteratively 

minimizing the energy function. The evolution is guided by internal forces that promote contour 

smoothness and external forces that attract the contour towards edges or gradients in the image. 

One of the key challenges in underwater image segmentation is dealing with low visibility and noise, 

which can cause the contour to converge to incorrect boundaries. To address this, researchers have 

developed advanced active contour models that incorporate adaptive strategies to handle varying lighting 

conditions and noise levels. Overall, underwater image segmentation using active contour 
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models is a promising approach that can significantly improve the efficiency and accuracy of object 

detection and recognition in underwater environments. 

LITERATURE SURVEY 

Zhe Chen, Yang Sun, Yupeng Gu, Huibin Wang, Hao Qian, and Hao Zheng (1)The Underwater object 

segmentation integrating transmission and saliency features discusses the challenges of underwater 

imaged segmentation compared to ground-based segmentation due to the unsuitability of existing features 

for underwater environments. To address this gap, the paper proposes novel cues and a model formulation 

for object segmentation from underwater images. 

Specifically, it considers the unique haze effect present in underwater images and extracts an informative 

feature called the transmission feature from haze condensation. Additionally, the saliency feature is 

utilized for underwater object segmentation. These features, which represent object-background 

differences at both edge and region levels, are integrated into a unified level set formulation to tackle the 

challenges of underwater object segmentation. 

Experimental comparisons with other methods demonstrate the satisfactory performance of the proposed 

method in handling the complexities of underwater environments. 

Nan Luo, Quan Wang, Qi Wei, and Chuan Jing (2) the Object-Level Segmentation of Indoor point clouds 

by the convexity of Adjacent object regions primarily addresses about the edges of RGBD point clouds 

are extracted and used in voxel clustering process to prevent the creation of super voxels that span object 

boundaries. This pre-segmentation steps aim to generate more accurate initial segments. 

Further, a two-phase merging procedure is employed. Region growing is conducted on optimized super 

voxels to obtain local regions, followed by a merging process based on convexity-concavity of adjacent 

regions. 

This merging process leverages observations of object structures to achieve object-level segmentation. 

The proposed algorithm is simple to implement and does not require any training data. Experimental 

results demonstrate its effectiveness in producing super voxels with plausible boundaries and achieving 

improved object-level segmentation compared to existing methods 

 

EXISTING SYSTEM 

The methodology is worked on novel cues and a suitable model formulation for object segmentation from 

underwater images. The special haze effect over underwater images and extract an informative feature 

(transmission feature) from haze condensation. The saliency feature is also used for underwater object 

segmentation. Consequently, in this method, the object-background difference can be presented by these 

features on two levels, i.e., the edge-level transmission and region-level saliency features. For underwater 

object segmentation, the underwater saliency feature, especially the global saliency feature, is better in 

contrast to other image features, as it is robust against the noise-like points and thus can stably identify 

the object in diverse environments. 

 

Disadvantages 

1. In developing a model that extracts transmission and saliency features from underwater images 

can be complex, requires sophisticated algorithms and computational resources. 

2. The segmentation heavily relies on the proper tuning of parameters for feature extraction, making 

it sensitive to variations in environmental conditions and image quality. 

3. It struggles to generalize well across a wide range of underwater environments and conditions, 

potentially leading to suboptimal performance in certain scenarios. 
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PROPOSED SCHEME 

The proposed system for enhancing the Active Contour Model represents a holistic approach to address 

its limitations and elevate its performance in image segmentation tasks. By integrating multi-scale contour 

evolution, feature-based energy formulation, deep learning-assisted initialization, GPU acceleration, and 

contextual information integration, the system offers a robust framework for precise object delineation 

across diverse image datasets. Future refinements and optimizations can further advance the system's 

capabilities, fostering its adoption in real-world applications demanding high-precision image 

segmentation, slice of a brain CT scan, for example, is examined for segmentation using active contour 

models. 

 

Contour Deformation : Greedy Algorithm 

1. For each contour point ν_i(i=0,…,n-1),move ν_i to the position with in a window W where the 

energy function E_image for the contour is minimum. 

2. If the sum of motions of all the contour points is less than a threshold, stop. Else go to step1 So we 

apply some properties like 

1) Elastic and contracts like a rubber band 

2) Smooth like a metal strip 

Various approximations at control point vi: 

Internal bending energy of an entire contour : 𝐸contour =α 𝐸elastic +β 𝐸smooth 

𝐸_elastic = ||𝑣i+1−𝑣i ||2 =(𝑥i+1−𝑥i)2 +(𝑦i+1−𝑦i )2 

𝐸_smooth=||(𝑑2𝑣)/ds2||2=||(𝑣i+1−𝑣i)−(𝑣i−𝑣i-1 )||2= (𝑥i+1−2𝑥i+𝑥i)2 +(𝑦i+1−2𝑦i+𝑦i )2 

 

 

THE DESIGN STRUCTURE AND THE COMPARATORS 

Random Underwater object segmentation presents unique challenges due to factors such as variable 

lighting conditions, water turbidity, and the complex nature of underwater scenes. Accurate segmentation 

of objects submerged in water is crucial for various applications including marine biology, underwater 

archaeology, and offshore engineering. The design structure for underwater object segmentation with the 

ACM encompasses several key components, each contributing to the robustness and accuracy of the 

segmentation process. Preprocessing plays a vital role in enhancing the quality of underwater images and 

mitigating the effects of environmental factors such as light attenuation and water turbidity. Techniques 

such as color correction, contrast enhancement, and noise reduction are commonly employed to improve 

the visibility of underwater objects and facilitate subsequent segmentation. The design of the energy 

function plays a central role in guiding the contour evolution process towards the object boundaries. In 

underwater object segmentation, the energy function should be tailored to incorporate features that are 

relevant in the underwater domain, such as color gradients, texture patterns, and depth information. By 

adapting the energy function to the specific characteristics of underwater imagery, the ACM can 

effectively delineate object boundaries even in challenging conditions. Gradient-based comparators 

measure the similarity between the gradient direction of the image and the tangent direction of the contour. 

By aligning the contour with edges and gradients in the image, gradient-based comparators effectively 

capture object boundaries and guide the contour evolution process towards regions of high gradient 

magnitude. Region-based comparators evaluate the similarity between image regions enclosed by the 

contour and predefined models or templates of object appearance. By comparing features such as color 

histograms, texture descriptors, or shape statistics, region-based comparators assess the 
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goodness-of-fit of the contour to the object boundary and facilitate accurate segmentation, particularly in 

regions with low gradient information. 

System Block Diagram 

 
Fig1: System Architecture 

 

 

RESULT 
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Fig2: Output screen 1 

  

  

 
Fig3: Output screen  

 
Fig 4: output screen 3 
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Fig 5: Output screen 4 

 

CONCLUSION 

In this paper, the proposed system presents a promising approach for underwater object segmentation, 

demonstrating significant potential for real-world applications in marine biology, underwater archaeology, 

and offshore engineering. Future refinements and optimizations can further enhance the system's 

performance, making it a valuable tool for high-precision image segmentation tasks in challenging 

environments and this system represents not only a cutting-edge solution for underwater object 

segmentation but also a versatile platform with the capacity to revolutionize image segmentation across 

diverse domains, driving innovation and progress in scientific research and industrial applications alike. 

The process begins by defining the initial contour, either manually or automatically, to represent the 

object's boundary. Through iterative optimization, the contour is adjusted by moving each point along the 

normal direction to minimize the energy functional. This process continues until convergence is achieved. 

At each iteration, the algorithm checks for convergence based on predefined criteria, such as the 

convergence of energy or reaching the maximum number of iterations. Once convergence is confirmed, 

the final segmented contour representing the object's boundary is outputted as the result. It outlines the 

iterative process of refining the contour through greedy optimization until convergence. 
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