

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 6, April : 2024

UGC CARE Group-1, 118

MODELING FRAMEWORK FOR DEFERRED DIAL-A-RIDE PROBLEM WITH

VEHICLE FENCING

Dr. Ankita Karale, Department of Computer Engineering Sandip Institute of Technology and

Research Centre Nashik, India ankita.karale@sitrc.org

Om Dahale, Department of Computer Engineering Sandip Institute of Technology and Research

Centre Nashik, India om.g.dahale@gmail.com

Sanket Shivale, Department of Computer Engineering Sandip Institute of Technology and Research

Centre Nashik, India shivalesanket21@gmail.com

Neeraj Adhav, Department of Computer Engineering Sandip Institute of Technology and Research

Centre Nashik, India adhavneeraja9500@gmail.com

Prajakta Gavali, Department of Computer Engineering Sandip Institute of Technology and

Research Centre Nashik, India prajaktagavali6630@gmail.com

Abstract

This paper provides a framework for dial-a-ride applications, particularly deferred dial-a-ride

applications. The paper formulates VRP with semi-soft time windows i.e the vehicle is allowed to wait

if it arrives early but should strictly not cross the late limit, vehicle capacity constraints and also allows

missing pickups for a penalty. The vehicles can have fencing constraints that restricts the vehicles to

serve in only their selected area. This fencing is done by pre-computing the pickup and delivery

locations that fall in the area for every vehicle, using raycasting method but you can use any other

method as well such as winding number algorithm. Central to this framework is the utilization of

raycasting techniques for fencing, enabling precise delineation of vehicle territories within irregular

polygons. Raycasting, a computational method used in computer graphics and geometry, facilitates the

identification of boundary intersections, thereby defining the boundaries within which vehicles can

operate. This approach ensures accurate determination of the operational areas for vehicles, optimizing

routing solutions to navigate efficiently within the specified territories and ensuring effective

utilization of resources while enhancing overall transportation efficiency.

Keywords:

vehicle routing problem (VRP), hybrid genetic search (HGS), optimize routes, transportation,

raycasting, fencing

I. Introduction

The significance of this research extends beyond mere algorithmic refinement; it offers a pivotal

advancement in the realm of transportation logistics. By addressing the complexities of the Vehicle

Routing Problem (VRP) within irregular polygons, the framework caters to a critical need in modern

transportation management. Its application spans a wide array of sectors, from urban transit systems

to rural service providers, encompassing school buses, medical transport, and beyond.

This framework's ability to integrate various constraints such as semi-soft time windows, vehicle

capacities, and penalty considerations for missed pickups reflects its adaptability to diverse operational

contexts. Such versatility not only enhances operational efficiency but also translates into tangible

benefits for both service providers and end-users. It promises to optimize resource utilization, reduce

operational costs, and improve service reliability, thus significantly impacting the economic and social

dimensions of transportation logistics. Furthermore, by fostering environmental sustainability through

more efficient routing and reduced emissions, the framework aligns with broader societal goals of

mitigating environmental impact. In essence, its significance lies in its capacity to revolutionize

transportation logistics management, offering innovative solutions to complex operational challenges

while fostering sustainability and enhancing overall quality of service.

mailto:ankita.karale@sitrc.org
mailto:om.g.dahale@gmail.com
mailto:shivalesanket21@gmail.com
mailto:adhavneeraja9500@gmail.com
mailto:prajaktagavali6630@gmail.com

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 6, April : 2024

UGC CARE Group-1, 119

II. Problem Formulation:

The problem formulation comprises two distinct stages: initially, a preprocessing phase is undertaken

to ascertain whether a given location falls within the operational range of a vehicle, achieved through

raycasting techniques. Subsequently, the actual formulation of the Vehicle Routing Problem (VRP) is

conducted based on the outcomes of the preprocessing step :-

1. Preprocessing Step: We will first find if pickup or drop off location is in range using Ray Casting.

The outline of the algorithm follows like this:-

1. Start with a point P that you want to test for being inside the polygon.

2. Draw a horizontal ray from P towards the right, extending to infinity.

3. Count the number of times the ray intersects with the edges of the polygon.

4. If the number of intersections is odd, then the point is inside the polygon. If the number of

intersections is even, then the point is outside the polygon.

def point_inside_polygon(point, polygon):

 num_intersections = 0

 for i in range(len(polygon)):

 p1 = polygon[i]

 p2 = polygon[(i + 1) % len(polygon)] # Wrap around to the first point if we've reached the end

 if point[1] > min(p1[1], p2[1]) and point[1] <= max(p1[1], p2[1]):

 if point[0] <= max(p1[0], p2[0]):

 if p1[1] != p2[1]:

 x_intersection = (point[1] - p1[1]) * (p2[0] - p1[0]) / (p2[1] - p1[1]) + p1[0]

 if p1[0] == p2[0] or point[0] <= x_intersection:

 num_intersections += 1

 return num_intersections % 2 == 1 # True if odd number of intersections

Example usage:

polygon = [(1, 1), (1, 3), (3, 3), (3, 1)]

point = (2, 2)

print(point_inside_polygon(point, polygon)) # Output: True

Vertical Range Check: We ensure that the given point's y-coordinate falls within the vertical range

defined by the current edge of the polygon. This ensures that the point is potentially intersecting with

the edge vertically.

Horizontal Range Check: Further filtering is applied to consider only those edges where the given

point's x-coordinate lies within the horizontal range defined by the current edge. This ensures that the

point is potentially intersecting with the edge horizontally.

Non-Horizontal Edge Check: To avoid division by zero in subsequent calculations, we verify that

the current edge is not horizontal.

Intersection Calculation: Using the equation of a line, we calculate the x-coordinate of the

intersection point between the edge and a horizontal line passing through the given point. This helps

determine if the given point intersects the current edge.

Left-Side Check: We check if the given point lies to the left of the intersection point. If it does, it

indicates an intersection with the edge, ensuring that we count valid intersections.

These conditions collectively help determine whether the given point lies inside or outside the polygon,

based on the number of intersections it makes with the edges of the polygon.

2. VRP Formulation:

Below are the notations used for the VRP formulation. Reference of Equation from [[9] P. Toth and

D. Vigo]

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 6, April : 2024

UGC CARE Group-1, 120

Term Terms Description Description

Node Sets

𝑃 Set of pickup nodes (ie. P= {1,2,........,n})

𝐷 Set of delivery nodes (ie. D= {n+1,........,2n})

𝑁 Overall set of nodes, N = P ∪ D

Transportation

Specifications

𝑑𝑖 Units to be transported from node i to node n + i

𝑙𝑖 Load change at node i, 𝑙𝑖 = 𝑑𝑖 for pickup nodes, 𝑙𝑖+𝑛 = −𝑑𝑖 for

delivery nodes

Vehicle Assignment

𝐾 Set of vehicle categories

Network

Representation

𝐺 Network for each vehicle k, 𝐺 = (𝑉 + 𝐴)

𝑉 Nodes in N along with origin and destination depots for vehicle k

𝐴 Subset of feasible arcs within V x V

Vehicle Departure

𝑎𝑜(𝑘) = 𝑏𝑜(𝑘) Departure time of vehicle k from its origin depot, 𝑎𝑜(𝑘) = 𝑏𝑜(𝑘)

Time Constraints

[𝑎𝑖, 𝑏𝑖] Predefined time windows for visiting node i, with service time 𝑠𝑖

commencing within this window

𝑠𝑖 Service time at node i

𝑇𝑖𝑘 Initiation time of service by vehicle k at node i within V

𝐿𝑖𝑘 Cargo load of vehicle k after completion of service at node i

within V

The objective function is given as:

1. 𝑚𝑖𝑛(𝐿𝑜𝑛𝑔𝑒𝑠𝑡 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦)

Where, 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = ∑ 𝑝𝑖𝑡𝑖.𝑖+𝑛 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖∈𝑃 , 𝐿𝑜𝑛𝑔𝑒𝑠𝑡 = 𝑚𝑎𝑥{ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑘 ∀ 𝑘 ∈(𝑖,𝑗)∈𝐴

 𝐾 } .
Where 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 is large enough that it try not to get penalized. This is important because

we don’t want that getting penalized for missing all pickups be better than doing them.

2. ∑ ∑ 𝑥𝑖𝑗𝑘 ≤ 1 ∀𝑖 ∈ 𝑃𝑗∈𝑁∪{𝑑(𝑘)}𝑘∈𝐾

Each pickup location shall have exactly 1 vehicle dis-parting and reaching anywhere pickup or delivery

or destination for that vehicle but not origin. To allow missing pickups we will make it less than or

equal to 1.

3. ∑ 𝑥𝑖𝑗𝑘 − ∑ 𝑥𝑗.𝑖+𝑛.𝑘 = 0 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃𝑗∈𝑁𝑗∈𝑁

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 6, April : 2024

UGC CARE Group-1, 121

The equation says that the vehicle that picks i is the vehicle that delivers it to i+n where there may be

any number of intermediate nodes.

4. ∑ 𝑥𝑜(𝑘)𝑗𝑘 = 1 ∀𝑘 ∈ 𝐾𝑗∈𝑃∪{𝑑(𝑘)}

Each vehicle shall depart from origin and go somewhere.

5. ∑ 𝑥𝑖𝑗𝑘 − ∑ 𝑥𝑖𝑗𝑘 = 0 ∀𝑘 ∈ 𝐾𝑖∈𝑁∪{𝑑(𝑘)} , 𝑗 ∈ 𝑁𝑖∈𝑁∪{𝑜(𝑘)}

For every vehicle that comes to j from anywhere but d(k), must also depart it and vice verca.

6. ∑ 𝑥𝑖,𝑑(𝑘),𝑘 = 1 ∀𝑘 ∈ 𝐾𝑖∈𝐷∪{𝑜(𝑘)}

Finally, the vehicle should reach to it’s final destination d(k). Constraints (4)-(6) are crafted to

delineate a multi commodity flow framework, guaranteeing the initiation of each vehicle's journey

from its designated origin depot and concluding at its assigned destination depot.

7. 𝑥𝑖𝑗𝑘(𝑇𝑖𝑘 + 𝑠𝑖 + 𝑡𝑖𝑗𝑘 − 𝑇𝑗𝑘) ≤ 0 ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐴

If vehicle k goes from i to j then the time of starting service at j should be greater than or equal to the

sum of time it takes to reach from i to j, the service time 𝑠𝑖 and the time the service started at i given

by 𝑇𝑖𝑘.

8. 𝑎𝑖 ≤ 𝑇𝑖𝑘 ≤ 𝑏𝑖 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉

The time the service started at i by vehicle k given by 𝑇𝑖𝑘 shall fall within the time window of i given

by 𝑎𝑖 and 𝑏𝑖. Please note that the time to start the service and the time the vehicle reaches at location

can be different and thus the vehicle is allowed to wait at the location.

9. 𝑇𝑖𝑘 + 𝑡𝑖,𝑛+𝑖,𝑘 ≤ 𝑇𝑛+𝑖,𝑘 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃

Time for a vehicle to start the service at n+1 shall be greater than or equal to sum of time the service

started at i and the time it takes to reach i+n. Each request is subjected to constraints (9), mandating

the vehicle's adherence to the sequence of visiting the pickup node before the delivery node.

10. 𝑥𝑖𝑗𝑘(𝐿𝑖𝑘 + 𝑙𝑗 − 𝐿𝑗𝑘) = 0 ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐴

If vehicle k goes from i to j then the load of vehicle at j after service shall be exactly the sum of load

of vehicle at k and the loading or unloading load at j.

11. 𝑙𝑖 ≤ 𝐿𝑖𝑘 ≤ 𝐶𝑘 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃

The load of vehicle at k at i after servicing shall always be less than or equal to it’s total capacity and

greater than or equal to loading requirement at i.

12. 0 ≤ 𝐿𝑛+𝑖,𝑘 ≤ 𝐶𝑘 − 𝑙𝑖 ∀𝑘 ∈ 𝐾, 𝑛 + 𝑖 ∈ 𝐷

The load at i+n shall for vehicle k after delivery shall always be non negative and under capacity.

13. 𝐿𝑜(𝑘),𝑘 = 0 ∀𝑘 ∈ 𝐾

We set the initial load of every vehicle at depot to 0.

14. 𝑥𝑖𝑗𝑘 ≥ 0 ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐴

15. 𝑥𝑖𝑗𝑘𝑏𝑖𝑛𝑎𝑟𝑦 ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐴

And finally to allow only locations that are in range for vehicle k, we will do

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 6, April : 2024

UGC CARE Group-1, 122

16. 𝑅𝑎𝑛𝑔𝑒𝑖𝑘 − ∑ 𝑥𝑗𝑖𝑘 ≥ 0 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁

Or alternatively, you can just have different sets for pickups and delivery locations according to the

vehicle k.

III. Solution:

We've employed OR-tools to meticulously model the equations for our Vehicle Routing Problem

(VRP), aiming for an exact solution. OR-tools offer a robust framework tailored for tackling complex

optimization challenges like VRP with precision and efficiency. However, we acknowledge the

diversity of problem-solving approaches. While OR-tools serve as our primary engine, we encourage

exploration of alternative methodologies. Whether through different optimization libraries or custom

algorithms, feel empowered to explore and discover the solution approach that aligns best with your

specific VRP scenario.

Stochastic methods, including heuristics and meta heuristics, offer powerful tools for solving complex

equations when exact solutions are difficult to find. Techniques like genetic algorithms, simulated

annealing, or particle swarm optimization can efficiently explore solution spaces, searching for optimal

or near-optimal values of VRP by iteratively refining potential solutions based on predefined criteria

or fitness functions. The current state-of-the-art solution is the Hybrid Genetic Search [7].

The Hybrid Genetic Search Algorithm (HGS) offers a sophisticated approach to solving the Vehicle

Routing Problem (VRP) by integrating genetic algorithms with local search techniques. Beginning

with population initialization, HGS generates a diverse set of potential solutions, encompassing both

feasible and infeasible routes. Selection of parent solutions for crossover facilitates the exchange of

genetic material, producing offspring with potentially enhanced characteristics. The crossover

operations, such as Single-Point, Two-Point, or Uniform Crossover, diversify the solution space,

aiming for improved quality and diversity. Subsequently, the newly generated offspring undergo a

rigorous local search procedure, refining solution quality by considering soft constraints like time

windows and vehicle capacities. Penalty weights dynamically adjust during local search, ensuring a

balance between feasibility and solution quality.

 Fig 1. Hybrid Genetic Search (HGS)

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 6, April : 2024

UGC CARE Group-1, 123

Population management mechanisms maintain optimal population size and diversity, removing

solutions that contribute the least to overall quality and making room for new offspring. Through

iterative processes, HGS continuously refines solutions, converging towards high-quality solutions

that meet VRP objectives. The algorithm terminates based on predefined criteria, such as reaching a

maximum number of iterations or achieving satisfactory solution quality. By systematically navigating

the complexities of VRP optimization, the Hybrid Genetic Search Algorithm delivers high-quality

routing solutions within reasonable computational effort, making it a valuable tool for logistical

planning and optimization.

IV. Results:

The generation of random territory can be done by following function:

 # python code

def generate_random_polygon(center, num_vertices, radius, xrange, yrange):

 angles = np.sort(np.random.rand(num_vertices) * 2 * np.pi)

 distances = np.random.rand(num_vertices) * radius

 x_coords = np.clip(center[0] + distances * np.cos(angles), x_range[0], x_range[1])

 y_coords = np.clip(center[1] + distances * np.sin(angles), y_range[0], y_range[1])

 # Ensure the polygon is closed

 x_coords = np.append(x_coords, x_coords[0])

 y_coords = np.append(y_coords, y_coords[0])

 return x_coords, y_coords

This function generates a random polygon based on specific parameters. In polar coordinates, the angle

(θ) and distance (r) from the origin (center point) define each vertex. Sine and cosine functions allow

us to convert these polar coordinates to Cartesian coordinates (x, y), which represent the vertex

positions in a two-dimensional plane.

Specifically, the cosine function (np.cos()) calculates the x-coordinate of each vertex based on the

angle (θ) and distance (r), while the sine function (np.sin()) calculates the y-coordinate. This

conversion ensures that the vertices are correctly positioned relative to the center point, forming a

polygon with the desired shape and orientation.

Below is the driver code.

Generate vehicle territories

territories = []

x_margin = 200

y_margin = 200

for x, y in origins_locations:

 center_point = (x, y)

 num_vertices = np.random.randint(3, 11) # You can adjust the number of vertices here

 radius = 800

 convex = False # Change to True for convex polygon

 x_coords, y_coords = generate_random_polygon(

 center_point, num_vertices, radius, x_range, y_range, convex

)

 # Ensure the original point is inside the polygon

 while not is_point_inside_polygon(center_point, list(zip(x_coords, y_coords))):

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 6, April : 2024

UGC CARE Group-1, 124

 x_coords, y_coords = generate_random_polygon(

 center_point, num_vertices, radius, x_range, y_range, convex

)

 territories.append(list(zip(x_coords, y_coords)))

Fig. 2 Result 1: Route assignment with 3 depots and 15 pickup/destination points

Fig. 3 Result 2: Route assignment with 3 depots and 15 pickup/destination points

Fig. 4 Result 3: Route assignment with 5 depots and 25 pickup/destination points

The green points represent the depots for vehicle 𝑘 ∈ 𝐾, blue points represent the pickup point in 𝑃

and the corresponding delivery point in D. The black arc is the assigned route, and the rest arcs

represent the fences. The distance given in the pickup and delivery labels is the time it takes between

to travel from pickup point to the corresponding delivery point. The time windows starts from 0.

V. Conclusion

In conclusion, this paper presents a comprehensive framework for addressing the complexities of dial-

a-ride applications, particularly focusing on deferred scenarios. By integrating semi-soft time

windows, vehicle capacity constraints, and penalty considerations for missed pickups, the framework

offers a versatile solution adaptable to diverse operational contexts. The utilization of raycasting

techniques for fencing ensures precise delineation of vehicle territories within irregular polygons,

optimizing routing solutions and resource utilization. Through the employment of OR-tools and the

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 53, Issue 4, No. 6, April : 2024

UGC CARE Group-1, 125

Hybrid Genetic Search Algorithm (HGS), the framework delivers high-quality routing solutions,

enhancing transportation efficiency and service reliability.Overall, this framework represents a

significant advancement in transportation logistics, offering innovative solutions to complex

operational challenges while fostering sustainability and improving overall quality of service. This

framework bridges the gap between theoretical optimization models and practical operational

challenges, thereby advancing the transportation sector.

Acknowledgment:

1. We extend our heartfelt appreciation to Prof. (Dr.) Ankita V. Karale, Head of the Department of

Computer Science at Sandip Institute of Technology and Research Centre, Nashik, for her invaluable

support and guidance.

2. Our profound gratitude goes to our esteemed Guide, Prof. Akhilesh Sharma, whose expertise and

direction were instrumental in navigating the intricacies of this project and conducting the

experimental research.

References

[1] A. Mor and M.G. Speranza, “Vehicle routing problems over time: a survey”, 2022.

[2] Boumpa, E.; Tsoukas, V.; Chioktour, V.; Kalafati, M.; Spathoulas, G.; Kakarountas, A.; Trivellas,

P.; Reklitis, P.; Malindretos, G. A Review of the Vehicle Routing Problem and the Current Routing

Services in Smart Cities. Analytics (2023) , 2, 1-16. https://doi.org/10.3390/analytics2010001

[3] Dana Marsetiya Utama, Shanty Kusuma Dewi, Abdul Wahid & Imam Santoso | Duc Pham

(Reviewing editor) (2020) The vehicle routing problem for perishable goods: A systematic review,

Cogent Engineering, https://doi.org/10.1080/23311916.2020.1816148

[4] Kris Braekers, Katrien Ramaekers, Inneke Van Nieuwenhuyse, The vehicle routing problem: State

of the art classification and review, Computers & Industrial Engineering, Volume 99, (2016), ISSN

0360-8352, https://doi.org/10.1016/j.cie.2015.12.007.

[5] Marta Torgal, Teresa Galvão Dias, Tânia Fontes, A multi objective approach for DRT service using

tabu search, Transportation Research Procedia, Volume 52, 2021, ISSN 2352-1465,

https://doi.org/10.1016/j.trpro.2021.01.092

[6] M. R. H. Maia, A. Plastino and U. S. Souza, “An improved hybrid genetic search with data mining

for the CVRP”, 2024, https://doi.org/10.1002/net.22213

[7] N A. Wouda , L. Lan and W. Kool, “PyVRP: A High-Performance VRP Solver Package”, 2024,

https://doi.org/10.1287/ijoc.2023.0055

[8] N. Errami, E. Queiroga, R. Sadykov, E. Uchoa. "VRPSolverEasy: a Python library for the exact

solution of a rich vehicle routing problem", 2023

[9] P. Toth and D. Vigo, “The Vehicle Routing Problem” SIAM, 2002,

https://doi.org/10.1137/1.9780898718515

[10] Tan, S.-Y.; Yeh, W.-C. “The Vehicle Routing Problem: State-of-the-Art Classification and

Review”. Appl. Sci. 2021, 11, 10295.1. Introduction https://doi.org/10.3390/app112110295

[11] Tan, S.-Y.; Yeh, W.-C. “The Vehicle Routing Problem: State-of-the-Art Classification and

Review”. Appl. Sci. 2021, 11, 10295.1. Introduction https://doi.org/10.3390/app112110295

[12] T. Vidal, “Hybrid Genetic Search for the CVRP: Open-Source Implementation and SWAP*

Neighborhood”, 2022, https://doi.org/10.1016/j.cor.2021.105643

[13] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, W. Rei, “A hybrid genetic algorithm for multi

depot and periodic vehicle routing problems”, (2012), https://doi.org/10.1287/opre.1120.1048

https://doi.org/10.3390/analytics2010001
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1016/j.trpro.2021.01.092
https://doi.org/10.1002/net.22213
https://doi.org/10.1287/ijoc.2023.0055
https://doi.org/10.1137/1.9780898718515
https://doi.org/10.3390/app112110295
https://doi.org/10.3390/app112110295
https://doi.org/10.1016/j.cor.2021.105643

